【教育学习文章】人教B版高二数学必修五导学案
- 格式:doc
- 大小:16.08 KB
- 文档页数:7
3.3.2 简单的线性规划问题【教学目标】 1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题. 【教学过程】 一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看《3.3.2 简单的线性规划问题》课件“情景引入”部分,从配件的生产安排满足不同的条件入手,引出线性规划的概念及基本思路.二、自主学习教材整理1 线性规划中的基本概念 阅读教材P 87~P 88探究,完成下列问题. 线性规划中的基本概念阅读教材P 88例5~P 90例7,完成下列问题. 线性目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +zb ,它表示斜率为-a b ,在y 轴上的截距是zb的一条直线,当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值.三、合作探究问题1类比探究二元一次不等式表示平面区域的方法,画出约束条件(x-a)2+(y-b)2≤r2的可行域.答案问题2在问题“若x、y满足⎩⎪⎨⎪⎧x+y≥6,x≤4,y≤4,求z=y-1x-1的最大值”中,你能仿照目标函数z=ax+by的几何意义来解释z=y-1x-1的几何意义吗?答案z=y-1x-1的几何意义是点(x,y)与点(1,1)连线的斜率.探究点1最优解问题命题角度1问题存在唯一最优解例1已知x,y满足约束条件⎩⎪⎨⎪⎧x+2y≤8,4x≤16,4y≤12,x≥0,y≥0,该不等式组所表示的平面区域如图,求2x+3y的最大值.解设区域内任一点P(x,y),z=2x+3y,则y=-23x+z3,这是斜率为定值-23,在y轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z 3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14.名师点评:图解法是解决线性规划问题的有效方法,基本步骤: ①确定线性约束条件,线性目标函数; ②作图——画出可行域;③平移——平移目标函数对应的直线z =ax +by ,看它经过哪个点(或哪些点)时最先接触可行域或最后离开可行域,确定最优解所对应的点的位置;④求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 命题角度2 问题的最优解有多个 例2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若目标函数z =ax +y 的最大值有无数个最优解,求实数a 的值.解 约束条件所表示的平面区域如图:由z =ax +y ,得y =-ax +z .当a =0时,最优解只有一个,过A (1,1)时取得最大值;当a >0时,当y =-ax +z 与x +y =2重合时,最优解有无数个,此时a =1; 当a <0时,当y =-ax +z 与x -y =0重合时,最优解有无数个,此时a =-1. 综上,a =1或a =-1.名师点评:当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解.探究点2 生活中的线性规划问题例3 营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B各多少kg?将已知数据列成下表:食物/kg碳水化合物/kg蛋白质/kg脂肪/kgA 0.1050.070.14B 0.1050.140.07解设每天食用x kg食物A,y kg食物B,总成本为z,那么⎩⎪⎨⎪⎧0.105x+0.105y≥0.075,0.07x+0.14y≥0.06,0.14x+0.07y≥0.06,x≥0,y≥0⇒⎩⎪⎨⎪⎧7x+7y≥5,7x+14y≥6,14x+7y≥6,x≥0,y≥0.目标函数为z=28x+21y.作出二元一次不等式组所表示的平面区域,把目标函数z=28x+21y变形为y=-43x+z21,它表示斜率为-43,且随z变化的一组平行直线,z21是直线在y轴上的截距,当截距最小时,z的值最小.如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小.解方程组⎩⎪⎨⎪⎧7x+7y=5,14x+7y=6,得M点的坐标为⎝⎛⎭⎫17,47.所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A17kg ,食物B 47kg.名师点评:(1)目标函数z =ax +by (b ≠0)在y 轴上的截距zb 是关于z 的正比例函数,其单调性取决于b 的正负.当b >0时,截距z b 越大,z 就越大;当b <0时,截距zb越小,z 就越大.(2)最优解是谁,和目标函数与边界函数的斜率大小有关. 探究点3 非线性目标函数的最值问题 命题角度1 斜率型目标函数例4 已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0.试求z =y +1x +1的最大值和最小值.解 作出不等式组表示的平面区域如图阴影部分所示, 由于z =y +1x +1=y -(-1)x -(-1),故z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率, 因此y +1x +1的最值是点(x ,y )与点M (-1,-1)连线的斜率的最值,由图可知,直线MB 的斜率最大,直线MC 的斜率最小,又∵B (0,2),C (1,0), ∴z max =k MB =3,z min =k MC =12.∴z 的最大值为3,最小值为12.变式探究1.把目标函数改为z =3y +12x +1,求z 的取值范围.解 z =32·y +13x +12,其中k =y +13x +12的几何意义为点(x ,y )与点N ⎝⎛⎭⎫-12,-13连线的斜率.由图易知,k NC ≤k ≤k NB ,即29≤k ≤143,∴13≤32k ≤7,∴z 的取值范围是[13,7]. 2.把目标函数改为z =2x +y +1x +1,求z 的取值范围.解 z =2(x +1)+y -1x +1=y -1x +1+2.设k =y -1x +1,仿例2解得-12≤k ≤1.∴z ∈[32,3].命题角度2 两点间距离型目标函数例5 已知x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,试求z =x 2+y 2的最大值和最小值.解 z =x 2+y 2表示可行域内的点到原点的距离的平方,结合图形(例2图)知,原点到点A 的距离最大,原点到直线BC 的距离最小. 故z max =|OA |2=13,z min =⎝⎛⎭⎫|OB |·|OC ||BC |2=⎝ ⎛⎭⎪⎫2×152=45. 名师点评:(1)对于形如cx +dy +fax +b的目标函数,可变形为定点到可行域上的动点连线斜率问题.(2)当斜率k 、两点间的距离、点到直线的距离与可行域相结合求最值时,注意数形结合思想方法的灵活运用.四、当堂检测1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53 D.52答案 C提示:画出可行域如图阴影部分(含边界).设z =x +2y ,即y =-12x +12z ,平行移动直线y =-12x +12z ,当直线y =-12x +z2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A .6B .7C .8D .23 答案 B提示:作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1 答案 A提示:-1a =2-14-1=13,∴a =-3.4.已知实数x 、y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤2,则z =2x +4y 的最大值为________.答案 8提示:由不等式组表示的可行域,知目标函数z 在点(0,2)处取得最大值8.五、课堂小结:本节课我们学习过哪些知识内容? 提示:1.用图解法解决简单的线性规划问题的基本步骤: (1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.4.对于非线性目标函数,应准确翻译其几何意义,如x2+y2是点(x,y)到点(0,0)的距离的平方,而非距离.。
2.1数列学习目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
学习重点数列及其有关概念,通项公式及其应用 学习难点根据一些数列的前几项抽象、归纳数列的通项公式 基本知识1. 叫做数列, 叫做这个数列的项.2. 就叫做这个数列的通项公式.3.数列可用图象来表示,在直角坐标系中,以 来表示一个数列,图象是一些 ,它们位于 .4.根椐数列的项数可以把数列分为 和 .根据数列中项与项的大小关系可以把数列分为 、 、 和 . 5. 那么这个公式就叫做这个数列的递推公式.6.若数列{}n a 的前n 项和记为n S ,即,321n n a a a a S ++++= 则⎪⎩⎪⎨⎧≥==).2(),1(n n a n1.数列的通项公式实际上是一个以正整数集+N 或它的有限子集{}n ,,2,1 为定义域的函数的表达式;2.如果知道了数列的通项公式,那么依次用 ,3,2,1去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可以判断某数是否是某数列中的一项,如果是的话,是第几项;3.像所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到 ,0001.0,001.0,01.0,1.0,1所构成的数列,4142.1,414.1,41.1,4.1,1就没有通项公式.4.有的数列的通项公式,在形式上不一定是唯一的,例如数列:,1,1,1,1,1,1---它可以写成,)1(n n a -=也可以写成⎩⎨⎧-=.,1,,1为偶数为奇数n n a n 还可以写成2)1(+-=n n a 等.这些通项公式,形式上虽然不同,但都表示同一个数列. 5.有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一. 典例精析题型一 根据数列{}n a 的前几项,写出数列的通项公式. 例1 写出下列数列的一个通项公式: (1) ,33,17,9,5,3;(2) ,544,433,322,211; (3) ,777,,7777,777,77,7;(4).,1337,1126,917,710,1,32 --- 命题意图:寻求规律,写出通项公式.用观察归纳法写出数列的一个通项公式,体现了由特殊到一般的思维规律,观察、分析问题的特点是最重要的,观察要有目的,要能观察出特点,观察出项与项之间的关系、规律.这类问题就是要观察各项与对应的项数之间的联系,利用我们熟知的一些基本数列(如自然数数列、奇偶数列、自然数列的前n 项和数列、自然数的平方数列、简单的指数数列……),建立合理的联想,转换而达到问题的解决.一题一练 分别写出下列数列的一个通项公式,数列的前4项已给出.(1);,515,414,313,2122222 ----(2);,201,121,61,21 -- (3);9999.0,999.0,99.0,9.0 (4).,4,5,4,5 题型二 数列通项公式的简单应用 例2 已知有穷数列 ,2625,1716,109,54 (1)指出这个数列的一个通项公式;(2)判定0.98是不是这个数列中的项?若是,是第几项? 命题意图:考察对通项公式的理解及应用方法提升(1)本题中极容易错误地认为122+n n 是数列的通项公式,为避免这样的错误,可验证你所写通项公式是否适合数列的前几项.(2)要判断一个数是否为该数列中的项,可由通项等于这数解出n ,根据n 是否为正整数便可确写这个数是否为数列中的项,也就是说,判定某一数是否是数列中的某一项,其实质就是看方程是否有正整数解.一题一练 已知数列{}n a 的通项公式n n q a =,且.7224=-a a(1)求实数q 的值;(2)判断81-是否为此数列的某一项.题型三 已知n S 求n a例3 已知数列{}n a 的前n 项和n S ,求数列{}n a 的通项公式. (1);12-=n n S (2).322++=n n S n命题意图 本题为通过n S 求n a ,因为n n a a a S +++= 21,所以n S 与n a 有关系⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 可求得.n a解 (1)由,12-=n n S 当1=n 时,;112111=-==S a 当2≥n 时, )12(1211---=-=--n n n n n S S a.22211--=-=n n n当1=n 时也适合,12111==-a 所以.21-=n n a(2)由,322++=n n S n 当1=n 时,.611==S a当2≥n 时,[].143)1()1(2)32(221-=+-+--++=-=-n n n n n S S a n n n.)2(14)1(6⎩⎨⎧≥-==∴n n n a n由n S 求n a 时,当1a 不符合1--=n n n S S a 表达式时,通项公式要分段表示. 即⎩⎨⎧≥==2)(11n n f n a a n 的形式.一题一练(1)已知数列{}n a 的前n 项和n n S n 322-=,求数列通项公式; (2)已知数列⎣⎦n a 的前n 项和35-=n n S ,求数列通项公式题型四 数列的递推公式例4 已知数列{}n a 分别满足下列条件,写出它的前五项,并归纳出各数列的一个通项公式.(1));12(,011-+==+n a a a n n (2).22,111+==+n nn a a a a 命题意图 此数列是用递推公式给出的,已知1a 就可递推出,,2 a 依此类推,可求出它的任一项.再根据前5项归纳猜想n a 的一个通项公式.由递推公式,求出数列前5项,再归纳出通项公式,猜想不一定正确,还需严格证明(今后学到),也可以直接求出. 巩固练习 一、选择题1.下列说法不正确的是( )A. 数列可以用图像来表示B. 数列的通项公式不唯一C. 数列的项不能相等D. 数列可以用一群狐立的点表示2.已知数列{}n a 的通项公式为n a n 225-=,下列各数中,不是{}n a 的项的是( )A. 1B. -1C. 2D. 33.设数列,,11,22,5,2 则52是这个数列的( )A. 第六项B. 第七项C. 第八项D. 第九项4.无穷数列 1,3,6,10,的通项公式为( )A. 12+-=n n a nB. 12-+=n n a nC. 22nn a n +=D. 22nn a n -=5.数列{}n a ,其中,,6,31221n n n a a a a a -===++,那么这个数列的第五项为( )A. 6B. -3C. -12D. -6二、填空题6.数列{}n a 中,)2(,211≥+==-n n a a a n n ,则=10a .7.在数列 ,55,34,,13,8,5,3,2,1,1x 中,x 的值 .8.已知数列{}n a 通项公式*)(1242N n n n a n ∈--=,则:(1)这个数列的第四项是 ;(2)65是这个数列的第 项; (3)这个数列从第 项起各项为正数. 三、解答题9.写出下列数列的一个通项公式 (1);,811,271,91,31,1 --(2);,0,3,0,3(3) ,1716,109,54,21-- (4);,7777.0,777.0,77.0,7.010.在数列{}n a 中,.66,2171==a a 通项公式n a 是项数n 的一次函数. (1)求数列{}n a 的通项公式; (2)88是否是数列{}n a 中的项.11.已知数列{}n a 的前n 项和)(242*∈+-=N n n n S n .(1)求{}n a 的通项公式; (2)当n 为何值时, n S 达到最大?最大值是多少?12.设数列{}n a 的通项公式为)(2+∈+=N n kn n a n ,若数列{}n a 是单调递增数列,求实数k 的取值范围.锁定高考(2007年广东)已知数列{}n a 的前几项和n n S n 92-=,则其通项=n a ;若它的第k 项满足85<<k a ,则k = .。
3.4不等式的实际应用学习目标:1、通过实际问题的情景,让学生掌握不等式的实际应用,掌握解决这类问题的一般步骤,2、让学生经历从实际情景中抽象出不等式模型的过程。
3、通过实例,让学生体验数学与日常生活的联系,感受数学的实用价值,增强学生的应用意识,提高他们的实践能力。
学习重点和难点:重点:不等式的实际应用难点:数学建模【预习达标】1.实际问题中,有许多不等式模型,必须在首先领悟问题的实际背景,确定问题中量与量之间的关系,然后适当设 ,将量与量间的关系变成 或不等式组.2.实际问题中的每一个量都有其 ,必须充分注意定义域的变化.3.探究:一个正的真分数的分子与分母同时增加同一个数,分数值变 。
若一个假分数呢?试证明之。
【典例解析】例1.某工厂有一面14m 的旧墙,现准备利用这面旧墙建造平面图形为矩形,面积为126m 2的厂房。
工程条件是:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a 元;③用拆去1m 旧墙所得的材料建1m 新墙的费用为2a 元。
现在有两种建设方案:(Ⅰ)利用旧墙的一段Xm(x<14)为矩形厂房的一个边长;(Ⅱ)利用旧墙的矩形厂房的一个边长为Xm(x≥14)。
问如何利用这堵旧墙,才使建墙费用最低?(Ⅰ)(Ⅱ)两个方案哪个更好?例2.有纯农药一桶,倒出8升后用水补满,然后倒出4升再用水补满,此时桶中的农药不超过容积的28%.问桶的容积最大为多少?分析:若桶的容积为x, 倒前纯农药为x 升第一次 :倒出纯农药8升,纯农药还剩(x-8)升,桶内溶液浓度xx 8- 第二次 :倒出溶液4升,纯农药还剩[(x-8)—(x x 8-)4], 中本题的不等关系是:桶中的农药不超过容积的28%解答:学生完成。
例3.某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上一年减少51,本年度当地旅游业收入估计万400万元,预计今后的旅游业收入每年会比上年增加41.(1)设n 年内(本年度万第一年)总投入万a n 万元,旅游业总收入万b n 万元,写出a n 、b n 的表达式。
3.1不等关系与不等式【教学目标】1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.【教学过程】一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看《3.1不等关系与不等式》课件“问题情景”部分,从生活中鲜活的事例入手,了解不等关系存在的普通性与实际意义,再通过举例说明和互相交流,进一步理解不等式的定义.二、自主学习教材整理1不等关系与不等式阅读教材P72~P73上面第5行,完成下列问题.1.不等符号与不等关系的表示:(1)不等符号有<,≤,>,≥,≠;(2)不等关系用不等式来表示.2.不等式中的文字语言与符号语言之间的转换阅读教材P73上面第二自然段~P74,完成下列问题.1.比较两实数a,b大小的依据2.不等式的性质问题1 限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km/h ,用不等式如何表示?提示 v ≤40.问题2 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小,而且具有说服力吗?提示 作差:x 2+1-2x =(x -1)2≥0,所以x 2+1≥2x . 问题3 试用作差法证明a >b ,b >c ⇒a >c .提示 a >b ,b >c ⇒a -b >0,b -c >0⇒a -b +b -c >0⇒a -c >0⇒a >c . 探究点1 用不等式(组)表示不等关系例1 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?提示 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20.名师点评:数学中的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时:(1)要先读懂题,设出未知量;(2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.探究点2 比较大小命题角度1 作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 提示 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.名师点评:比较两个实数的大小,只要考察它们的差就可以了.作差法比较实数的大小的一般步骤是作差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.命题角度2 作商法比较大小例3 若0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小关系. 提示 |log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=||log (1+x )(1-x ),∵0<x <1,∴||log (1+x )(1-x )=-log (1+x )(1-x ) =log (1+x )11-x, ∵1-x 2=(1+x )(1-x )<1,且1-x >0, ∴1+x <11-x,∴log (1+x )11-x >1,即|log a (1-x )||log a (1+x )|>1,∴|log a (1+x )|<|log a (1-x )|.名师点评: 作商法的依据:若b >0,则ab >1⇔a >b .探究点3 不等式的基本性质 例4 已知a >b >0,c <0,求证:c a >cb.提示 因为a >b >0,所以ab >0,1ab >0.于是a ×1ab >b ×1ab ,即1b >1a .由c <0,得c a >cb.名师点评:有关不等式的证明,最基本的依据是不等式的8条基本性质,在解不等式时,对不等式进行有关变形的依据也是8条基本性质.四、当堂检测1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( )A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45提示 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45.2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b提示 C解析 由a +b >0,知a >-b , ∴-a <b <0. 又b <0,∴-b >0, ∴a >-b >b >-a .3.比较(a +3)(a -5)与(a +2)(a -4)的大小. 提示 ∵(a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8)=-7<0, ∴(a +3)(a -5)<(a +2)(a -4).4.某市政府准备投资1800万元兴办一所中学.经调查,班级数量以20至30个为宜,每个初、高中班硬件配置分别需要28万元与58万元,该学校的规模(初、高中班级数量)所满足的条件是什么?提示 设该校有初中班x 个,高中班y 个,则有⎩⎪⎨⎪⎧20≤x +y ≤30,28x +58y ≤1800.五、课堂小结本节课我们学习过哪些知识内容? 提示:1.比较两个实数的大小,只要考察它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.作差法比较的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论); 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备.。
§2.1 数列学习目标:了解数列的概念,体会数列是一种特殊函数,能根据数列的前几项写出简单数列的通项公式.类比函数理解数列的几种表示方法(列表、图象、通项公式等),能根据项数多少、数列的性质对数列分类.了解递推公式是给出数列的一种方法.掌握根据递推公式写出数列的前n 项的技巧.会利用一些简单的递推公式求出数列的通项.学习重难点:数列概念;数列的表示方法;递推公式.知识要点1、数列的定义:按照一定 排列的一列数叫数列.数列中的 都叫做这个数列的项.各项依次叫做这个数列的第1项(或首 项),第2项, …,第n 项, …数列的一般形式可以写成: ,,,,,321n a a a a ,其中n a 是数列的 ,叫做数列的 ,我们通常把一般形式的数列简记作 。
2、数列的表示:(1)列举法:将每一项一一列举出来表示数列的方法.(2)图像法:由(n,a n )点构成的一些孤立的点;(3)解析法:用通项公式a n =f(n)(*∈N n )表示.通项公式:如果数列{n a }中的第n 项n a 与n 之间的关系可以用一个公式来表示,则称此公式为数列的 .数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.思考与讨论:①数列与数集有什么区别?与集合中元素的性质相比较,数列中的项也有三个性质;确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的。
可重复性:数列中的数可以重复。
有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列次序也有关。
②是否所有的数列都有通项公式?③{n a }与n a 有什么区别?(4)递推公式法:用前n 项的值与它相邻的项之间的关系表示各项. 递推公式也是求数列的一种重要的方法,但并不是所有的数列都有递推公式。
3、数列与函数从函数的观点看,数列可以看作是一个定义域为 (或它的 )的函数)(n f a n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值.数列的 是相应的函数的解析式,它的图像是 。
3.2 均值不等式(一)一、学习目标:1.掌握均值定理的推导2.培养学生应用均值定理分析问题、解决问题的能力.二、重点难点:重点:均值定理的推导极其应用难点:均值定理在实际问题中的应用三、学习过程:(一)自学教材,填空1.正数a 、b 的算术平均数为 ;几何平均数为 .2.均值不等式是 。
其中前者是 ,后者是 .如何给出几何解释?3.在均值不等式中a 、b 既可以表示数,又可以表示代数式,但都必须保证 ;另外等号成立的条件是 .4.试根据均值不等式写出下列变形形式,并注明所需条件(1)a 2+b 2 ( )(2)2b a ( ) (3)a b +ba ( )(4)ab≤ ( ) (5)x +x 1 (x>0)(6)x +x1 (x<0) 5.在用均值不等式求最大值和最小值时,必须注意a+b 或ab 是否为 值,并且还需要注意等号是否成立.(二)典型例题例1.已知a 、b 、c ∈(0,+∞),且a+b+c=1,求证a 1 +b 1+c1≥9.例2.(1)一个矩形的面积为100m 2。
问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长为36m 。
问这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?(三)课堂训练1.已知a 、b ∈(0,1)且a≠b ,下列各式中最大的是( )A .a 2+b 2B .2abC .2a bD .a +b2.判断下列不等式的证明过程中的正误,并指出错因。
(1)若a 、b ∈R ,则a b +ba ≥2b a a b ∙=2( ) (2)若x 、y ∈R +,则lgx +lgy≥2y x lg lg ∙( )(3)x ∈R -,则x +x4≥-2x x 4∙=-4( ) (4)若x ∈R ,则x 2+x -2≥2x x -∙22=2( )3.x ∈R ,下列不等式恒成立的是( )A .x 2+1≥xB .112+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 4.设x>0,则函数y=2-x 4-x 的最大值为 ;此时x 的值是 。
2.3.1等比数列(1)学习目标1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系.学习过程一、课前准备(预习教材P 48 ~ P 51,找出疑惑之处)复习1:等差数列的定义?复习2:等差数列的通项公式n a = ,等差数列的性质有:二、新课导学※ 学习探究观察:①1,2,4,8,16,…②1,12,14,18,116,… ③1,20,220,320,420,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1n n a a -= (q ≠0)2. 等比数列的通项公式:21a a = ;3211()a a q a q q a === ;24311()a a q a q q a === ;… …∴ 11n n a a q a -==⋅ ,等式成立的条件3. 等比数列中任意两项n a 与m a 的关系是:※ 典型例题例1 n n n {a }a =32⨯已知数列的通项公式为,试问这个数列是等比数列吗?小结:关于等比数列的问题首先应想到它的通项公式11n n a a q -=.例2 已知等比数列的公比为q ,第m 项为a m ,求其第n 项.小结:一个数列是等比数列,只需根据定义,灵活运用性质即可.※ 动手试试练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%. 这种物质的半衰期为多长(精确到1年)?。
必修五目录第一章解三角形1.1正弦定理和余弦定理1.2使用举例1.3实习作业解三角形实际使用举例习题第二章数列2.1数列的概念和简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系和不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)和简单的线性3.4基本不等式:2a bab+≤不等式练习题第一章 解三角形1.1.1 正弦定理1.在ABC △中,已知3b =,33c =,30B ∠=,解此三角形。
2.在ABC △中,已知∠A =4530B ∠=,C=10,解此三角形。
3.在三角形ABC 中,角A,B,C 所对的边分别为a,b,c ,且A,B 为锐角,sin A = 5sin B = 10(1) 求A+B 的值:(2) 若a-b= 2,求a,b,c 得值1. 在ABC △中,已知222sin sin sin A B C +=,求证:ABC △为直角三角形2. 已知ABC △中,60A ∠=,45B ∠=,且三角形一边的长为m ,解此三角1. 正弦定理反映了三角形中各边和它的对角正弦值的比例关系,表示形式为2sin sin sin a b c R A B C===,其中R 是三角形外接圆的半径。
2. 正弦定理的使用(1)如果已知三角形的任意两角和一边,由三角形的内角和定理可以计算出另外一个角,并由三角形的正弦定理计算书另外两边。
(2)如果已知三角形的任意两边和其中一边的对角,使用正弦定理可以计算出另外一边对角的正弦值,进而可以确定这个角(此时特别注意:一定要先判断这个三角形是锐角还是钝角)和三角形其它的边和角。
1.在ABC △中,若2sin sin cos 2A C =,B 则ABC △是( )A .等边三角形B .等腰三角形C .直角三角形D . 等腰直角三角形3. 在ABC △中,已知30B =,503b =,150c =,那么这个三角形是( ) A.等边三角形B.直角三角形 C.等腰三角形 D.等腰三角形或直角三角形4. 在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .32D .236.ABC △若26120c b B ===,,,则a 等于 ( )A 6B .2C 3D 2 7. .在△ABC 中,若B A 2=,则a 等于 ( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 28.若12057A AB BC ∠===,,,则ABC △的面积S = .9. 在ABC △中,若此三角形有一解,则a b A ,,满足的条件为________1.1.2 余弦定理1.在三角形ABC 中,已知下列条件,解三角形。
数列的综合应用1、在首项为21,公比为12的等比数列中,最接近1的项是 2、数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =3、等差数列{a n }中,a m+n = α,a m-n = β,则其公差d 的值为4、在数列{}n a 中,12a =,1221n n a a +=+,则101a 的值为5、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a 等于 6、设S n 是等差数列{}n a 的前n 项和,若5359a a =,则95S S 的值为 7、在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为8、等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 的前9项的和S 9等于9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有 项11、设数列的通项公式为72-=n a n ,则=+++1521a a a12、数列{}n a 中,1a =15,2331-=+n n a a (*N n ∈),则该数列中相邻两项的乘积是负数的是13、在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,堆最底层(第一层)分别按图1所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以()f n 表示这n 堆的乒乓球总数,则(3)_____f =;()_____f n =(()f n 的答案用n 表示).14、等差数列}{n a 中,,0,0,020042003200420031<⋅>+>a a a a a 则使前n 项和0>n S 成立的最大自然数n 为15、已知数列{}n a 、{}n b 都是等差数列,1a =1-,41-=b ,用k S 、'k S 分别表示数列{}n a 、{}n b 的前k 项和(k 是正整数),若k S +'k S =0,则k k b a +的值为15、设正数数列{}n a 前n 项和为n S ,且存在正数t ,使得对所有正整数n 有2n n a t tS +=,则通过归纳猜测可得到n S =18、已知等差数列{}n a 的前四项和为10,且237,,a a a 成等比数列,(1)求通项公式n a(2)设2n an b =,求数列n b 的前n 项和n s19、已知等差数列{}n a 的第二项为8,前10项和为185。
人教B版高二数学必修五导学案.2 均值不等式学案【预习达标】⒈正数a、b的算术平均数为;几何平均数为.⒉均值不等式是。
其中前者是,后者是.如何给出几何解释?⒊在均值不等式中a、b既可以表示数,又可以表示代数式,但都必须保证;另外等号成立的条件是.⒋试根据均值不等式写出下列变形形式,并注明所需条件)(1)a2+b2 ( ) (2)()(3)+()(4)x+ (x0)(5)x+ (x0) (6)ab≤ ()⒌在用均值不等式求最大值和最小值时,必须注意a+b 或ab是否为值,并且还需要注意等号是否成立.6.⑴函数f(x)=x(2-x)的最大值是;此时x的值为___________________;.⑵函数f(x)=2x(2-x)的最大值是;此时x的值为___________________;⑶函数f(x)=x(2-2x)的最大值是;此时x的值为___________________;⑷函数f(x)=x(2+x)的最小值是;此时x的值为___________________。
【典例解析】例⒈已知a、b、c∈(0,+∞),且a+b+c=1,求证+ + ≥9.例⒉(1)已知x ,求函数y=4x-2+ 的最大值.(2)已知x0,y0,且=1,求x+y的最小值。
(3)已知a、b为常数,求函数y=(x-a)2+(x-b)2的最小值。
【达标练习】一.选择题:⒈下列命题正确的是()A.a2+12a B.│x+ │≥2 C.≤2 D.sinx+ 最小值为4.⒉以下各命题(1)x2+ 的最小值是1;(2)最小值是2;(3)若a0,b0,a+b=1则(a+ )(b+ )的最小值是4,其中正确的个数是()A.0 B.1C.2 D.3⒊设a0,b0则不成立的不等式为()A.+≥2B.a2+b2≥2abC.+≥a+b D. 2+⒋设a、b R+,若a+b=2,则的最小值等于()A.1 B.2 C.3 D.4⒌已知a b0,下列不等式错误的是()A.a2+b2≥2abB.C.D.二.填空题:⒍若a、b为正数且a+b=4,则ab的最大值是________.⒎已知x1.5,则函数y=2x+ 的最小值是_________.⒏已知a、b为常数且0x1,则的最小值是_________________________.三.解答题:⒐(1)设a= ,b= ,c= 且x≠0,试判断a、b、c的大小。
数列使用课时数 1 课时一、授课目的:1.理解数列的看法。
2.能由通项公式求前n 项,并能判断某个数是否是数列中的项。
3.能依照数列的前n 项写出它的一个通项公式。
二、导入新课:某剧场有30 排座位,第一排有20 个座位,从第二排起,后一排都比前一排多 2 个座位,那么各排座位数依次为20, 22, 24 , 26, 28,,,某种细胞若是每分钟一个分裂为 2 个,那么每过一分钟 1 个细胞分裂的个数依次为 1, 2, 4,8, 16,,,某人买回一对兔子,一年后长成一对大兔子。
再过一年,大兔子生了一对小兔子。
再过一年小兔子长成了大兔子,大兔子又生了一对小兔子。
这样连续,每年的兔子对数依次为1,1, 2,3, 5, 8,,,从 1984 年到 2008 年,我国共参加了 7 次奥运会,各次参赛得的金牌总数依次为 15, 5, 16, 16, 28, 32, 51。
回答我国古代用诗歌形式提出的一个数列问题:瞭望巍巍塔七层,红灯向下成倍增,共灯三百八十一,试问塔顶几盏灯?三、看法1.叫做数列,叫做这个数列的项。
记号:数列简记为,数列的第 n 项记为。
2.依照数列的项数可以把数列分为和。
3.数列与函数的关系:数列可以看作即a n f n 。
4.数列的通项公式:。
5.数列的表示方法:、、。
数列用图像法表示:在直角坐标系中的为横坐标,为纵坐标描点画图,其图像是一些,它们位于。
四、例讲【例 1】已知数列a n的第 n 项 a n为2n1,写出这个数列的首项、第 2 项和第 3 项。
练习:1.已知数列a n中的首项为 a11,且满足a n 11a n1,则此数列的第三项是。
22n2.已知数列a的通项公式为a2n229n 3 ,则数列 a 中最大项是第项,n n n其值为。
3.数列a n的通项公式为a n n2 5n 4,则数列中有多少项是负数?。
【例 2】已知数列a n的通项公式,写出这个数列的前 5 项,并作出它的图像。
人教B版高二数学必修五导学案.2均值不等式学案【预习达标】⒈正数a、b的算术平均数为;几何平均数为.⒉均值不等式是。
其中前者是,后者是.如何给出几何解释?⒊在均值不等式中a、b既可以表示数,又可以表示代数式,但都必须保证;另外等号成立的条件是.⒋试根据均值不等式写出下列变形形式,并注明所需条件)a2+b2+x+x+ab≤⒌在用均值不等式求最大值和最小值时,必须注意a+b 或ab是否为值,并且还需要注意等号是否成立..⑴函数f=x的最大值是;此时x的值为___________________;.⑵函数f=2x的最大值是;此时x的值为___________________;⑶函数f=x的最大值是;此时x的值为___________________;⑷函数f=x的最小值是;此时x的值为___________________。
【典例解析】例⒈已知a、b、c∈,且a+b+c=1,求证++≥9.例⒉已知x0,y>0,且=1,求x+y的最小值。
已知a、b为常数,求函数y=2+2的最小值。
【达标练习】一.选择题:⒈下列命题正确的是A.a2+1>2aB.│x+│≥2C.≤2D.sinx+最小值为4.⒉以下各命题x2+的最小值是1;最小值是2;若a>0,b>0,a+b=1则的最小值是4,其中正确的个数是A.0B.1C.2D.3⒊设a>0,b>0则不成立的不等式为A.+≥2B.a2+b2≥2abC.+≥a+bD.2+⒋设a、bR+,若a+b=2,则的最小值等于A.1B.2C.3D.4⒌已知ab>0,下列不等式错误的是A.a2+b2≥2abB.C.D.二.填空题:⒍若a、b为正数且a+b=4,则ab的最大值是________.⒎已知x>1.5,则函数y=2x+的最小值是_________.⒏已知a、b为常数且01,y>9∴当且仅当x-1=y-9=3时即x=4,y=12时,取最小值16。
1.2应用举例(一)1.利用正、余弦定理解决生产实践中的有关距离的测量问题.2.利用正、余弦定理解决生产实践中的有关高度的测量问题.3.培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神.“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?通过本节的学习,我们将揭开这个奥秘.1.仰角与俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图.2.方位角和方向角从正北方向顺时针转到目标方向线的水平角叫方位角,方位角的范围是.从指定方向线到目标方向线所成的小于90°的水平角叫方向角,如北偏东30°,南偏东45°. 3.坡角与坡度坡面与水平面所成的二面角叫坡角,坡面的铅直高度与水平宽度之比叫坡度.要点一测量底部不能到达的建筑物的高度例1如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求出山高CD.解在△ABC中,∠BCA=90°+β,∠ABC=90°-α,∠CAD =β ,∠BAC =α-β.根据正弦定理得AC sin ∠ABC =BCsin ∠BAC ,即AC sin (90°-α)=BCsin (α-β),∴AC =BC cos αsin (α-β)=h cos αsin (α-β).在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β=h cos αsin βsin (α-β).答 山的高度为h cos αsin βsin (α-β).规律方法 利用正弦定理和余弦定理来解题时,要学会审题及根据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练1 某登山队在山脚A 处测得山顶B 的仰角为35°,沿倾斜角为20°的斜坡前进1 000 m 后到达D 处,又测得山顶的仰角为65°,则山的高度为________ m(精确到1 m ,sin 35°≈0.574). 答案 812解析 过点D 作DE ∥AC 交BC 于E ,因为∠DAC =20°, 所以∠ADE =160°,于是∠ADB =360°-160°-65°=135°. 又∠BAD =35°-20°=15°,所以∠ABD =30°.在△ABD 中,由正弦定理,AB =AD sin ∠ADB sin ∠ABD =1 0002(m).在Rt △ABC 中,BC =AB sin 35°≈812(m). 要点二 测量仰角求高度问题例2 如图所示,A 、B 是水平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 点是点C 到水平面的垂足,求山高CD .解 由于CD ⊥平面ABD ,∠CAD =45°,所以CD=AD.在△ABD中,∠BDA=180°-45°-120°=15°,由ABsin 15°=ADsin 45°,得AD=AB·sin 45°sin 15°=800×226-24=800(3+1) (m).即山的高度为800(3+1) m.规律方法在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.和高度有关的问题往往涉及直角三角形的求解.跟踪演练2如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C和D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.解在△BCD中,∠BCD=α,∠BDC=β,∴∠CBD=180°-(α+β),∴BCsin β=ssin[180°-(α+β)],即BCsin β=ssin(α+β).∴BC=sin βsin(α+β)·s.在△ABC中,由于∠ABC=90°,∴ABBC=tan θ,∴AB=BC·tan θ=sin β·tan θsin(α+β)·s.要点三测量两个不能到达点之间的距离问题例3如图,为测量河对岸A、B两点的距离,在河的这边测出CD的长为32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A 、B 两点间的距离.解 在△BCD 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°= 64( km).在△ACD 中,∠CAD =180°-60°-60°=60°, ∴△ACD 为正三角形. ∴AC =CD =32(km). 在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+616-2×32×64×22=38,∴AB =64(km). 所以河对岸A 、B 两点间距离为64km. 规律方法 测量两个不可到达的点之间的距离,一般是把求距离问题转化为应用余弦定理求三角形的边长问题,然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,运用正弦定理解决.跟踪演练3 要测量河对岸两地A 、B 之间的距离,在岸边选取相距1003米的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A 、B 、C 、D 在同一平面内),求A 、B 两地的距离.解 如图在△ACD 中,∠CAD =180°-(120°+30°)=30°,∴AC =CD =1003(米).在△BCD 中,∠CBD =180°-(45°+75°) =60°,由正弦定理得BC =1003sin 75°sin 60°=200sin 75°(米).在△ABC 中,由余弦定理,得AB 2=(1003)2+(200sin 75°)2-2×1003×200sin 75°cos 75° =1002×(3+4×1-cos 150°2-2×3×sin 150°)=1002×5∴AB =1005(米).答 河对岸A 、B 两点间的距离为1003米.1.如图,在河岸AC 上测量河的宽度BC ,测量下列四组数据,较适宜的是 ( )A .a ,c ,αB .b ,c ,αC .c ,a ,βD .b ,α,γ 答案 D解析 由α、γ可求出β,由α、β、b ,可利用正弦定理求出BC .故选D.2.如图,某人向东方向走了x 千米,然后向右转120°,再朝新方向走了3千米,结果他离出发点恰好13千米,那么x 的值是________.答案 4解析 由余弦定理:x 2+9-3x =13, 整理得:x 2-3x -4=0,解得x =4.3.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________m ,________m. 答案 2034033解析 甲楼的高为20tan60°=20×3=203(m); 乙楼的高为:203-20tan30°=203-20×33=4033(m). 4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为________m.答案 502解析 由题意知∠ABC =30°,由正弦定理,得AC sin ∠ABC =ABsin ∠ACB ,∴AB =AC ·sin ∠ACBsin ∠ABC=50×2212=502(m).5.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案 30解析 设两条船所在位置分别为A 、B 两点,炮台底部所在位置为C 点,在△ABC 中,由题意可知AC =30tan 30°=303(m),BC =30tan 45°=30(m),C =30°,AB 2=(303)2+302-2×303×30×cos 30°=900, ∴AB =30(m).1.运用正弦定理就能测量“一个可到达点与一个不可到达点间的距离”,而测量“两个不可到达点间的距离” 要综合运用正弦定理和余弦定理. 无论测量“底部不能到达的建筑物的高度”,还是测量“两个不可到达点间的距离”都需要在两个点上分别测量,并且都需要测量出两点的距离.2.正、余弦定理在实际测量中的应用的一般步骤: (1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.一、基础达标1.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063 n mileC .5 2 n mileD .5 6 n mile答案 D解析 由题意知,在△ABC 中,AB =10(n mile),A =60°,B =75°,则C =180°-A -B =45°. 由正弦定理,得BC =AB sin A sin C =10sin 60°sin 45°=5 6 (n mile).2.甲骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是 ( ) A .6 km B .3 3 km C .3 2 km D .3 km 答案 C解析 由题意知,AB =24×14=6(km),∠BAS =30°,∠ASB =75°-30°=45°.由正弦定理,得BS =AB sin ∠BAS sin ∠ASB=6sin 30°sin 45°=32(km).3.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是( ) A .10 m B .10 2 m C .10 3 m D .10 6 m 答案 D解析 在△BCD 中,CD =10(m),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,由正弦定理,得BC sin 45°=CDsin 30°, BC =CD sin 45°sin 30°=102(m).在Rt △ABC 中,tan 60°=ABBC,AB =BC tan 60°=106(m). 4.在某个位置测得某山峰仰角为θ,对着山峰在地面上前进600 m 后测得仰角为2θ,继续在地面上前进200 3 m 以后测得山峰的仰角为4θ,则该山峰的高度为( ) A .200 m B .300 m C .400 m D .100 3 m 答案 B解析 方法一 如图,△BED ,△BDC 为等腰三角形,BD =ED =600(m),BC =DC =2003(m).在△BCD 中,由余弦定理可得cos2θ=6002+(2003)2-(2003)22×600×2003=32,∴2θ=30°,4θ=60°. 在Rt △ABC 中, AB =BC ·sin4θ=2003×32=300(m),故选B. 方法二 由于△BCD 是等腰三角形,12BD =DC cos2θ,即300=2003cos2θ.cos2θ=32,2θ=30°,4θ=60°. 在Rt △ABC 中,AB =BC ·sin4θ =2003×32=300(m), 故选B.5.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______m.答案 60解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC . ∴AC =AB =120 (m).如图,作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,∴120sin 90°=CD sin 30°, ∴CD =60(m). ∴河的宽度为60 m.6.如图,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.解 选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上.由在G 、H 两点用测角仪器测得A 的仰角分别是α、β,CD =a ,测角仪器的高是h . 那么,在ACD 中,根据正弦定理可得AC =a sin βsin (α-β),AB =AE +h =AC sin α+h =a sin αsin βsin (α-β)+h .二、能力提升7.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为( ) A .15 mB .5 mC.10 m D.12 m答案C解析如图,设塔高为h,在Rt△AOC中,∠ACO=45°,则OC=OA=h.在Rt△AOD中,∠ADO=30°,则OD= 3 h.在△OCD中,∠OCD=120°,CD=10,由余弦定理得OD2=OC2+CD2-2OC·CD cos∠OCD,即(3h)2=h2+102-2h×10×cos 120°,∴h2-5h-50=0,解得h=10或h=-5(舍).8.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m,则电视塔在这次测量中的高度是()A.100 2 m B.400 mC.200 3 m D.500 m答案D解析由题意画出示意图,设高AB=h m,在Rt△ABC中,由已知得BC=h m,在Rt△ABD中,由已知得BD=3h,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD·cos∠BCD得,3h2=h2+5002+h·500,解之得h=500 (m).故选D.9.如图所示,在高出地面30 m 的小山顶上建造一座电视塔CD ,今在距离B 点60 m 的地面上取一点A ,若测得∠CAD =45°,求此电视塔的高度.解 设CD =x m ,∠BAC =α,则△ABC 中,tan α=3060=12.又∠DAB =45°+α, tan ∠DAB =BD AB =x +3060=tan(45°+α). 又tan(45°+α)=tan 45°+tan α1-tan 45°tan α=3. ∴x +3060=3,解得x =150 m. 答 所以电视塔的高度为150 m.10.如图,某人在塔的正东方沿着南偏西60°的方向前进40 m 以后,望见塔在东北方向.若沿途测得塔的最大仰角为30°,求塔的高度.解 在△BCD 中,CD =40 m ,∠BCD =90°-60°=30°,∠DBC =45°+90°=135°.由正弦定理,得CD sin ∠DBC =BD sin ∠BCD, ∴BD =CD ·sin ∠BCD sin ∠DBC=40sin 30°sin 135°=202(m). 在Rt △ABE 中,tan ∠AEB =AB BE,AB 为定值,故要使∠AEB 最大,需要BE 最小, 即BE ⊥CD ,这时∠AEB =30°.在△BCD 中,∠BDE =180°-135°-30°=15°,∴BE =BD ·sin ∠BDE=202sin 15°=10(3-1)(m).在Rt △ABE 中,AB =BE tan ∠AEB=10(3-1)·tan 30°=103(3-3)(m). 答 塔的高度为103(3-3) m. 11.如图所示,货轮在海上以40 km/h 的速度由B 向C 航行,航行的方位角是140°.A 处有一灯塔,其方位角是110°,在C 处观察灯塔A的方位角是35°,由B 到C 需航行半个小时,求C 到灯塔A 的距离.解 在△ABC 中,BC =40×12=20(km), ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+35°=75°,∴∠BAC =75°.由正弦定理,得AC sin 30°=BC sin 75°, ∴AC =BC sin 30°sin 75°=10sin 45°cos 30°+cos 45°sin 30° =406+2=10(6-2)(km). 答 C 到灯塔A 的距离为10(6-2)km.三、探究与创新12.如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01 km ,2≈1.414,6≈2.449).解 在△ADC 中,∠DAC =30°.∠ADC =60°-∠DAC =30°,∴CD =AC =0.1(km).又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,∴BD =BA .在△ABC 中,AB sin ∠BCA =AC sin ∠ABC,即AB =AC sin 60°sin 15°=32+620(km). 因此,BD =32+620≈0.33(km), 故B ,D 的距离约为0.33 km.。
数学人教B 必修5第二章数列知识建构综合应用专题一 求数列的通项公式数列的通项是数列的重要内容之一,只要有数列的通项公式,许多问题就可迎刃而解.如果一个数列是等差数列或等比数列,则可直接写出其通项公式,而对于非等差、等比数列的通项公式可通过适当的变形、构造等使之成为等差或等比数列来求解.因此数列通项公式的求解问题往往是解决数列难题的关键,现根据数列的结构特征把常见求解方法和技巧总结如下.(一)观察法应用1已知数列12,14,-58,1316,-2932,6164,…,则此数列的一个通项公式是________.提示:已知数列的前若干项,求该数列的通项公式时,一般先对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项公式.(二)定义法应用2等差数列{a n }是递增数列,前n 项和为S n ,且a 1,a 3,a 9成等比数列,S 5=a 25.求数列{a n }的通项公式.提示:本题已知{a n }是等差数列,可建立首项和公差的方程,通过解方程来求得首项和公差,再代入通项公式得其解.(三)S n 法应用3设数列{a n }的前n 项和为S n =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1.求数列{a n }和{b n }的通项公式.提示:本题已知S n 的表达式,自然想到使用公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2求解.(四)累加法应用4已知在数列{a n }中,a 1=1,且a n +1-a n =3n -n ,求数列{a n }的通项公式. 提示:由于本题给出了数列{a n }中连续两项的差,故可考虑用累加法求解. (五)迭乘法应用5已知在数列{a n }中,a 1=13,前n 项和S n 与a n 的关系是S n =n (2n -1)a n ,求a n .提示:此题已知S n 与a n 的关系,应想到使用S n 法,然后得到相邻两项比的等式满足a n=a n -1f (n )这种模型,因此使用迭乘法求解.(六)辅助数列法应用6在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.提示:对于a n +1=pa n +q 这一类型的递推关系式,常用配常数法求通项公式.设a n +1+k =p (a n +k ),对比递推关系式,可得k =qp -1,构造出等比数列{a n +k }.专题二 数列的求和问题我们已学习了等差数列和等比数列,并熟悉了有关等差数列和等比数列的求和公式,然而有些数列既不是等差数列,又不是等比数列,像这样的数列如何求和呢?数列的求和常涉及分类讨论、转化化归等思想方法.在求数列的前n 项和S n 时,要掌握以下几种常用的方法:(一)公式法应用1已知数列{a n }的通项公式为a n =n (n +1),前n 项和为S n ,求S n .提示:本题已知a n =n (n +1),可以看到在求和的式子中能分离出正整数数列、正整数的平方数列,因此使用公式法.(二)倒序相加法应用2在等差数列{a n }中,前4项的和为16,后4项的和为80,所有项之和为240,求这个数列的项数.提示:从题意可知前4项和与后4项和,又此数列是等差数列,具有与首尾“等距”的两项之和相等的特点,因此采用倒序相加法.(三)拆项分组求和法应用3求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2),…的前n 项和.提示:本题通项公式为a n =1a n-1+(3n -2),是一个指数式和一个一次式的和组成的,可以选择拆项分组求和法.(四)错位相减法应用4已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列{a n2n -1}的前n 项和.提示:(1)中利用基本量法列出关于a 1与d 的方程组即可求出a n ;(2)利用错位相减法. (五)裂项相消求和法应用5求数列112+2,122+4,132+6,142+8,…的前n 项和.提示:先找出数列的通项公式a n =1n 2+2n ,结合其结构形式将1n 2+2n 化为1n (n +2)即可进行裂项相消求和.专题三 数列与数学思想数学思想方法对认知结构起着重要作用,是重要的基础知识,是知识转化为能力的桥梁.求解数列问题常用的数学思想有函数思想、方程思想、整体思想、分类讨论思想、转化思想等.(一)函数思想应用1等差数列{a n }的首项为a 1=14,前n 项和为S n ,若S 3=S 5,则当n =__________时,S n 最大.提示:本题利用了等差数列前n 项和具有的二次函数性质,等差数列前n 项和的最值问题经常借助求解二次函数最值的方法来解决.(二)方程思想应用2已知在等差数列{a n }中,a 1+a 5=26,a 1+a 5-S 3=5,求a 20及S 20. 提示:等差(比)数列的有关问题大都可以建立关于a 1,d (q )的方程组求解. (三)整体思想应用3某等差数列前4项之和为-4,最后4项之和为36,且所有项的和为36,则此数列共有______项.提示:解题时,分析已知条件与所求问题的联系,把a 1+a 2+a 3+a 4以及a n +a n -1+a n-2+a n -3看成一个整体,灵活运用整体思想.(四)分类讨论思想应用4已知等比数列{a n }是一个公比为q 的递增数列,且a 5=a ,a 9=a81,则该数列的首项a 1______0.(选填“>”或“<”)提示:当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论.在本题中,由于等比数列的增减性与a 1,q 相关,所以应对q 的取值进行讨论.真题放送 1(2011·辽宁高考)若等比数列{a n }满足a n a n +1=16n ,则公比为( ). A .2 B .4 C .8 D .16 2(2011·安徽高考)若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ).A .15B .12C .-12D .-15 3(2011·天津高考)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n为{a n }的前n 项和,n ∈N +,则S 10的值为( ).A .-110B .-90C .90D .110 4(2011·重庆高考)在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=__________. 5(2011·广东高考)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.6(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =__________;|a 1|+|a 2|+…+|a n |=__________.7(2011·湖北高考)成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.8(2011·山东高考)在等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前2n 项和S 2n . 9(2011·湖南高考)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M 更新.证明:须在第9年初对M 更新.答案: 综合应用 专题一应用1:a n =(-1)n2n -32n观察数列每项的绝对值,分母为2,4,8,16,32,…,是2n 的形式,而分子,从第二项起满足“分子-分母=-3”,因此改写第一项为--12,这样,数列中每一项的绝对值都满足“分子-分母=-3”这一规律,且数列中每一项的符号为“-”“+”交替出现,故a n =(-1)n2n -32n.应用2:解:设数列{a n }的公差为d (d >0). ∵a 1,a 3,a 9成等比数列,∴a 23=a 1a 9, 即(a 1+2d )2=a 1(a 1+8d ),得d 2=a 1d . ∵d >0,∴a 1=d .① ∵S 5=a 25,∴5a 1+5×42d =(a 1+4d )2.②由①②,得a 1=35,d =35.∴a n =35+(n -1)×35=35n .应用3:解:当n =1时,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2,当n =1时也适用, 故{a n }的通项公式为a n =4n -2.设{b n }的公比为q ,则b 2(a 2-a 1)=b 1qd =b 1,又d =4,∴q =14.又a 1=b 1=2,故b n =b 1q n -1=2×14n -1,即{b n }的通项公式为b n =24n -1.应用4:解:由a n +1-a n =3n -n ,得a n -a n -1=3n -1-(n -1),a n -1-a n -2=3n -2-(n -2), …a 3-a 2=32-2, a 2-a 1=3-1.当n ≥2时,以上n -1个等式两端分别相加,得 (a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=3n -1+3n -2+…+3-[(n -1)+(n -2)+…+1],即a n -a 1=3(1-3n -1)1-3-n (n -1)2.又∵a 1=1,∴a n =12×3n -n (n -1)2-12.显然a 1=1也适合上式,∴{a n }的通项公式为a n =12×3n -n (n -1)2-12.应用5:解:当n ≥2时,由S n =n (2n -1)a n ,得 S n -1=(n -1)(2n -3)·a n -1,两式相减,得(2n +1)a n =(2n -3)a n -1, ∴a n a n -1=2n -32n +1. ∴a n -1a n -2=2n -52n -1,…,a 2a 1=15.将上面n -1个等式相乘,得a n a 1=(2n -3)(2n -5)(2n -7)…·3·1(2n +1)(2n -1)(2n -3)…·7·5=3(2n +1)(2n -1), ∴当n ≥2时,a n =1(2n +1)(2n -1).当n =1时,a 1=13满足上式,故对n ∈N +,有a n =1(2n +1)(2n -1).应用6:解:令a n +1+k =12(a n +k ),∵a n +1=12a n +1,对比可得k =-2,∴a n +1-2=12(a n -2).∴{a n -2}是首项为a 1-2=-1,公比为12的等比数列.∴a n -2=-1·(12)n -1=-(12)n -1.∴a n =-(12)n -1+2.专题二应用1:解:∵a n =n (n +1)=n 2+n ,∴S n =(12+1)+(22+2)+(32+3)+…+(n 2+n ) =(12+22+32+…+n 2)+(1+2+3+…+n ) =16n (n +1)(2n +1)+12n (n +1) =13n (n +1)(n +2). 应用2:解:设此数列{a n }共有n 项,则 a 1+a 2+a 3+a 4=16,① a n +a n -1+a n -2+a n -3=80.②以上两式相加,得4(a 1+a n )=16+80, 解得a 1+a n =24.又S n =n (a 1+a n )2=240,即n ×242=240,解得n =20.所以数列的项数为20.应用3:解:设数列的通项为a n ,前n 项和为S n ,则 a n =1an -1+(3n -2),∴S n =(1+1a +1a 2+…+1an -1)+[1+4+7+…+(3n -2)].当a =1时,S n =n +(1+3n -2)n 2=3n 2+n2.当a ≠1时,S n =1-1a n1-1a+(1+3n -2)n 2=a n -1a n -a n -1+(3n -1)n2.应用4:解:(1)设等差数列{a n }的公差为d .由已知条件可得⎩⎪⎨⎪⎧a 1+d =0,2a 1+12d =-10.解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列{a n 2n -1}的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,故S 1=1,S n 2=a 12+a 24+…+a n 2n . 所以,当n >1时,S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.综上,数列{a n 2n -1}的前n 项和S n =n2n -1.应用5:解:因为通项a n =1n 2+2n =12(1n -1n +2),所以此数列的前n 项和S n=12[(1-13)+(12-14)+(13-15)+…+(1n -1-1n +1)+(1n -1n +2)] =12(1+12-1n +1-1n +2)=34-2n +32(n +1)(n +2). 专题三应用1:4 ∵数列{a n }为等差数列,a 1=14,S 3=S 5,得3a 1+3×22d =5a 1+5×42d .∴d =-27a 1=-4.∴S n =na 1+n (n -1)2d=14n +n (n -1)2·(-4)=-2n 2+16n .注意到函数y =-2x 2+16x 的对称轴是x =-162×(-2)=4.又∵n ∈N +,∴n =4时,S n 最大.应用2:解:⎩⎪⎨⎪⎧ a 1+a 5=26a 1+a 5-S 3=5⇒⎩⎪⎨⎪⎧a 1+a 5=26,S 3=21,∴⎩⎪⎨⎪⎧ a 1+a 1+4d =26,3a 1+3d =21.解得⎩⎪⎨⎪⎧a 1=1,d =6.∴a 20=a 1+19d =1+19×6=115,S 20=a 1+a 202×20=1 160.应用3:9 由题意可得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=-4a n +a n -1+a n -2+a n -3=36⇒4(a 1+a n )=32,∴a 1+a n =8.又∵S n =n (a 1+a n )2=36,∴4n =36.∴n =9,即该数列共有9项.应用4:< ∵a n =a m q n -m ,∴q n -m =a n a m ,q 4=a 9a 5=181,∴q 2=19.∴q =±13.当q =-13时,显然数列为摆动数列,不合题意,舍去.当q =13时,a n =a 1(13)n -1.∵y =(13)x 为减函数,∴当a 1<0时,a n 单调递增. 真题放送1.B 令n =1,得a 1a 2=16,① 令n =2,得a 2a 3=162.②②÷①,得a 3a 1=16,∴q 2=16,∴q =±4.又由①知q >0,∴q =4.2.A ∵a n =(-1)n (3n -2),则a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.3.D 设等差数列{a n }的首项为a ,公差d =-2,则a 7=a 1+6d =a 1-12,a 3=a 1+2d =a 1-4,a 9=a 1+8d =a 1-16.∵a 7是a 3与a 9的等比中项, ∴a 27=a 3·a 9. ∴(a 1-12)2=(a 1-4)(a 1-16).∴a 1=20.∴S 10=10a 1+10×92d =110.4.74 ∵a 3+a 7=a 2+a 8=a 4+a 6=37, ∴a 2+a 4+a 6+a 8=2(a 3+a 7)=2×37=74.5.10 由题意S 9=S 4,得a 5+a 6+a 7+a 8+a 9=0. ∴5a 7=0,即a 7=0.又a k +a 4=0=2a 7,a 10+a 4=2a 7, ∴k =10.6.-2 2n -1-12 ∵数列{a n }为等比数列,∴a 4=12·q 3=-4,∴q =-2,∴a n =12·(-2)n-1,∴|a n |=12·2n -1.由等比数列前n 项和公式,得|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=-12+12·2n =2n -1-12.7.解:(1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d , 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2,由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)证明:数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54,即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此数列{S n +54}是以52为首项,公比为2的等比数列.8.解:(1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18,所以公比q =3.故a n =2·3n -1.(2)因为b n =a n +(-1)n ln a n=2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n [ln 2+(n -1)ln 3]=2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3. 所以S 2n =b 1+b 2+…+b 2n=2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n ](ln 2-ln 3)+[-1+2-3+…+(-1)2n 2n ]ln 3=2×1-32n1-3+n ln 3=32n +n ln 3-1.9.解:(1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×(34)n-6.因此,第n 年初M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×(34)n -6,n ≥7. (2)设S n 表示数列{a n }的前n 项和,由等差数列和等比数列的求和公式得:当1≤n ≤6时,S n =120n -5n (n -1),所以A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×[1-(34)n -6]=780-210×(34)n -6,所以A n =780-210×(34)n -6n.因为{a n }是递减数列,所以{A n }是递减数列.又A 8=780-210×(34)28=824764>80,A 9=780-210×(34)39=767996<80,所以须在第9年初对M 更新.。
【高二数学学案】 第一章 解三角形§1.1.1 正弦定理(第一课时)一、学习目标:能运用正弦定理解决两类解三角形的问题;能利用正弦定理判断三角形的形状。
二、自学课本:3——5页思考:1、正弦定理的内容是什么?了解正弦定理推导过程。
2、正弦定理可做怎样的变形? (边化角): (角化边):3、三角形中你可以想到那些结论?4、正弦定理可以解决哪些题型?三、课前小练 (A)(1)在ABC ∆中,若A sin >B sin ,则有( ) A 、a <b B 、a ≥b C 、a >b D 、a ,b 的大小无法确定 (A)(2)在ABC ∆中,A=30°,C=105°,b=8,则a 等于( ) A 、4 B 、24 C 、34 D 、54(A)(3)已知在ABC ∆中,A=45°,2,6==BC AB ,则=∠C 四、典型例题(A )例1、根据下列条件,解ABC ∆:(1)已知30,7,5.3===B c b ,求C 、A 、a ; (2)已知B=30°,2=b ,c=2,求C 、A 、a ;(3)∠B =45°,∠C =60°,a =2(3+1),求A 、b 、c 。
(A )例2、在ABC ∆中,若B b A a cos cos =,求证:ABC ∆是等腰三角形或直角三角形。
五、作业(A )1、在ABC ∆中,下列等式总能成立的是( ) A 、A c C a cos cos = B 、A c C b sin sin = C 、B bc C ab sin sin =D 、A c C a sin sin =(A )2.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( )A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶2 (A)3、在ABC ∆中,120,3,5===C b a ,则B A sin :sin 的值是( )A 、35B 、53C 、73D 、75 (A)4、在ABC ∆中,已知60,8==B a ,C=75°,则b 等于( )A 、24B 、34C 、64D 、332(B)5、在ABC ∆中,A=60°,24,34==b a ,则角B 等于( )A 、45°或135°B 、135°C 、45°D 、以上答案都不对(A)6、已知ABC ∆中,45,60,10===C B a ,则c 等于( )A 、310+B 、)13(10-C 、)13(10+D 、310(A)7、在ABC ∆中,已知A b B a tan tan 22=,则此三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、直角或等腰三角形 (A)8、设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________. (A)9、在ABC ∆中,若60,32,2=∠==B b a ,则c= ,=∠C 。
高中数学必修五导学案第一节:概率1.1 概率的基本概念概率是描述事件发生可能性大小的数学工具。
在实际问题中,通过概率可以预测事件发生的可能性,帮助我们做出合理的决策。
1.2 概率的计算方法概率的计算方法主要包括古典概率和几何概率两种。
古典概率适用于等可能事件的情况,计算公式为P(A) = n(A) / n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间中事件总数。
几何概率适用于连续事件的情况,计算公式为P(A) = S(A) / S(S),其中S(A)表示事件A 所占的面积,S(S)表示整个样本空间的面积。
1.3 概率的性质概率的性质包括互斥事件概率的加法性、对立事件概率的互补性、独立事件的乘法性等。
掌握这些性质可以帮助我们更好地理解概率的运算规律。
第二节:三角函数2.1 三角函数的定义正弦函数、余弦函数、正切函数等是常见的三角函数。
它们可以描述角度和边长之间的关系,是解决三角形相关问题的重要工具。
2.2 三角函数的性质三角函数具有周期性、奇偶性、单调性等性质。
这些性质在解决三角函数的图像、方程和不等式等问题时起着重要作用。
2.3 三角函数的应用三角函数在实际问题中有着广泛的应用,如在航空航天、地理测量、物理运动等领域中都可以看到三角函数的身影。
掌握三角函数的基本知识和运用方法对我们理解和解决实际问题具有重要意义。
第三节:导数3.1 导数的概念导数是描述函数变化率的重要工具,可以揭示函数在某一点的切线斜率和函数的增减性。
通过求导数,我们可以得到函数的极值点、凹凸性等重要信息。
3.2 导数的计算方法导数的计算方法包括使用基本导数公式、利用导数的性质、使用导数的定义等。
熟练掌握这些计算方法可以帮助我们快速、准确地求出函数的导数。
3.3 导数的应用导数在实际问题中有着广泛的应用,如在物理学、经济学、生物学等领域中都可以看到导数的应用。
通过导数,我们可以解决函数的最值、曲线的切线问题等,为实际问题的求解提供了有力的支持。
2.3.1等比数列(一)学习要点:等比数列的定义、通项公式及其简单应用学习过程:一、引例:已知数列{}n a 的通项公式是132n n a -=(1)求这个数列的前5项;(2)求35241234,,,a a a a a a a a ;(3)求1n na a + 由(3)的结果观察数列{}n a 有什么特征?共同特征:二、等比数列的概念1.定义: 等价形式:观察下列数列,判定它是否为等比数列,若是,写出公比q ;若不是,说理由。
(1)1, 2, 4, 8, …,263(2)2000,2000×1. 1,2000×1.12,…,2000×1.19(3)10, 10×0.85,10×0.852,…,10×0.853…(4)-1, -2, -4, -8, …(5)1,-0.1,0.01,-0.001……(6)-1, -1, -1, -1,…(7)1, 0, 1, 0,…定义说明:1) 为什么)0(≠q ?2)递推公式:)2(1≥⋅=-n a q a n n2.通项公式:已知等比数列..............,21n a a a 的公比是)0(≠q q ,能否用n a n q q a 表示),0(,1≠:说明:1)公式推导思想: 不完全归纳法2)同号与1,0a a q n >;0<q ,各项正负相间。
3.函数特征:)(11qa c cq q q a a n n n === (1)11a a q n ==时,,点),(n a n 在直线1a y =上(2)时,1≠q 点),(n a n 在函数x cq y =图像上4.等比中项:三、例题例1.一个等比数列的第三项与第四项分别是12与18,求它的第1项与第2项。
例2.等比数列{}n a 中,若3663=+a a ,1874=+a a ,21=n a ,求n 。
例3.在等比数列{}n a 中,51520,5,a a ==求20a。
必修五 第一章 §5-1正 余弦定理【课前预习】阅读教材P-完成下面填空1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有 = = = = 2R2、正弦定理的变形公式:2sin a R =A ,2sin b R =B ,2sin c R C =;sin A = ,sin B = ,sin C = ;::a b c = ;sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3、三角形面积公式:C S ∆AB = = =4、余弦定理:在C ∆AB 中,有2a = ,2b = , 2c = .5、余弦定理的推论:cos A = ,cos B = ,cos C = .6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:若222a b c +=,则90C =;若222a b c +>,则90C <; 若222a b c +<,则90C >.【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1、在△ABC 中,a=7,c=5,则sinA :sinC 的值是( ) A 、75 B 、57 C 、127 D 、125 2、在△ABC 中,已知a=8,B=600,C=750,则b=( )A 、24B 、34C 、64D 、3323、在△ABC 中,已知b=1,c=3,A=600,则 S △ABC = 。
4、在△ABC 中,已知a=6, b=8,C=600,则c= 。
强调(笔记):【课中35分钟】边听边练边落实5.在△ABC 中,若=++=A c bc b a 则,222_________。
6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090 B .0120 C .0135 D .01507.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
2.2.1等差数列导学案一、课前预习:1、预习目标:①通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;②能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题; ③体会等差数列与一次函数的关系。
2、预习内容:(1)、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母表示。
(2)、等差中项:若三个数组成等差数列,那么A 叫做与的 , 即 或 。
(3)、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。
(4)、等差数列的通项公式:。
二、课内探究学案例1、1、求等差数列8、5、2… …的第20项解:由得: 2、是不是等差数列、、… …的项?如果是,是第几项?解:由得 由题意知,本题是要回答是否存在正整数n ,使得:成立解得:即是这个数列的第100项。
例2、某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4km (不含4km )计d b A a ,,a b =A 2=A =n a 81=a 385-=-=d 20=n 49)3()120(820-=-⨯-+=a 401-5-9-13-51-=a 4)5(9-=---=d 14)1(45--=---=n n a n 14401-=-n 100=n 401-费为10元,如果某人乘坐该市的出租车去往14km 处的目的地,且一路畅通,等候时间为0,需要支付多少车费?分析:可以抽象为等差数列的数学模型。
4km 处的车费记为: 公差 当出租车行至目的地即14km 处时,n=11 求所以:例3:数列是等差数列吗?变式练习:已知数列{}的通项公式,其中、为常数,这个数列是等差数列吗?若是,首项和公差分别是多少?(指定学生求解)解:取数列{}中任意两项和它是一个与n 无关的常数,所以{}是等差数列?并且:。
人教B版高二数学必修五导学案
本资料为woRD文档,请点击下载地址下载全文下载地址3.2
均值不等式
学案
【预习达标】
⒈正数a、b的算术平均数为
;几何平均数为
.
⒉均值不等式是。
其中前者是
,后者是
.如何给出几何解释?
⒊在均值不等式中a、b既可以表示数,又可以表示代数式,但都必须保证
;另外等号成立的条件是
.
⒋试根据均值不等式写出下列变形形式,并注明所需条件)
(1)a2+b2
(2)
(
)
(3)+
(
)
(4)x+
(5)x+
(6)ab≤
(
)
⒌在用均值不等式求最大值和最小值时,必须注意a+b 或ab是否为
值,并且还需要注意等号是否成立.
6.⑴函数f=x的最大值是
;此时x的值为___________________;.
⑵函数f=2x的最大值是
;此时x的值为___________________;
⑶函数f=x的最大值是
;此时x的值为___________________;
⑷函数f=x的最小值是
;此时x的值为___________________。
【典例解析】
例⒈已知a、b、c∈(0,+∞),且a+b+c=1,求证
++≥9.
例⒉(1)已知x<,求函数y=4x-2+的最大值.
(2)已知x>0,y>0,且
=1,求x+y的最小值。
(3)已知a、b为常数,求函数y=2+2的最小值。
【达标练习】
一.
选择题:
⒈下列命题正确的是()
A.a2+1>2a
B.│x+│≥2
C.≤2
D.sinx+最小值为4.
⒉以下各命题x2+的最小值是1;(2)最小值是2;若a>0,b>0,a+b=1则(a+)的最小值是4,其中正确的个数是()
A.0 B.1 C.2 D.3
⒊设a>0,b>0则不成立的不等式为()
A.+≥2
B.a2+b2≥2ab
C.+≥a+b
D.
2+
⒋设a、bR+,若a+b=2,则的最小值等于()
A.1 B.2
C.3 D.4
⒌已知ab>0,下列不等式错误的是()
A.a2+b2≥2ab B.C.D.二.填空题:
⒍若a、b为正数且a+b=4,则ab的最大值是________.
⒎已知x>1.5,则函数y=2x+的最小值是_________.
⒏已知a、b为常数且0<x<1,则的最小值是_________________________.
三.解答题:
⒐(1)设a=,b=,c=且x≠0,试判断a、b、c的大小。
(2)设c<b<a,设判断与的大小。
⒑在△ABc中∠c=90°,Ac=3,Bc=4,一条直线分△ABc的面积为相等的两个部分,且夹在AB与Bc之间的线段最短,求此线段长。
参考答案:
【预习达标】
.;
2.≥;算术平均数;几何平均数;圆中的相交弦定理的推论(略)。
3.a,b∈R+;a=b
4.⑴≥2ab(a,b∈R)⑵≥⑶≥2(a、b同号)或≤-2(a、b异号)
⑷≥2⑸≤-2⑹≤()2(a,b∈R);
5.定。
6.⑴1,1;⑵2,1;⑶,;⑷-1,-1。
【典例解析】
例1.解析:原式=(
++)(a+b+c)=3+()+()+()≥3+2+2+2=9当且仅当a=b=c=时取等号。
例⒉解析:
(1)∵x<
∴4x-5<0
∴y=4x-2+=++3≤-2+3=1当且仅当4x-5=时即4x-5=-1,x=1时等号成立,∴当x=1时,取最大值是1 (2)解法一、原式=(x+y)(
)=+10≥6+10=16当且仅当=时等号成立,又
=1∴x=4,y=12时,取得最小值16。
解法二、由
=1得(x-1)=9为定值,又依题意可知x>1,y>9
∴当且仅当x-1=y-9=3时即x=4,y=12时,取最小值16。
(3)解法一、转化为二次函数求最值问题(略)
解法二、∵≥(∴y=2+2=y=2+2≥2[]2=,当且仅当x-a=b-x即x=时,等号成立。
∴当x=时取得最小值。
【双基达标】
一、1.B解析:A中当a=1时不成立;c需要分a、b同号还是异号D中等号成立的条件是sinx=2。
这是不可能的。
实际上│x+│=│x│+││≥2
2.c解析:(1)(2)正确,(3)不正确,实际上(a+)=(a+b)+2+≥1+2+2=5,当且仅当a=b=时等号成立。
3.D解析:A、B显然正确;c中+a≥2b,+b≥2a,∴+≥a+b;D中a=b=2时就不成立。
4.B解析:原式=()=(2+)≥2
5.c解析:c、D必然有一个是错误的,实际上几何平均数≥调和平均数=
二、6.4解析:∵ab≤=4
7.7解析:y=2x+=y=(2x-3)++3≥7
8.解析:原式=()[x+]=a2+b2++≥a2+b2+2ab=。
三、9.解析:(1)a=为算术平均数,b==为几何平均数,c==为平方平均数。
∵x≠0∴∴c>a>b。
(2)=≥
0.解析:设直线为EF,交Bc于E,交AB于F,设BF
=x,BE=y则S△BEF===3∴xy=10∴EF2=x2+y2-2xycosB=x2+y2-=4,当且仅当时等号成立,此时EF =2。