管壳式换热器管束振动机理及改进措施
- 格式:pdf
- 大小:213.79 KB
- 文档页数:3
第 57 卷第 1 期2020 年 2 月化 工 设 备 与 管 道PROCESS EQUIPMENT & PIPINGV ol. 57 No. 1Feb. 2020·单元设备·管壳式换热器振动分析和预防周海鸽(中国昆仑工程有限公司,北京 100037)摘 要:总结了管壳式换热器管束振动的机理和判据,提出了预防管束振动发生的多种措施。
同时借助于换热器计算软件HTRI 的振动分析模块,对PTA 工厂中某浆料预热器进行了振动模拟分析。
通过设计参数的调整,在设计阶段即可预防振动的发生。
关键词:换热器;设计;振动;措施;HTRI中图分类号:TQ 050.2;TH 122 文献标识码:A 文章编号:1009-3281(2020)01-0029-004收稿日期:2019-09-17作者简介: 周海鸽(1979—),女,高级工程师。
主要研究方向为精对苯二甲酸(PTA )装置的化工工艺和工艺设备设计。
管壳式换热器是石化行业中应用最广泛的间壁式传热型换热器,适用范围从真空到超高压(超过100 MPa ),从低温到高温(超过1 100 ℃),约占市场65%以上的份额 [1]。
随着石化装置的大型化,管壳式换热器的尺寸也越来越大,由于换热器的管束振动而引起的换热设备破坏的事件屡见不鲜,不仅造成了巨大的经济损失,还存在着严重的安全隐患。
因而,换热器设计时的振动分析和防振设计越来越受到设计人员的重视。
1 管束产生振动的机理和判据诱发管束振动的主要原因是垂直于管束的横向流诱振。
目前比较认可的振动机理是“卡门旋涡”“紊流抖动”“流体弹性不稳定”和“声共振” [2]。
但是引起管束振动的原因是十分复杂的,除了上述机理外,学术界还提出了“射流不稳定”“射流转换”“两相流静压脉动”“尾流摆动”等机理 [3],因此在设计中,很难对引起振动的机理做出明确的判断。
当壳程流体出现以下任一情况时,都有可能发生管束振动,引起管束破坏 [2]:换热管的最大振幅y max >0.02 d (4)当壳程流体为气体或蒸汽时,出现下列情况,有可能发生声振动,引起管束破坏:(1)卡门旋涡频率换热器最低固有频率>0.5=f v f n (2)紊流抖振主频率换热器最低固有频率>0.5=f t f n (3)横流速度临界横流速度>1=V V c(5)声频卡门旋涡频率<1.20.8<=f a f v (6)声频紊流抖振主频率<1.2或0.8<=f a f t式(1)~(6)中,卡门旋涡频率:f S d V v to=(7)式中 S t ——斯特罗哈数;V ——横流速度, m/s ; d o ——换热管外径,m 。
管壳式换热器常见失效形式浅析及对策探讨发布时间:2008-10-23摘要:先从管壳式换热器的几个敏感部位出发,分析了其主要的失效形式,并提出了相应的预防措施和治理方法。
然后分别指出振动、腐蚀、选材、三个对换热器失效影响最大的因素,同时引用了新的方法对换热器的振动失效评估进行了浅析。
关键词:管壳式换热器失效对策0 引言管壳式换热器是石油化工领域应用最广泛的换热设备之一。
但是,由于选材、加工制造、使用、等众多因素的影响,换热器的失效却屡见不鲜。
企业也因此遭受了不可估计的经济损失。
本文从工程实际中换热器最容易失效的敏感部位出发,综合分析了各种失效形式,明确了促使其发展的关键因素。
同时,对各种失效形式也提出了相应的预防措施。
1 管壳式换热器敏感部位的失效形式及对策1.1 换热管与管板的连接处由于换热管与管板的连接处属于几何形状突变处,再加上连接方式和焊后热处理的不当、温差应力的存在、换热管与管板材料选择的差异性等因素,使管口与管板连接处可能存在较大的残余应力,焊接部位呈隐性缺陷状态(含有气孔,杂质等)。
在壳程流体的诱导振动和其腐蚀性的双重作用下,管口与管板连接处便出现了应力腐蚀开裂、缝隙腐蚀和振动疲劳破坏。
并且它们之间的相互促进,又进一步加大了连接处的破坏速度。
以下措施对提高连接处的使用寿命有一定的意义。
(1)连接方式采用先焊后胀的顺序,并且采用机械液压胀接,焊后要做相应的热处理。
换热管伸出管板的尺寸可以适当加长。
(2)换热管的材质与管板的材质尽量匹配,这样可以消除不同材料接触所形成的电势差,有利于从根本上控制管程和壳程的双侧腐蚀问题。
同时换热管材质的硬度要低于管板材质的硬度,使管板与换热管的胀接得到最佳组合。
同样,焊条的选择也是不可忽略的因素。
1.2 换热管与折流板的配合处为了加工制造的方便和使用中能充分吸收换热管的热膨胀量,折流板与换热管的配合处常留有一定的间隙。
在壳程流体的冲击下,此间隙逐渐加大,导致折流板切割换热管,从而引起强大的振动噪音和换热管的泄漏失效。
571 概述某化工公司共设置有2台蒸汽甲醇换热器,主要作用是将饱和气相甲醇进行过热,确保出口气相甲醇满足工艺生产所需的温度,进而保证催化反应正常进行。
结构为U形管卧式换热器,采用并联形式,管程介质为中压饱和蒸汽,壳程介质为甲醇,设备简图见图1。
图1 蒸汽甲醇换热器简图设备工艺参数详见表1。
表1 蒸汽甲醇换热器设计及操作参数项目壳程管程备注工作压力/Mpa 0.3 3.3设计压力/Mpa 4.28 5.35工作温度/℃258250设计温度/℃270285介质甲醇中压蒸汽2 故障现象自2016年该换热器投用以来,发现其存在较大振动并伴随异响,换热器在运行期间管板法兰多次出现泄漏。
2017年检修期间对该换热器进行检查发现换热器管束出现泄漏,管束U形结构位置出现局部变形。
2017年运行期间对换热器振动及噪音进行检测分析认为换热器振动及异响原因是,换热器壳程入口防冲板刚性支撑强度不够,流体冲击防冲板和所在的支撑拉杆而产生颤动,导致振动及异响的发生。
检修期间对该换热器壳程入口增加防冲板结构,振动及异响没有得到有效解决。
3 原因分析3.1 换热器结构设计存在隐患。
壳程入口防冲挡板强度不足。
换热器壳程工艺介质设计流量240t/h,介质走向如图1结构图所示,换热器管束U形结构位于壳程入口位置,当设备正常投用时工艺介质正对防冲挡板,对防冲挡板产生冲刷。
运行期间对换热器入口法兰监测发现,2台换热器壳程入口位置振动分别为1.0mm/s、1.1mm/s,与2017年换热器检修检查结果对照发现,管束变形位置主要集中在U形弯处,印证了防冲挡板强度不足。
壳程入口线速过高。
查换热器设计入口流速为35.72m/s,大流量高流速工艺介质对管束产生较大的冲击。
从管束与流体的相互作用分析,因上述已经分析了换热器变形和振动较大位置集中在U形弯处,此处也同时存在弹性不稳定现象,从而导致工艺介质发生弹性不稳定,诱发了换热管之间、换热管与折流板之间产生振动相互碰撞。
管壳式换热器管束振动机理及改进措施吴翔【摘要】以往设计管壳式换热器时只注重强度、刚度、温差应力等计算而忽视了换热器管束振动对设备的危害。
本文分析了管壳式换热器管束振动的成因,阐述了管束振动引起损坏失效的机理,提出了改进措施。
【期刊名称】《石油和化工设备》【年(卷),期】2012(000)010【总页数】3页(P62-64)【关键词】换热器管束;共振;诱因;失效机理;改进措施【作者】吴翔【作者单位】南京英凯工程设计有限公司,江苏南京210009【正文语种】中文在管壳式换热器失效损坏分析中可以看出,管束振动造成的损坏占有相当比例。
随着石油化工装置日益向大型化发展,换热器尺寸越做越大,操作工艺条件越发苛刻,这就要求设计人员在管壳式换热器设计中,应充分考虑各种因素,其中包括管束振动带来的问题。
而这往往被设计人员所忽视。
管束振动问题应做到事先预防,在设计阶段就应统筹考虑解决,而不是在装置操作运行中发生振动问题后再去补救整改。
1 流体诱发管束振动管壳式换热器流体(气体或液体)诱发管束振动的主要成因有五种,即卡曼涡街旋涡脱落、紊流抖动、流体弹性激振、声共振和流体脉动。
1.1 卡曼涡街旋涡当流体横向掠过换热管时,在流体雷诺数大到一定值时,管子迎流体背面两侧产生周期性交替脱落非对称排列的旋涡尾流,就是卡曼涡街旋涡。
旋涡周期性交替产生脱落,使管子产生垂直于流体方向周期性变化的激振力而导致换热管振动。
振动频率用下式表示[1]:式中:fv -卡曼涡街旋涡频率;St -斯特罗哈数,无因次;V -横流速度;do -换热管外径1.2 紊流抖振紊流中脉动变化的压力和速度场源源不断地提供给换热管能量,对换热管施加一随机的激振力,当受脉动激发主频率与换热管固有频率相近时,换热管吸收能量而产生振动。
紊流抖振主导频率用下式表示[1]:式中:ft -紊流抖振主频率;T-换热管横向管中心距;l -换热管纵向管中心距;V -横流速度;do -换热管外径1.3 声共振换热器壳程中气体或蒸汽流过换热管时,在与流体和换热管轴线均垂直的方向上形成声学驻波,并在壳程内筒壁之间穿过管束来回反射。
管壳式换热器管束失效形式预防措施及在线检验方法摘要:管壳式换热器由于结构复杂和工况的多样性,常引发多种形式的失效。
本文阐述了管壳式换热器常见的失效形式、失效的原因及预防措施,介绍了管壳式换热器失效的在线检测方法,为管壳式换热器的设计、制造和使用提供借鉴。
关键词:管壳式换热器管束失效预防措施1 .前言钢制管壳式换热器以其结构坚固、可靠性高、适应性强和选材广等优点而广泛应用于石化生产行业。
然而,由于结构的复杂性和使用工况的多样性,也常常出现局部失效甚至整体报废。
某石化公司各生产装置管束式换热器每年故障及更换管束所花费就达数百万元,而且影响装置生产的平稳运行及环保达标。
2 .管壳式换热器管束失效形式及预防措施管壳式换热器的主要零部件包括筒体、换热管、接管、管板、折流板、封头等,在不同的工况和介质环境下,可能会发生多种形式的失效。
从结构上分析,易发失效的部位是各构件间的连接处,如管子和管板的连接处;从受力角度分析,尤其是应力突变处易引起失效,如筒体和管板的焊缝处;从使用工况分析,频繁地开停机而引起换热管的流体诱导振动、由于高温高压而引起热应力或附加应力、工作介质具有腐蚀性等,都会造成筒体、换热管甚至整机失效。
2.1振动失效壳程流体流速的提高及换热器经常开停会导致管束的诱导振动,最终使管束失效。
由于管束的支撑物——折流板的尺寸及布置不同,流体诱导振动的程度各异,具体的失效形式有:①碰撞破坏。
当管束的振幅足够大时,换热管之间互相碰撞,管束外围的换热管与壳体内壁发生碰撞,使管壁磨损变薄,最终发生开裂;②折流板处换热管切开。
折流板孔和换热管之间一般存在径向间隙,换热管的横向振动会引起管外壁与折流板孔的内表面产生摩擦,如果折流板的厚度较小,就会对换热器产生“锯切”作用,在短时间内将换热管“切开”发生局部失效;③疲劳失效。
换热管材料本身存在缺陷或者由于腐蚀和磨损产生了缺陷,在振动引起的交变应力作用下,位于主应力方向上的裂纹会迅速扩展,导致换热管疲劳失效。
管壳式换热器振动分析及防振设计作者:柳少华田旭来源:《中国化工贸易·上旬刊》2017年第05期摘要:针对管壳式换热器常见的振动破坏形式,阐述管壳式换热器管束流致振动的机理。
基于HTRI软件,进行换热器振动分析,并介绍了常见的防振措施。
关键词:换热器;振动;机理;HTRI1 前言管壳式换热器由于其结构紧凑,体积小,换热能效高,制造成本低,便于维修等特点,是石油、化工、动力、食品和医药等行业广泛采用的一类换热设备。
随着工业生产迅速发展和生产规模不断扩大,管壳式换热器趋于大型化,换热能力不断提高,适用范围越来越广泛,但与此同时,由于高流速、管束支撑间距增大等多因素,管壳式换热器的振动问题也越来越突出。
换热器管束发生流体诱导振动,往往能造成换热器局部失效甚至整体报废,给工厂带来巨大的经济损失。
据相关文献报道,在传热管内插入圆珠圆管等内件,采用新型的弹性管束代替传统管束等手段,可以诱导流体产生弹性振动,提高传热系数、强化传热、减少结垢,但实际生产中利用振动强化传热的案例较少,应当首先保证换热设备的正常操作,减弱或者消除振动的不良影响。
因此,在管壳式换热器设计中,应充分考虑各种因素,其中包括管束振动分析。
本文在分析换热器管束振动机理的基础上,结合工程实际,针对性地提出了预防措施。
2 振动机理研究进展管壳式换热器内流体的运动十分复杂,流体的流速和方向不断地发生不规则的变化,使传热管处在不均匀的力场中,受到流体流动的各种激发力作用,极易产生振动。
一般认为,换热器管束振动主要是由壳程内的横向流所诱发,管程流体流动诱发振动的可能性较小。
振动产生的根本原因是,流致振动的频率与换热器的固有频率接近,此时换热器就会产生强烈的振动。
流致振动的机理可归纳为以下几点:2.1 卡门漩涡当流体橫掠换热管时,如果流动雷诺数大到一定程度,在其两侧的下游交替发生漩涡,形成周期性的漩涡尾流,称为卡门漩涡。
漩涡流致使圆管上的压力分布呈周期性变化。
管壳式换热器论文:管壳式换热器管束失效问题的分析摘要:随着社会的快速发展,换热器的型式也越来越繁多,在不同场合均可以见到。
而作为管壳式换热器由于结构简单、造价低廉、清洗方便、便于安装检修,被广泛应用在各个领域中。
但笔者在压力容器年检过程中发现由于以上的优点而简单地被应用到一些生产中,不考虑介质的特性和生产工艺使得作为管壳式换热器重要组成部分的管束失效。
本文通过我市一喷涂行业在采用管壳式换热器在使用中发现管束失效的例子,来分析管束失效的一些起因,以便探讨在其设计、制造、使用中如何规范。
关键词:管壳式换热器、问题分析一、设备构造1、该管壳式换热器是喷涂行业在利用加热喷涂的重要设备,采用的是固定管板式换热器,其结构如下:其中管子尺寸为∮32*3,材质为20#,管壳式换热器设计参数如表1。
由于烘烤废气主要是燃料煤的燃烧后的高温气体经过烘烤彩板后的废气,温度达600℃左右,而作为喷涂原料基础油,又必须在60℃时在其他热源配合下喷涂效果最佳。
因此该企业采用管壳式换热器由烘烤废气通过管程,原料基础油通过壳程,两者逆流流动,通过管束换热,达到以下二个作用:提高原料基础油出油温度,以便工艺要求;降低废气排气温度,符合节能要求。
2、检测情况通过检查,发现壳程有轻微腐蚀,最小壁厚为13.5 mm,腐蚀量为0.5mm,左管板与管子焊接处的接头产生裂纹而泄露,管束中心5根管子靠左前部有局部溃疡性腐蚀,管壁穿孔,导致管束失效,运行时间为2年7个月。
二、管束失效原因分析1. 结垢是管束失效的基本原因现场发现,在管束内壁由于烘烤废气在进入换热器后流速下降,废气中的灰粉和未燃尽颗粒沉积在壁面上,通过测量,发现管子内壁前半部粘附着灰粒达1mm厚,而管束外壁,由于喷涂原料化学安定性差,在外壁均布污垢,特别在管板和管束交界处,基础油有堆积沉淀现象。
对于换热器本身来说,虽然起金属导热系数很大,起热阻可以忽略,但当其运行一段时间后,壁面内外均结有污垢,污垢的热阻使得管壳式换热器工作效率下降,导致喷涂原料基础油出口温度达不到预定的要求,无法满足工艺要求。