数学-初一-错题本含答案
- 格式:docx
- 大小:160.86 KB
- 文档页数:5
一、选择题1. 错题:下列哪个数是负数?A. -3B. 0C. 3D. 5错误答案:B正确答案:A解题过程:在数轴上,负数位于0的左侧,因此-3是负数。
2. 错题:下列哪个数是正数?A. -3B. 0C. 3D. 5错误答案:C正确答案:D解题过程:在数轴上,正数位于0的右侧,因此5是正数。
3. 错题:下列哪个数是有理数?A. √2B. πC. -1/2D. 无理数错误答案:A正确答案:C解题过程:有理数是可以表示为两个整数比的数,因此-1/2是有理数。
二、填空题1. 错题:下列哪个数是整数?A. -3.14B. 0.5C. 3D. √9错误答案:A正确答案:C解题过程:整数是没有小数部分的数,因此3是整数。
2. 错题:下列哪个数是无理数?A. √2B. πC. -1/2D. 3错误答案:B正确答案:A解题过程:无理数是不能表示为两个整数比的数,因此√2是无理数。
三、解答题1. 错题:已知a=2,b=-3,求a+b的值。
错误答案:-5正确答案:-1解题过程:a+b=2+(-3)=-12. 错题:已知x=3,求x^2-5x+2的值。
错误答案:4正确答案:-7解题过程:x^2-5x+2=3^2-53+2=9-15+2=-7总结:通过整理错题集,我们可以发现自己在学习过程中的不足,及时进行复习和巩固。
同时,了解自己的错误原因,有助于提高解题能力。
在今后的学习中,我们要认真对待每一道题目,总结经验,不断提高自己的数学水平。
初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个. ⑼ 若0,a =则0ab=. ⑽绝对值等于本身的数是1. 二.填空题⑴若1a -=a -1,则a 的取值范围是: .⑵式子3-5│x │的最 值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________.⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻如果a <b <0,那么1a 1b. ⑼在数轴上表示数-113的点和表示152-的点之间的距离为: . ⑽11a b ⋅=-,则a 、b 的关系是________. ⑾若a b <0,bc<0,则ac 0.⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d 互为相反数,且│x │=4,求2ab -2c +d +3x的值.⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值. ①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分): ⑺比较4a 和-4a 的大小 ①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536; ②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097; ③已知3.412=11.63,那么(34.1)2=116300; ④近似数2.40×104精确到百分位,它的有效数字是2,4; ⑤已知5.4953=165.9,x 3=0.0001659,则x =0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y |>|x |,化简|x |-|y |-|x +y |.⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值.⑾已知a <0,b <0,c >0,判断(a +b )(c -b )和(a +b )(b -c )的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+---- ⎪⎝⎭ ⑶77(35)9-÷+⑷523120001999400016342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ ⑸221.430.57()33⨯-⨯- ⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦ ⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______; 此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a________-a ;a --是一个________数;(2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________; 若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( )-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
一、选择题1. 错题:3 + 2 × 4 = 20正确答案:3 + 2 × 4 = 11错误原因:未正确运用乘法优先级原则。
2. 错题:8 ÷ 2 + 2 = 7正确答案:8 ÷ 2 + 2 = 6错误原因:未正确运用除法和加法的顺序。
3. 错题:5 × (3 + 2) = 25正确答案:5 × (3 + 2) = 25错误原因:题目本身正确,但误以为题目有误。
4. 错题:0.5 × 0.5 = 0.25正确答案:0.5 × 0.5 = 0.25错误原因:题目本身正确,但误以为题目有误。
5. 错题:(-2) × (-3) = 6正确答案:(-2) × (-3) = 6错误原因:题目本身正确,但误以为题目有误。
二、填空题1. 错题:一个数的3倍加上4等于24,这个数是()正确答案:8错误原因:未正确运用代数方法解方程。
2. 错题:如果a = 5,那么a - 2 =()正确答案:3错误原因:未正确进行变量替换。
3. 错题:一个长方形的长是6厘米,宽是3厘米,它的面积是()正确答案:18平方厘米错误原因:未正确运用长方形面积公式。
4. 错题:一个数的平方根是5,那么这个数是()正确答案:±5错误原因:未考虑平方根的正负。
5. 错题:一个数的倒数是2,那么这个数是()正确答案:1/2错误原因:未正确理解倒数的概念。
三、解答题1. 错题:解方程:2x - 5 = 11正确答案:x = 8错误原因:未正确运用等式性质解方程。
2. 错题:计算:(-3) × 4 + 2 × (-5)正确答案:-14错误原因:未正确运用有理数混合运算规则。
3. 错题:求长方体的体积,长是8厘米,宽是4厘米,高是6厘米。
正确答案:192立方厘米错误原因:未正确运用长方体体积公式。
4. 错题:计算三角形面积,底是10厘米,高是6厘米。
第一章三角形的初步知识.三角形任意两边之和大于第三边.三角形任意两边之差小于第三边2. 角的知识:.三角形三个内角的和等于180°.三角形的一个外角等于和它不相邻的两个内角的和。
.三角形的任何一个外角大于和它不相邻的一个内角。
3. 三角形线的知识:三角形的中线、高、角平分线都是线段。
锐角三角形的三条高都在三角形的内部。
直角三角形的三条高,一条在三角形的内部,其他两条是直角边。
钝角三角形的三条高,一条在三角形的内部,其他两条在三角形的外部。
.垂直平分线的性质:线段的垂直平分线上的点到线段两端点的距离相等。
.角平分线性质:角平分线上的点到角的两边的距离相等。
4. 三角形全等的知识:全等三角形的性质:全等三角形的对应边相等,对应角相等..全等三角形的判断:SSS 、SAS 、ASA 、AAS 这四种。
5. 画图方面的知识:1.1 认识三角形1.在Rt △ABC 中,一个锐角为250, 则另一个锐角为________;2. 在△ABC 中,AB =3,BC =7,则AC 的长x 的取值范围是___ _____; 3.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A .1个B .2个C .3个D .4个4.如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC, ∠EDF=∠EFD.则∠A 的度数为……………( ) A. 150B. 200C .250 D. 3005.a 、b 、c 为三角形的三边长,化简c b a c b a c b a c b a -+-+-----++,结果是 ( )A 、0B 、c b a 222++C 、a 4D 、c b 22-(第4题图)ECBD A6.若a 、b 、c 是△ABC 的三边,化简c -b -a +b -c a ++b -a -c =( ) A 、a+b-c B. a-b+c C. a+b+c D. a-b-c7.点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中∠1、∠2、∠A 的大小关系是( )A 、∠A >∠2>∠1B 、∠A >∠2>∠1C 、∠2>∠1>∠AD 、∠1>∠2>∠A 8.如图,∠A+∠B+∠C+∠D+∠E+∠F 的 和为 度9.如图,是中国共产主义青年团团旗上的图案,点A B C D E 、、、、五等分圆,则 A B C D E ∠+∠+∠+∠+∠的度数是 A.1800 B. 1500 C. 1350 D. 12001.2 -1.3三角形的角平分线和中线.高1.如图,把△ABC 纸片沿DE 折叠,当A 落在四边形BCDE 内时,则A ∠与21∠+∠之间有始终不变的关系是 ( )A .21∠+∠=∠A B .212∠+∠=∠A C .213∠+∠=∠A D .)21(23∠+∠=∠A2.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是 A .212∠-∠=∠A B .)21(23∠-∠=∠A C .2123∠-∠=∠A D .21∠-∠=∠A3.如图(1)△ABC 是一个三角形的纸片,点D 、E 分别是△ABC 边上的两点, 研究(1):如果沿直线DE 折叠,则∠BDA ′与∠A 的关系是_____ __。
● 已知样本容量为60的频数分布直方图中,若其中一个小长方形的面积是其余7个小长方形面积和的51,则这一组的频数为 。
● 为了庆祝中国共产党建党80周年,某市各单位都举行了“红歌大赛”。
某中学将参加本校预赛选手的成绩(满分为100分,得分为整数,最低为80分,且无满分)分成四组,并绘制了如下的统计图。
请根据统计图的信息解答下列问题。
(1)参加本校预赛的选手共有 人;(2)大多数预赛选手的成绩所在的分数段是 ;(3)成绩在94.5分以上的预赛选手人数占参赛选手总数的百分比是多少?(结果精确到0.1%)● 某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为 A.“非常了解”,B.“比较了解”,C.“基本了解”,D.“不太了解”,四个等级,划分等级后的数据整理成如下表格和频数分布直方图.等级频数 频率 非常了解30 b 比较了解0.25 基本了解100 0.5 不太了解20 0.1 合计 a 1根据以上信息,请回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1800人,请根据调查结果估计这些学生中“不太了解”垃圾分类知识的人数.● 为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是 ( )A. 本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多● 如图,长方形纸片ABCD ,M 为AD 边的一任意点,将纸片沿BM ,CM 折叠,使点A 落在点A'处,点D 落在D'点处,若∠1=30°,则∠BMC=()A.135°B.120°C.105°D.100°● 已知f(1)=2(取1×2计算结果的末位数字),f(2)=6(取2×3计算结果的末位数字),f(3)=2(取3×4计算结果的末位数字),…,则f(1)+f(2)+f(3)+…+f(2020)的值为() A.2020 B.4040 C.4042 D.4030● 如图所示,甲从A 点以66m/min 的速度,乙从B 点以76m/min 的速度,同时沿着边长为100m 的正79.5 84.5 89.5 94.5 99.5方形按A→B→C→D→A…的方向行走.当乙第一次追上甲时,在正方形的 边上。
七年级上册数学错题本
以下是一份七年级上册数学错题本示例:
题目:若关于 x 的一元一次方程 3x + a = 2 的解是 x = 1,则式子 a^2 + 2a - 3 的值为 _______.
答案:$- 4$
解析:首先,根据题意,将 $x = 1$ 代入方程 $3x + a = 2$ 中,得到 $3 \times 1 + a = 2$,即 $a = - 1$。
然后,将 $a = - 1$ 代入式子 $a^2 + 2a - 3$ 中,得到 $(- 1)^2 + 2 \times (- 1) - 3 = - 4$。
总结:此题考查了一元一次方程的解法以及代数式的求值。
解题时,首先需要根据题意求出 $a$ 的值,然后代入代数式中计算。
需要注意的是,代入时要确保代入的值使代数式有意义。
希望这份错题本示例对你有所帮助。
在学习过程中,请务必认真整理和分析错题,以更好地掌握相关知识点。
七年级数学下易错题练习答案第五章相交线与平行线1.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16° C.90°﹣α D.α﹣44°【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14° B.15° C.16° D.17°【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70° C.80° D.110°【解答】∴∠2=180°﹣50°﹣50°=80°.故选:C.4.如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30° C.40° D.50°【解答】解:∵直尺对边互相平行,故选:C.∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.5.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.6.如图,AB∥CD,点E在线段BC上,∠CDE=∠CED.若∠ABC=30°,则∠D为()A.85°B.75° C.60° D.30°【解答】故选:B.7.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.8.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.9.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补二、填空题1.如图,把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,则∠EMF = 90°2.如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF= 115度.3 将长方形纸片ABCD 沿过A 点的直线折叠,折痕为线段AE ,得到图8所示的图形,已知∠CED ′=50º,则∠AED = 65 度.4、改写成如果…那么…形式1、改写:如果三个角是一个三角形的内角,那么这三个角的和是180°。
七年级上册数学第一单元错题集一、有理数的概念类。
1. 下列各数:-2,0,(1)/(3),0.020020002·s(每两个2之间依次多一个0),π,√(9),其中无理数有()- A. 1个。
- B. 2个。
- C. 3个。
- D. 4个。
- 答案:B。
- 解析:无理数是无限不循环小数。
在这些数中,0.020020002·s(每两个2之间依次多一个0)和π是无理数,-2是整数,属于有理数;0是有理数;(1)/(3)是分数,属于有理数;√(9)=3是整数,属于有理数。
2. 下列说法正确的是()- A. 正数和负数统称为有理数。
- B. 0是最小的有理数。
- C. 整数就是正整数、负整数的统称。
- D. -1是最大的负整数。
- 答案:D。
- 解析:- A选项,有理数包括整数和分数,正数、负数和0统称为有理数,所以A错误。
- B选项,没有最小的有理数,所以B错误。
- C选项,整数包括正整数、0和负整数,所以C错误。
- D选项, -1是最大的负整数,D正确。
二、数轴相关类。
3. 在数轴上表示数 -3和表示数5的点之间的距离是()- A. -8.- B. 8.- C. 2.- D. -2.- 答案:B。
- 解析:数轴上两点之间的距离等于这两点所表示的数的差的绝对值。
即|5 - (-3)|=|5 + 3| = 8。
4. 点A在数轴上表示的数是 -2,将点A向右移动3个单位长度后表示的数是()- A. 1.- B. -1.- C. 5.- D. -5.- 答案:A。
- 解析:在数轴上,向右移动为加法运算。
点A表示 -2,向右移动3个单位长度后表示的数是-2+3 = 1。
三、相反数与绝对值类。
5. 若| a|=5,则a的值为()- A. 5.- B. -5.- C. ±5- D. 以上都不对。
- 答案:C。
- 解析:绝对值的定义是一个数在数轴上所对应点到原点的距离。
所以绝对值为5的数有两个,即±5。
七年级上数学错题集1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.12.写出绝对值不大于2的整数.13.由|x|=a能推出x=±a吗?14.由|a|=|b|一定能得出a=b吗?15.绝对值小于5的偶数是几?16.用代数式表示:比a的相反数大11的数.17.用语言叙述代数式:-a-3.18.算式-3+5-7+2-9如何读?19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.20.计算下列各题:21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.22.若a为有理数,求a的相反数与a的绝对值的和.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.24.列式并计算:-7与-15的绝对值的和.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;29.用简便方法计算:30.比较4a和-4a的大小:31.计算下列各题:(5)-15×12÷6×5.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;35.计算下列各题;(1)-0.752;(2)2×32.36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是;(2)有理数a与它的立方相等,那么a= ;(3)有理数a的平方与它的立方相等,那么a= ;(4)若|a|=3,那么a3=(5)若x2=9,且x<0,那么x3= .38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有.(2)用四舍五入法,把0.63048精确到千分位的近似数是.(3)由四舍五入得到的近似数3.70和3.7是.(4)由四舍五入得到的近似数4.7万,它精确到.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362= ,0.050362= ;(2)已知7.4273=409.7,那么74.273= ,0.074273= ;(3)已知3.412=11.63,那么 =116300;(4)近似数2.40×104精确到,它的有效数字是,;(5)已知5.4953=165.9,x3=0.0001659,则x= .有理数·错解诊断练习答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.。
1.根据等式的性质,下列变形正确的是()
A、若,则
B、若,则
C、若,则
D、若,则
【答案】D
【解析】解:A、在等式的两边同时除以,等式仍成立,即.故本选项错误;B、在等式的两边同时乘以,等式仍成立,即.故本选项错误; C、当
时,不一定成立,故本选项错误; D、在等式的两边同时乘以,等式仍成立,即,故本选项正确;故选:D.
2.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①,图②,已知大长方形的长为,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周
长与图②阴影部分周长的差是()(用的代数式表示)
A、
B、
C、
D、
【答案】C
【解析】解:设图③中小长方形的长为,宽为,大长方形的宽为,根据题意得:
,即,图①中阴影部分的周长为,图②中阴
影部分的周长,则图①阴影部分周长与图②阴影部分周长之差为
.故选C.
3.减去后,等于的代数式是()
A、
B、
C、
D、
【答案】A
【解析】
4.下列关于单项式的说法中,正确的是()
A、系数是,次数是
B、系数是,次数是
C、系数是,次数是
D、系数是,次数是
【答案】D
【解析】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是.故选D.
5.有下列说法:①每一个正数都有两个立方根;②零的平方根等于零的算术平方根;③没有平方根的数也没有立方根;④有理数中绝对值最小的数是零. 正确的个数是()
A、
B、
C、
D、
【答案】B
【解析】(1)根据立方根的性质,每一个正数都有一个立方根,故说法错误; (2)根据平方根的定义,零的平方根等于零的算术平方根,故说法正确; (3)根据平方根、立方根的定义,没有平方根的数也有立方根,故说法错误; (4)根据绝对值的定义,有理数中绝对值最小的数是零,故说法正确. 故(2)和(4)正确,共个. 故选B .
6.下列各式:,,,,,,,中单项式的个
数有()
A、个
B、个
C、个
D、个
【答案】C
【解析】下列各式: ,,,,,,,中单项式有,,共个. 故选C.
7.若,,则的值为()
A、
B、
C、或
D、或
【答案】D
【解析】解:因为,,所以,,则的值为或故选D.
8.在下列实数中:,,,,,…无理数有()
A、个
B、个
C、个
D、个
【答案】B
【解析】解:,…是无理数,故选B.
9.已知实数、、在数轴上的位置如图所示,化简:.
【答案】见解析
【解析】解:由题意得:,且,则,,,则
原式.
10.求下列各数的立方根. ①;②;③;④;⑤;⑥
【答案】见解析
【解析】①;②;③;④;⑤;⑥
11.下列说法中,其中不正确的有() ①任何数都有平方根;②一个数的算术平方根一定是正数;
③的算术平方根是;④算术平方根不可能是负数.
A、个
B、个
C、个
D、个
【答案】D
【解析】解:根据平方根概念可知:①负数没有平方根,故错误;②反例:的算术平方根是,故错误;③当时,的算术平方根是,故错误;④算术平方根不可能是负数,故正确.所以不正确的有①②③.故选D.
12.下列各对数中,数值相等的是()
A、与
B、与
C、与
D、与
【答案】A
【解析】解: A、根据有理数乘方的法则可知,,故A选项符合题意; B、,,故B选项不符合题意; C、,,故C选项
不符合题意; D、,,故D选项不符合题意.故选A.
13.
【答案】见解析
【解析】.
14.计算:.
【答案】见解析
【解析】.
15.计算:
【答案】见解析
【解析】.
16.用“”、“”或“”填空:⑴________;⑵________;⑶
________;⑷________;⑸________;⑹
________(为有理数).
17.计算:________.
【答案】1
【解析】解:.故答案为:1.
18.
【答案】见解析
【解析】.
19.计算:
【答案】见解析
【解析】.
20.
【答案】见解析
【解析】.
21.
【答案】见解析
【解析】.
22.甲、乙、丙三地的海拔高度为米、米、米,那么最高的地方比最低的地方高()
A、米
B、米
C、米
D、米
【答案】D
【解析】解:米.故选D.
23.如果,且,那么()
A、,
B、,
C、、异号
D、、异号且正数的绝对值较大
【答案】D
【解析】解:,、异号.,正数的绝对值较大.故选D.相同的错误题目,下载时只显示一次,下载数量和错题显示数量可能会有偏差哦~。