14第十章动载荷与疲劳强度简述详解
- 格式:ppt
- 大小:3.46 MB
- 文档页数:65
第14章动载荷14.1 动载荷的概念及分类在以前各章中,我们主要研究了杆件在静载荷作用下的强度、刚度和稳定性的计算问题。
所谓静载荷就是指加载过程缓慢,认为载荷从零开始平缓地增加,以致在加载过程中,杆件各点的加速度很小,可以忽略不计,并且载荷加到最终值后不再随时间而改变。
在工程实际中,有些高速旋转的部件或加速提升的构件等,其质点的加速度是明显的。
如涡轮机的长叶片,由于旋转时的惯性力所引起的拉应力可以达到相当大的数值;高速旋转的砂轮,由于离心惯性力的作用而有可能炸裂;又如锻压汽锤的锤杆、紧急制动的转轴等构件,在非常短暂的时间内速度发生急剧的变化等等。
这些部属于动载荷研究的实际工作问题。
实验结果表明,只要应力不超过比例极限,虎克定律仍适用于动载荷下应力、应变的计算,弹性模量也与静载下的数值相同。
动载荷可依其作用方式的不同,分为以下三类:1.构件作加速运动。
这时构件的各个质点将受到与其加速度有关的惯性力作用,故此类问题习惯上又称为惯性力问题。
2.载荷以一定的速度施加于构件上,或者构件的运动突然受阻,这类问题称为冲击问题。
3.构件受到的载荷或由载荷引起的应力的大小或方向,是随着时间而呈周期性变化的,这类问题称为交变应力问题。
实践表明:构件受到前两类动载荷作用时,材料的抗力与静载时的表现并无明显的差异,只是动载荷的作用效果一般都比静载荷大。
因而,只要能够找出这两种作用效果之间的关系,即可将动载荷问题转化为静载荷问问题处理。
而当构件受到第三类动载荷作用时,材料的表现则与静载荷下截然不同,故将在第15章中进行专门研究。
下面,就依次讨论构件受前两类动载荷作用时的强度计算问题。
14.2 构件作加速运动时的应力计算本节只讨论构件内各质点的加速度为常数的情形,即匀加速运动构件的应力计算。
14.2.1 构件作匀加速直线运动设吊车以匀加速度a吊起一根匀质等直杆,如图14-1(a)所示。
杆件长度为l,横截面面积为A,杆件单位体积的重量为 ,现在来分析杆内的应力。
机械设计基础了解载荷与强度的关系载荷与强度是机械设计中两个重要的概念。
载荷指受力物体所受到的外部力或者内部力,而强度指材料或机械结构抵御外部载荷的能力。
在机械设计中,了解载荷和强度的关系对于正确选择合适的材料和进行结构设计非常重要。
本文将从载荷和强度的概念入手,探讨二者之间的关系。
载荷可以分为静载荷和动载荷。
静载荷是指物体受力而处于静止状态的情况,例如重力、挤压力等。
动载荷则是物体在运动过程中所受到的力,例如冲击力、振动力等。
无论是静载荷还是动载荷,都会对机械结构产生一定程度的影响,因此在设计过程中需要对载荷进行准确的估计和分析。
强度是指材料或结构抵御外部载荷的能力。
不同的材料具有不同的强度特性,需要根据具体的应用场景来选择合适的材料。
材料的强度通常可以通过一些力学参数来描述,例如抗拉强度、抗压强度、弯曲强度等。
这些参数反映了材料抵御不同类型载荷的能力,设计时需要根据具体应力情况选择适当的材料。
载荷与强度之间存在着紧密的关系。
一方面,载荷的大小会对结构的强度要求产生影响。
如果载荷过大,超过了材料或结构的承受能力,就会导致破坏或失效。
因此,在设计中需要合理估计和预测实际载荷的大小,以避免超负荷工作。
另一方面,结构的强度也会限制载荷的大小。
如果结构强度不够,无法承受实际载荷或者存在安全系数过低的情况,就会导致失效或危险。
因此,在设计中需要根据实际载荷选择合适的材料和优化结构以提高强度。
为了准确评估载荷与强度的关系,需要进行一系列的载荷分析和强度计算。
载荷分析可以通过静力学和动力学等方法进行,以确定实际作用在结构上的载荷情况。
而强度计算则需要根据具体材料的力学参数和结构的几何形状等进行。
通过对载荷与强度进行综合分析,可以得出结构的合理设计方案,确保其在实际工作条件下的良好性能。
总结起来,机械设计中载荷与强度是密切相关的。
正确理解和处理二者之间的关系对于设计出安全可靠的机械结构至关重要。
通过准确估计和分析载荷,合理选择材料,进行强度计算和优化设计,可以提高机械结构的安全性和稳定性。
金属材料的力学性能-疲劳强度疲劳强度:机械零件,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。
在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。
疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。
实际上,金属材料并不可能作无限多次交变载荷试验。
一般试验时规定,钢在经受107次、非铁(有色)金属材料经受108次交变载荷作用时不产生断裂时的最大应力称为疲劳强度。
疲劳破坏是机械零件失效的主要原因之一。
据统计,在机械零件失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。
长沙理工大学机械设计期末考试题库含答案机械设计试卷3一 选择填空题 (每空一分共20分)1在常用的螺纹连接中,自锁性能最好的螺纹是 普通螺纹 ,其牙型角60α=。
2普通平键连接工作时,平键的工作面是 侧面,平键的剖面尺寸b h ⨯按 轴径 从标准中查取。
平键连接主要失效形式是 压溃 。
3带传动中,若1υ为主动轮圆周速度,2υ为从动轮圆周速度,υ为带速,则这些速度之间存在的关系是 12υυυ>> 。
4 V 带传动中,V 带截面楔角40ϕ=,则V 带轮的轮槽角φ0应 < 40。
5在设计V 带传动时,V 带的型号可根据 计算功率 和 小带轮转速 查选型图确定。
6对于一对材料相同的钢制软齿面齿轮传动,为使大小齿轮接近等强度,常用的热处理方法是小齿轮 调质 ,大齿轮 正火 。
7根据轴的承载情况,自行车的前轴承受弯矩作用应称为 心 轴。
中间轴应称为 转 轴。
8代号为6206的滚动轴承,其类型是 深沟球轴承,内径d= 30 mm 。
9温度和压力是影响粘度的主要因素,若温度升高,则 粘度降低(或减少) , 若压力升高,则 粘度增加(或变大)。
10 在下列联轴器中,能补偿两轴的相对位移以及可缓冲吸振的是 D 。
A 凸缘联轴器 B 齿式联轴器 C 万向联轴器 D 弹性柱销轴器11在蜗杆传动中,规定蜗杆分度圆直径的目的是 减少蜗轮滚刀的数量,利于刀具标准化。
12普通平键连接工作时,平键的工作面是 侧面。
二 简答题(共5题,每题6分)1 简述齿轮传动的失效形式和开式齿轮传动的设计准则答:失效形式包括:轮齿折断(1分)、齿面疲劳点蚀(1分)、齿面磨损(1分)、齿面胶合(1分)、轮齿塑性变形(1分)。
开式齿轮传动的设计准则:按齿根弯曲疲劳强度进行设计,然后考虑磨损的影响将模数适当加大。
(1分)2 以框图形式说明转轴的设计过程。
3简述蜗杆传动的正确啮合条件。
答:中间平面上,蜗杆轴向模数与蜗轮端面模数相等,均为标准值(2分);蜗杆轴面压力角与蜗轮端面压力角相等,且为标准值(2分);蜗杆与蜗轮轮齿的螺旋线方向相同并且蜗杆分度圆柱上的导程角等与蜗轮分度圆柱上的螺旋角。
疲劳强度
疲劳强度是指材料在受到交变应力作用下所能承受的最大应力水平,是材料抗
疲劳性能的一个重要指标。
在工程实践中,疲劳强度的评定对于保证结构的可靠性和安全性至关重要。
疲劳的危害
疲劳是一种特殊的损伤形式,其分裂起点往往位于材料的内部缺陷或表面微小
裂纹的周围。
当材料受到交变应力作用时,这些缺陷和裂纹会逐渐扩展,导致材料的逐渐衰减和最终破坏。
这种疲劳损伤通常是隐蔽的、逐渐的,却又具有极其危险的特点。
影响疲劳强度的因素
疲劳强度受多种因素影响,其中最主要的包括材料的性能、应力水平、循环次数、环境条件等。
不同材料的疲劳强度差异很大,通常需要通过实验和试验来确定具体数值。
另外,应力水平和循环次数也是影响疲劳强度的重要因素,较高的应力水平和更多的循环次数会显著降低材料的疲劳寿命。
提高疲劳强度的方法
为了提高材料的疲劳强度,可以采取一系列措施。
首先是改善材料的内在质量,减少表面缺陷和微裂纹的存在,以增加材料的抗疲劳性能。
其次是通过热处理、表面强化等工艺手段来改善材料的性能,提高疲劳强度。
此外,设计合理的结构和避免应力集中也是提高疲劳强度的有效途径。
结语
疲劳强度作为材料性能的重要指标之一,对于保证结构的安全性具有重要意义。
正确评定疲劳强度,合理设计结构,提高材料性能,可以有效延长材料的使用寿命,保证结构的可靠性和安全性。
(1) 河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(从垂直于解理面的方向上观察台阶的存在,就看到“河流花样”)(2) 滞弹性:应变落后于应力而和时间有关的现象。
(金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象)(3) 过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限或疲劳寿命减小,就造成了过载损伤。
(4) 热疲劳:凡是由于温度周期变化引起零件或构件的自由膨胀和收缩,而又因这种膨胀和收缩受到约束,产生了交变热应力。
由这种交变热应力引起的破坏就叫热疲劳。
(5)接触疲劳:两接触面做滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片金属剥落而使材料损失的现象。
(6)凿削式磨粒磨损:从表面上凿削下大颗粒金属,摩擦面有较深沟槽。
韧性材料一- -连续屑,脆性材料--一断屑。
(7) 粘着磨损:又称咬合磨损,在滑动摩擦条件下,当摩擦副相对滑动速度较小时发生的。
(8) 内部氢脆:内部氢脆:金属材料在冶炼与加工如酸洗、电镀、焊接、热处理等过程中吸收了大量的氢。
即材料在受载荷前其内部已有足够的氢引起氢脆,称为内部氢脆。
(9)氢致延滞断裂:高强度钢或a+B钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下,经-段孕育期后,在金属内部特别是在三向拉应力区形成裂纹,裂纹逐步扩展,最后突然发生脆性断裂。
这种由于氢的作用而产生的延滞断裂现象称为氢滞延滞断裂。
(10)扩散蠕变:在高温条件下,晶体内空位将从受拉晶界向受压晶界迁移,原子则朝相反方向流动,致使晶体逐渐产生伸长的蠕变。
(11)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加:反向加载,规定残余伸长应力降低的现象。
.(12)低应力脆断:高强度、超高强度钢的机件,中低强度钢的大型、重型机件在屈服应力以下发生的断裂。
第十四章疲劳分析的数值计算方法及实例第一节引言零件或构件由于交变载荷的反复作用,在它所承受的交变应力尚未达到静强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并扩展、最后突然断裂。
这种现象称为疲劳破坏。
疲劳裂纹的形成和扩展具有很大的隐蔽性而在疲劳断裂时又具有瞬发性,因此疲劳破坏往往会造成极大的经济损失和灾难性后果。
金属的疲劳破坏形式和机理不同与静载破坏,所以零件疲劳强度的设计计算不能为经典的静强度设计计算所替代,属于动强度设计。
随着机车车辆向高速、大功率和轻量化方向的迅速发展,其疲劳强度及其可靠性的要求也越来越高。
近几年随着我国铁路的不断提速,机车、车辆和道轨等铁路设施的疲劳断裂事故不断发生,越来越引起人们的重视。
疲劳强度设计及其研究正在成为我国高速机车车辆设计制造中的一项不可缺少的和重要的工作。
金属疲劳的研究已有近150年的历史,有相当多的学者和工程技术人员进行了大量的研究,得到了许多关于金属疲劳损伤和断裂的理论及有关经验技术。
但是由于疲劳破坏的影响因素多而复杂并且这些因素互相影响又与构件的实际情况密切相关,使得其应用性成果尚远远不能满足工程设计和生产应用的需要。
据统计,至今有约90%的机械零部件的断裂破坏仍然是由直接于疲劳或者间接疲劳而引起的。
因此,在21世纪的今天,尤其是在高速和大功率化的新产品的开发制造中,其疲劳强度或疲劳寿命的设计十分重要,并且往往需要同时进行相应的试验研究和试验验证。
疲劳断裂是因为在零件或构件表层上的高应力或强度比较低弱的部位区域产生疲劳裂纹,并进一步扩展而造成的。
这些危险部位小到几个毫米甚至几十个微米的范围,零件或构件的几何缺口根部、表面缺陷、切削刀痕、碰磕伤痕及材料的内部缺陷等往往是这种危险部位。
因此,提高构件疲劳强度的基本途径主要有两种。
一种是机械设计的方法,主要有优化或改善缺口形状,改进加工工艺工程和质量等手段将危险点的峰值应力降下来;另一种是材料冶金的方法,即用热处理手段将危险点局部区域的疲劳强度提高,或者是提高冶金质量来减少金属基体中的非金属夹杂等材料缺陷等局部薄弱区域。
疲劳强度与静强度的关系解释说明以及概述1. 引言1.1 概述本文主要研究疲劳强度与静强度之间的关系。
疲劳强度指材料在周期性应力作用下能承受的最大应力水平,静强度则表示材料在持续稳定外力作用下能承受的最大应力水平。
这两种强度参数在材料性能评估和使用过程中具有重要意义。
笔者将分别对疲劳强度和静强度进行概念解释和特点介绍,并比较分析材料在疲劳载荷和静态载荷作用下的不同响应。
同时,还将探讨疲劳寿命与静态抗压强度之间的关系以及其他影响疲劳寿命的因素。
此外,本文还会介绍一个可行性研究并提供相关实验结果分析。
通过实验设计和方法论介绍,我们将展示实验数据采集与分析结果,并从中得出结论。
最后,在文章结尾部分,我们会总结研究内容及发现,并对未来研究方向进行展望和建议。
1.2 文章结构文章包括五个主要部分:引言、疲劳强度与静强度的概念解释、疲劳与静态应力下材料断裂行为的比较分析、可行性研究及相关实验结果分析以及结论。
每个部分将详细探讨相关内容,以全面阐述疲劳强度与静强度的关系以及其他相关问题。
1.3 目的本文旨在深入探讨疲劳强度和静强度之间的联系,通过比较分析疲劳载荷和静态载荷下材料响应的差异,进一步了解材料在不同载荷作用下的性能表现。
此外,通过可行性研究和实验结果分析,我们也希望为未来的相关研究提供一定的参考,并为工程实践提供一些有益建议。
2. 疲劳强度与静强度的概念解释:2.1 疲劳强度的定义和特点:疲劳强度是指材料在连续或重复加载下,经历一定次数的循环应力后发生破坏的能力。
它表示了材料在长时间内遭受动态或交变加载时的耐久性。
疲劳强度是通过施加循环载荷来测量材料的抗疲劳性能。
与静态强度不同,疲劳强度考虑了时间因素和动态载荷对材料损伤造成的影响。
疲劳强度具有以下几个特点:- 疲劳寿命:材料在一定幅值和频率条件下可承受多少程度的循环载荷而不发生失效。
- 循环应力幅值:材料在疲劳过程中受到最大应力和最小应力之间变化幅度。