基于PLC的触摸屏温度控制系统
- 格式:doc
- 大小:3.48 MB
- 文档页数:36
基于PLC和触摸屏的电加热水浴温度控制系统设计摘要:温度控制系统是大部分制造业生产过程中不可或缺的一部分。
由于一些简单的温度控制系统的精确度较低,因此其控制效果不佳。
PLC技术的出现大大改善了传统温度控制系统的不足,它具有可靠性极强、操作简单易行的特点。
通过将PLC和触摸屏有机地融入到一个温度控制系统中,不仅可以充分展现PLC的可靠性优势,也可以展现触摸屏便捷性的优势,进而大大提高了温度控制系统的总体效率。
通过结合PLC技术与触摸屏技术,继而开发出一套先进的智能化电加热水浴温度控制系统。
这个系统使用了S7200PLC作为控制器,并使用了Smart1000触摸屏来提供人机交互界面。
该系统使用了数字PID控制算法,具有自动调整功能,可以通过触摸屏进行灵活调整。
经过实践证明,这种控制系统具有易于使用、操作简单、稳定性强、控制准确性高的特点,能够有效地满足化学反应室中水浴实验的要求。
关键词:可编程控制器;触摸屏;PID自整定;温度控制在化学实验中,水浴装置得以广泛使用,对于需要用到这一装置的化工实验而言,其关键在于需要精确地调节温度。
PID控制算法因其具有简洁的结构和出色的鲁棒性,已成为控制方面中最受青睐的算法之一。
然而,PID控制中的比例、积分和微分3个参数共同作用,使得人工整定一组理想参数变得复杂而且具有一定的挑战性。
1984年,K.J.Astrom和T.Hagglund提出了一种新的延时反馈自整定算法,并通过二十年的实践探索,这种算法被广泛应用于工业控制的各个领域,以自动整定PID参数。
近年来,西门子S7200PLC的PID指令集成了上述的自整定算法,为了更好地控制温度,经过许多科研人员的努力,开发出了一种基于PIC和上位机的温控系统,但是在进行操作时对上位机的依赖性较强。
基于此,本文特提出了一种无需依赖上位机、编程软件的温控系统。
一、温控系统硬件架构这个系统由一系列高性能的部件组成,包括S7—200PIC、Smart1000触摸屏、PAC15P调压板、可控硅功率元件、500W电加热套和PT100热电阻。
基于PLC和触摸屏的电机变频调速控制系统设计与实现文章以西门子S7-200系列PLC的CPU224XP作为核心控制处理器,以西门子SMART700触摸屏作为人机交互界面,通过人机交互界面对电动机的运行状态进行监视及控制,完成电动机的启停、变频调速、正反转运行。
实验结果表明:该系统工作稳定、运行可靠、控制精度较高。
标签:PLC;触摸屏;变频调速引言PLC以其编程简单方便、控制稳定可靠、功能强大等优点通常作为控制器广泛应用于现代工业控制领域,触摸屏作为人机交互界面在一定程度上减少PLC 的外部I/O点的使用以及减轻系统外部按钮开关的连线复杂程度,同时也提高了运行维护的方便性。
本设计选择西门子PLC的CPU224XP为核心控制处理器,西门子SMART700触摸屏,通过PLC、触摸屏软、硬件设计与调试,在实验室实现三相异步电动机的启停、变频调速、正反转运行。
1 系统设计总体方案电机变频调速控制系统原理框图如图1所示,计算机下载程序到PLC和触摸屏,通过触摸屏输入指令,PLC将信号传给变频器,由变频器实现三相异步电动机的启停、变频调速、正反转运行。
2 控制系统硬件设计2.1 硬件的选择PLC型号为西门子14输入10输出的CPU224XP,可连接7个扩展模块,6个独立的高速计数器(100KHz),2个100KHz的高速脉冲输出,2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力,能够满足变频调速的要求。
SMART700触摸屏分辨率较高,具备强大的通信能力,它可以同西门子PLC之间进行通讯,并且为用户提供一个友好的界面,便于用户对控制系统中的设备运行情况进行监控和控制。
变频器选择西门子MICROMASTER440,是专门针对与通常相比需要更加广泛的功能和更高动态响应的应用而设计的,具有快速响应输入和定位减速斜坡功能,是实现变频调速的主要部件,三相异步电动机选择功率为750W。
2.2 硬件电路设计3 控制系统软件设计3.1 PLC程序设计3.1.1 PLC程序流程图PLC经初始化后,可通过触摸屏和外部按钮发出信号,经变频器控制电机的启停、正反转、加速和减速,当完成指令之后,一个周期结束,PLC的流程图如图3所示。
基于PLC的控制系统毕业设计1. 引言在工业自动化领域,PLC(可编程逻辑控制器)是一种广泛应用的控制设备。
它通过编程控制输入输出(I/O)模块的状态,实现自动化的逻辑控制。
本毕业设计将基于PLC开发一个控制系统,旨在展示PLC在实际工程中的应用。
2. 毕业设计背景在工业自动化领域,控制系统的设计和实施对于提高生产效率、降低能源消耗和减少人为错误等方面都具有重要意义。
PLC作为一种可靠稳定的控制设备,广泛应用于各种自动化系统中。
本毕业设计将基于PLC开发一个控制系统,以解决某个具体工业过程中的控制问题。
3. 设计目标本毕业设计的主要目标是设计一个基于PLC的控制系统,能够实现对某个工业过程的自动化控制。
具体设计目标如下: - 实现对输入输出设备的控制和监测; - 实现对工业过程的逻辑控制; - 实现人机界面,方便操作和监测; - 提高系统的稳定性和可靠性; - 实现故障诊断和状态监测。
4. 设计方案4.1 系统硬件设计本系统将采用以下硬件设备: - 基于PLC的控制器:选用某款主流PLC控制器,具备足够的输入输出接口,支持编程和通信功能; - 输入输出(I/O)模块:选择适应工业过程需求的I/O模块,用于与外部设备的接口; - 传感器和执行器:根据实际需求选择合适的传感器和执行器,用于检测和控制工业过程中的状态; - 人机界面:采用触摸屏或其它交互设备,方便操作和监测工业过程; - 通信设备:可选配通信模块,实现与上位机或其它设备的数据交互。
4.2 系统软件设计本系统将采用以下软件技术: - 编程语言:选择常用的PLC编程语言,如 ladder diagram (LD) 或 function block diagram (FBD); - 编程编辑软件:根据所选PLC型号选择合适的编程编辑软件; - 数据库管理系统:可选配数据库管理系统,用于存储和管理工业过程中的数据; - 数据通信协议:根据实际需求选择合适的通信协议,实现与其它设备的数据交互。
• 143•锅炉作为众多工业中重要的能源转换设备,文章通过西门子PLC 和昆仑通态触摸屏组合连接对锅炉的运行进行了模拟,主要对锅炉温度、锅炉液位和蒸汽量等控制量进行检测与控制。
硬件运用西门子S7-200PLC 和TPC1061Ti 触摸屏构成;软件运用STEP 7 Micro WIN 和MCGS 组态软件。
通过模拟运行表明,PLC 和触摸屏的组合自动化程度高,设计过程简单及人机交互监控系统友好等特点。
目前,在我国,除了一些大中型锅炉采用了DCS 、FCS 等控制技术外,中小型锅炉仍然采用仪表/继电器等控制方式,这些方式自动化能力弱、精确度低、不易操作,是目前存在的一项共性的问题。
PLC 具有功能丰富、可靠性高、操作性高等特点,具有在线编程,编译,下载程序等功能,再结合触摸屏与计算机作为监控平台,实现对锅炉运行状态监测和控制将会有重要意义。
1 锅炉控制系统设计1.1 设计思路通过传感器获得锅炉的温度和液位,通过PLC 的A/D 转换接口将相应的模拟量以数字量的形式显示在触摸屏上,如图1所示。
文章对温度进行相应设计与模拟,锅炉液位及压力方法相似。
图1 控制系统结构图1.2 元件选型文章选用西门子S7-200CPU224XP ,由于此PLC 上自带模拟量的输入与输出,可以节省元件成本。
CPU224XP 含有两个模拟量输入,一个模拟量输出,规格如表1。
文章设计中的传感器需要能检测出0-100℃的温度信号,分辨率为0.1℃,选用型号WX-131P 温度传感器,其输出为0-10V 的电压信号。
表1 CPU224XP I/O规格信号类型 I/O信号电压信号电流信号模拟量输入×2±10V -----模拟量输出×10-10V0-20mA1.3 锅炉温度控制程序设计锅炉温度的控制是通过温度传感器获得温度模拟量,将温度(0℃—100℃)转换为电压信号(0V —10V )送入PLC ,PLC 经过控制程序将实际值与设定值的差值输入PID 控制模块中,经过PLC 自带A/D 模块,输出结果会显示在触摸屏监控平台和调节加热电机控制锅炉温度。
基于PLC和触摸屏的温度控制系统设计FAN Qiang;DONG Hong-bo;MA Bin【摘要】基于实用性、低成本和高精度控制考虑,设计了一种基于S7-200PLC和mcgsTpc嵌入式一体化触摸屏的温度控制系统,简要介绍了该系统软硬件的实现方法,通过靶标实验表明,该系统能实现对温度的精确控制,采集与监测,具有很强的实用价值.【期刊名称】《机械研究与应用》【年(卷),期】2019(032)003【总页数】3页(P154-155,158)【关键词】PLC;触摸屏;温度控制;PID【作者】FAN Qiang;DONG Hong-bo;MA Bin【作者单位】;;【正文语种】中文【中图分类】TP370 引言温度是影响设备能否发挥优良性能的重要因素之一,也是工业实际应用中常见的控制对象之一,一般需要冷却或者加热将温度控制在设备或工艺允许的范围内。
比如,矿井局部温度过高会引发井下不安全事故的发生[1];塑料颗粒在溶解过程中温度偏离设定温度过高或过低都会导致塑料材料在后续工序中出现问题[2];野外红外靶标温度控制精度不高会影响红外制导武器的目标识别[3]。
笔者设计的一种温度控制系统,该系统以S7-200PLC为下位机可以采集各种工况的温度,控制冷却或加热装置的动作;以mcgsTpc嵌入式一体化触摸屏为上位机,实时显示及控制各种工况的温度。
1 系统设计方案基于PLC和触摸屏的温度控制系统主要利用温度传感器检测设备或工况变化的温度,并将检测到的温度值转换成电流信号反馈到PLC的模拟模块中,通过PLC的PID控制算法将设备或工况实际温度与需求温度进行比较,如有偏差,PLC输出PWM控制信号,控制固态继电器的通断来加热或启动冷却器来冷却。
温度控制过程中,触摸屏与PLC通过RS485的接口直连,屏上实时显示和设置温度值,操作简便,可视性好,系统方案结构如图1所示。
图1 系统基本框图2 S7-200PLC 与MCGS触摸屏软件功能实现德国西门子S7-200PLC是一种小型的可编程序控制器,控制系统主要由数字输入、输出模块,EM235模拟量输入、输出模块,电源模块组成[4]。
73科技资讯 SCIENCE & TECHNOLOGY INFORMATION工 业 技 术DOI:10.16661/ki.1672-3791.2019.08.073基于西门子S7-200PLC温度控制系统设计①李军(广西工业技师学院 广西南宁 530031)摘 要:为了更好地让锅炉在实际用途中发挥功能,该文采用西门子S7-200控制器,对锅炉的温度控制进行了系统设计。
西门子S7-200系列的PLC是一种小型的控制器,可以通过编程控制,把集成电源、输入及输出电路和微处理器集成在一个较小的环境中,更适合用于工业环境。
该文主要以某地水浴锅炉的控制系统设计为例,采用西门子S7-200控制器,进行锅炉温度控制系统的设计。
关键词:西门子S7-200PLC 温度控制 系统设计中图分类号:TG581 文献标识码:A 文章编号:1672-3791(2019)03(b)-0073-02①作者简介:李军(1988—),男,汉族,广西南宁人,硕士,讲师,研究方向:控制工程、自动化领域。
锅炉在物料运输、动能传输等物质的运输上具有非常广泛的应用,但是由于运输时的条件不同,使得锅炉常处于高温或者低温的状态下,尤其在低温的环境中,物质的流动性差,在运输中途,会人为地对锅炉进行加热,以保证顺利运输。
但是锅炉容易出现温度延时和滞后的情况,降低锅炉使用的安全性,甚至会发生事故。
那么由于这种原因,在加温时锅炉所使用的控制系统的好坏,就会对锅炉温度产生重要影响。
随着计算机科技的不断发展,PLC 所具有的逻辑运算和数据处理功能都有了显著的提高,可以将复杂的控制系统嵌在PLC中,目前的PLC已逐渐成为人们设计自动化方案的首要选择。
该文主要以某地水浴锅炉的控制系统设计为例,采用西门子S7-200控制器,进行锅炉温度控制系统的设计。
1 锅炉设计的要求锅炉内的温度根据使用条件和环境的不同,其温度范围一般在-25℃~85℃。
锅炉的控制器一般都是直接放在室外,就算是雪雨、刮风、扬沙也可以正常使用。
PLC技术应用项目说明书设计题目学院机械工程学院2015 年 1 月 9 日课程设计任务书兹发给2011级机电X班班学生张XX 课程设计任务书,内容如下:1.设计题目:基于PLC的温度控制系统2.应完成的项目:(1)选题的背景和意义;(2)明确设计任务,拟定总体设计方案(有机械结构的要进行结构设计,三维软件建模);(3)硬件设计,传感器、PLC(和电机)选型,设计信号采集、转换电路,画出PLC端口分配图、接线控制端子连接图;(4)软件设计,编写控制程序流程图(或重要程序),设计人机界面;(5)课程设计说明书1份。
3.参考资料以及说明:(1)金发庆.传感器技术与应用(第二版)[M].北京:机械工业出版社,2004 (2)钟肇新.可编程控制器原理及应用[M].广州:华南理工大学出版社,2003 (3)常晓玲.电气控制系统与可编程控制器[M].北京:机械工业出版社,2004 (4)盖超会,阳胜峰.三菱PLC与变频器、触摸屏综合培训教程[M].北京:中国电力出版社,2011(5)濮良贵,陈国定,吴立言.机械设计[M].北京:高等教育出版社,2013 4.本设计任务书于2014年12月19日发出,应于2015年1月9日前完成,然后进行答辩。
指导教师签发2014 年12 月19 日课程设计评语:课程设计总评成绩:指导教师签字:年月日目录前言 (4)第一章系统总体方案 (6)第二章系统硬件设计 (7)2.1 PLC选择 (7)2.1.1 FX2N-48MR PLC (7)2.1.2 FX2N-2AD 特殊功能模块 (8)2.1.3 FX2N-2DA 特殊功能模块 (9)2.2 硬件电路设计 (10)2.2.1 温度值给定电路 (10)2.2.2 温度检测电路 (13)2.2.3 过零检测电路 (15)2.2.4 晶闸管电功率控制电路 (15)2.2.5 脉冲输出通道 (17)2.2.6 报警指示电路 (18)2.2.7 复位电路 (18)第三章系统软件设计 (19)3.1 程序设计 (19)3.2 系统程序流程图 (19)3.3 控制系统控制程序的开发 (21)3.3.1 温度设定 (21)3.3.2 A/D转换功能模块的控制程序 (21)3.3.3 标度变换程序 (23)3.4.4 恒温控制程序(PID)设计 (23)3.4.6 显示程序 (29)3.4.7 恒温指示程序 (29)3.4.8 报警程序 (31)第四章总结与展望 (32)4.1 总结 (32)4.2 展望 (32)参考文献 (33)附录系统程序(梯形图) (34)摘要在工业生产过程中,加热管温度控制是十分常见的。
温度控制的传统方法是人工—仪表控制。
其重复性差,工艺要求难以保证,人工劳动强度大。
目前大多数使用微机代替常规控制。
以微机为核心控制系统虽然成本较低,但微机的可靠性和抗干扰性较差而使其硬件设计较复杂。
而以PLC为核心的控制系统,虽然成本较高,但PLC本身就有很强的抗干扰性和可靠性,因而系统的硬件设计也简单得多。
本设计以工业水温加热为背景,设计以三菱FX2N-48MR PLC为控制器,使用电热偶为温度传感器的温度控制系统,本文主要内容包括:PLC选择,温度控制电路设计分析,加热管控制电路设计分析,PLC程序编写,采用PID 控制。
关键词:加热温度控制 PLC PID第一章绪论随着时代的发展,当今的技术日趋完善,竞争也愈演愈烈;传统的人工的操作已不能满足于目前的制造业前景,也无法保证更高质量的要求和提升高新技术企业的形象。
在生产实践中,自动化给人们带来了极大的便利和产品质量上的保证,同时也减轻了人员的劳动强度,减少了人员上的编制。
在许多复杂的生产过程中难以实现的目标控制、整体优化、最佳决策等,熟练的操作工、技术人员或专家、管理者却能够容易判断和操作,可以获得满意的效果。
人工智能的研究目标正是利用计算机来实现、模拟这些智能行为,通过人脑与计算机协调工作,以人机结合的模式,为解决十分复杂的问题寻找最佳的途径。
可编程序控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计,它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作命令,并通过数字式、模拟式的输入和输出,控制各种类型的机械或生产过程。
在工业生产过程中,加热管温度控制是十分常见的。
温度控制的传统方法是人工—仪表控制。
其重复性差,工艺要求难以保证,人工劳动强度大。
目前大多数使用微机代替常规控制。
以微机为核心控制系统虽然成本较低,但微机的可靠性和抗干扰性较差而使其硬件设计较复杂。
而以PLC为核心的控制系统,虽然成本较高,但PLC本身就有很强的抗干扰性和可靠性,因而系统的硬件设计也简单得多。
所以,相比较于微机控制,PLC控制在过程控制方面更具有优势。
这种系统控制精度高、重复性好、自动化程度高,可以大大提高产品质量和减轻工人的劳动负担。
本文介绍了以PLC为核心实现PID算法的温度控制系统的设计方法。
第二章系统总体方案根据设计任务和要求,采用常规PID控制的温度控制系统结构如图1-1所示。
图1-1 常规PID温度控制系统的结构对应图1-1的系统结构,确定总体设计方案如图1-2所示:图1-2 总体设计方案该总体方案主要由以下几个部分组成(1)触摸屏:主要功能是设定和显示相应的温度值,以及停止和开始功能。
(2)PLC:主要完成PID调节功能以及数据变换。
(3)测温电路和A/D模块:主要功能是0-10V温度测量信号经FX2N-A/D 转换成数字信号输入PLC处理。
(4)输出调节电路:主要功能是把PLC处理运算发出的控制信号通过脉宽调制装置输出脉冲信号对加热管进行加热系统工作原理:温度变送器将加热管温度变换为模拟信号,经低通滤波器滤掉干扰信号后送放大器,将信号放大后送A/D模块转换为数字量送PLC,数字量经标度变换,得到实际加热管温度。
数字控制器根据恒温给定值Q0与实际加热管温度Q的偏差e(k)按积分分离PID控制算法,得到输出控制量u(k),控制晶闸管导通时间,调节加热管温度的变化使之与给定恒温值一致,达到恒温控制目的。
当达到恒温值、输入错误或系统发生故障时,系统发出报警信号,同时用GT1040-QBBD-C触摸屏对加热管温度进行实时显示和温度给定输入。
第二章系统硬件设计2.1 PLC选择根据设计方案的分析,系统设计需要使用A/D转换器和D/A转换器来完成温度采样。
在课程学习中,我们学习了三菱的FX系列PLC,因此,选择三菱FX2N(基本I/O点数为24)和FX2N-2AD特殊功能模块。
2.1.1 FX2N-48MR PLCFX2N系列PLC是FX系列中最先进的系列、具有高速处理及可以扩展大量满足单个需要的特殊功能模块等特点。
它由基本单元、扩展单元、扩展模块等构成。
用户存储器容量可扩展到16K步。
I/O点最大可扩展到256点。
它有27条基本指令,其基本指令的执行速度超过了很多大型PLC。
三菱FX2N-48MR PLC,为继电器输出类型,其输入、输出点数皆为是24点,可扩展模块可用的点数为48~64,内附8000步RAM。
其内部资源如下:(1)输入继电器X(X0~X27,24点,八进制)(2)输出继电器Y(Y0~Y27,24点,八进制)(3)辅助继电器M(M0~M8255)[通用辅助继电器(M0~M499)](4)状态继电器(S0~S999)(5)定时器T(T0~T255)(T0~T245为常规定时器)(6)计数器C(C0~C255)(7)指针(P/I)见表2-1和表2-2(8)数据寄存器D(D0~D8255)(D0~D199为通用型)表2-1 定时器中断标号指针表表2-2 输入中断标号指针表注:M8050~M8058=“0”表允许;M8050~M8058=“1”表禁止。
2.1.2 FX2N-2AD 特殊功能模块FX2N-2AD为模拟量输入模块,有两个模拟量输入通道(分别为CH1、CH2),每个通道都可进行A/D转换,将模拟量信号转换成数字量信号,其分辨率为12位。
其模拟量输出性能如表2-3所示。
表2-3 模拟量输出性能表所有数据转换和参数设置的调整可通过FROM/TO指令完成。
同时在编程过程中重点用到了BFM数据缓冲存储器,具体分布情况如表2-4所示。
表2-4 FX2N-2AD缓冲存储器的功能及分配BFM说明:1)BFM#0:存储由BFM#17指定通道的输入数据当前值低8位数据,当前值数据以二进制存储。
2)BFM#1:存储由BFM#17指定通道的输入数据当前值高4位数据,当前值数据以二进制存储。
3)BFM#17:b0:指定由模拟到数字转换的通道(CH1,CH2)。
b0=0指定CH1b0=1指定CH2b1: 由0→1时A/D转换过程开始2.1.3 FX2N-2DA 特殊功能模块FX2N-2DA为模拟量输入模块,有两个模拟量输出通道(分别为CH1、CH2),每个通道都可进行D/A转换,将数字量信号转换成模拟量信号,其分辨率为12位。
其模拟量输出性能如表2-3所示。
表2-3 模拟量输出性能表所有数据转换和参数设置的调整可通过FROM/TO指令完成。
同时在编程过程中重点用到了BFM数据缓冲存储器,具体分布情况如表2-4所示。
表2-4 FX2N-2DA缓冲存储器的功能及分配BFM说明:4)BFM#0:存储由BFM#17指定通道的输入数据当前值低8位数据,当前值数据以二进制存储。
5)BFM#1:存储由BFM#17指定通道的输入数据当前值高4位数据,当前值数据以二进制存储。
6)BFM#17:b0:指定由模拟到数字转换的通道(CH1,CH2)。
b0=0指定CH1b0=1指定CH2b1: 由0→1时A/D转换过程开始2.2 硬件电路设计2.2.1 温度值给定电路为了能同时使用触摸屏和开关按键实现温度给定值输入,触摸屏程序利用GT Designer3设计触摸屏温度给定值输入、触摸屏温度显示、触摸屏启动控制、触摸屏停止控制以及指示灯指示如下图所示;本系统还设计了十个开关按键,作为温度给定值的输入端口,接收十进制数(触摸屏程序和开关按键电路分别如下图所示)。
给定值范围为0~100℃,若输入值超过给定值范围,系统会发出报警信号(亮红灯)。
触摸屏温度给定输入:(右图第一行数字即为温度给定输入):触摸屏启动控制:(左图第一个方形图形)触摸屏停止控制:(左图第二个方形图形)触摸屏指示灯指示:恒温完成指示信号(Y0004)当前温度大于给定温度(Y0005)给定温度超出范围报警(Y0006)按键设计电路如图2-1所示:SB1为温度值输入允许,SB2~SB11分别表示十进制数0~9。
先按下温度值给定允许开关SB1,然后再输入给定温度值,先按下的数字为高位上的数值,后按下的数字为低位上的数值。