2牛顿—莱布尼茨公式
- 格式:doc
- 大小:70.00 KB
- 文档页数:2
§2 牛顿-莱布尼茨公式
显然, 按定义计算定积分非常困难,
须寻找新的途径计算定积分.在本节中,介绍牛顿-莱布尼茨公式,从而建立了定积分与不定积分之间的联系,大大简化了定积分的计算.
返回
若质点以速度v =v (t ) 作变速直线运动,由定积分()d ()().
b
a s v t t s
b s a ==-ò注意到路程函数s (t ) 是速度函数v (t ) 的原函数, ()d b
a s v t t =ò定义,质点从时该a 到
b 所经过的路程为.另一方面, 质点从某时刻a 到时刻b 所经过的路()(),s t v t ¢=于是
程记为s (b )-s (a ), 则因此把定积分与不定积分联系起来了, 这就是下面的牛顿—莱布尼茨公式.
证因 f 在[a , b ] 上一致连续, 则0,0,e d ">$>,[,],||,
x x a b x x d ¢¢¢¢¢¢Î-<当时.
|)()(|e <¢¢-¢x f x f 任取又F 在1[,],1,2,,.i i i x x i n x -Î= ],[1i i x x -上满足满足拉格朗日中值定理条件拉格朗日中值定理条件,],,[1i i i x x -Î$h ,
)()()()(1i i i i i i x f x F x F x F D D h h =¢=--于是
n
1x
d
n
1
1
江西财经大学统计学院作业
P209:1(6)、(7)、(8);2(1)、(3)。
第九章 定积分 2 牛顿—莱布尼茨公式定理:若函数f 在[a,b]上连续,且存在原函数F ,即F ’(x)=f(x), x ∈[a,b],则f 在[a,b]上可积,且⎰ba f (x)dx=F(a)-F(b),称为牛顿—莱布尼茨公式,常写成:⎰ba f (x)dx=F(x)ba .证:对[a,b]上的任一分割T={a=x 0,x 1,…,x n =b},在每个小区间[x i-1,x i ]上对F(x)应用拉格朗日中值定理,则 分别存在ηi ∈(x i-1,x i ),i=1,2,…,n ,使得F(b)-F(a)=∑=-n1i 1-i i )]x (F )x ([F =i n1i i x △)η(F ∑='=i n1i i x △)η(f ∑=.∵f 在[a,b]上连续,从而一致连续,∴对任给的ε>0,存在δ>0,使 当x ’,x ”∈[a,b]且|x ’-x ”|<δ时,|f(x ’)-f(x ”)|<ab ε-. 于是,当△x i ≤║T ║<δ时,任取ξi ∈(x i-1,x i ),便有|ξi -ηi |<δ, ∴|i n1i i x △)ξ(f ∑=-[F(a)-F(b)]|=|i n1i i i x △])η(f )ξ([f ∑=-|≤i n1i i i x △)η(f )ξ(f ∑=-<a b ε-·∑=n 1i i x △=ε. 由定积分定义,得⎰b a f (x)dx=F(a)-F(b).例1:利用牛顿—莱布尼茨公式计算下列定积分: (1)⎰ba n x dx(n 为正整数);(2)⎰ba x e dx ; (3)⎰ba 2xdx(0<a<b); (4)⎰π0sinx dx ;(5)⎰202x -4x dx.解:(1)∵∫x ndx =1n x 1n +++C ,∴⎰b a n x dx=b a1n 1n x ++=1n a b 1n 1n +-++.(2)∵∫e x dx =e x+C ,∴⎰ba x e dx=e x ba =eb -e a .(3)∵∫2x dx =-x 1+C ,∴⎰b a 2xdx =-bax 1=-b 1-(-a 1)=a 1-b1. (4)∵∫sin xdx=-cosx+C ,∴⎰π0sinx dx=-cosx ba =-cos π-(-cos0)=2.(5)∵∫2x -4x dx=-32)x -(431+C ,∴⎰202x -4x dx=-232)x -(431=38.例2:利用定积分求极限:⎪⎭⎫ ⎝⎛+⋯++++→2n 12n 11n 1lim ∞n.解:原式=n 1ni 11lim n1i ∞n⋅+∑=→=⎰+10x 1dx =ln(1+x)1=ln2.注:和式n 1ni 11n1i ⋅+∑=是函数f(x)=x 11+在[0,1]上的一个积分和,这里所取的是等分分割,△x i =n 1,ξi =n i∈⎥⎦⎤⎢⎣⎡+n in 1-i , i=1,2,…,n.习题1、计算下列定积分:(1)⎰+103)(2x dx ;(2)⎰+1022x 1x -1dx ; (3)⎰2e e xlnx dx ;(4)⎰10-xx 2e -e dx ;(5)⎰32x tan πdx ;(6)⎰⎪⎭⎫ ⎝⎛+94x 1x dx ;(7)⎰+40x 1dx ;(8)⎰e e 12x )(ln x 1dx. 解:(1)⎰+103)(2x dx=(x 2+3x)10=4.(2)⎰+1022x 1x -1dx=(2arctanx-x)10=2π-1.(3)⎰2e exlnxdx=lnlnx 2e e =ln2-ln1=ln2.(4)⎰10-x x 2e -e dx=21(e x +e -x )10=21(e+e -1-2).(5)⎰302x tan πdx=(tanx-x)|30π=3-3π.(6)⎰⎪⎭⎫ ⎝⎛+94x 1x dx=|943x 2x 32⎪⎭⎫ ⎝⎛+=(18+6)-(316+4)=344. (7)令t =x ,则⎰+4x1dx =⎰+4t12tdt=2(t-ln|1+t|)|20=4-2ln3. (8)⎰ee 12x )(ln x 1dx=31(lnx)3|ee1=32.2、利用定积分求极限: (1))n 21(n 1lim334∞n +⋯++→;(2)⎥⎦⎤⎢⎣⎡++⋯++++→222∞n n)n (12)n (11)n (1n lim ; (3)⎪⎭⎫ ⎝⎛+⋯++++→2222∞n2n 12n 11n 1n lim ;(4)⎥⎦⎤⎢⎣⎡-+⋯++→n )1(n sin n 2sin n sin n 1lim ∞n πππ. 解:(1)原式=n 1n i lim n1i 3∞n ⋅⎪⎭⎫ ⎝⎛∑=→=⎰103x dx=4x 41=41.(2)原式=n 1n i 11lim n1i 2∞n ⋅⎪⎭⎫ ⎝⎛+∑=→=⎰+102)x 1(1dx=-x 11+1=21.(3)原式=n1n i 11lim n1i 2∞n ⋅⎪⎭⎫ ⎝⎛+∑=→=⎰+102x 11dx=arcttan 10=4π.(4)原式=n n 1)-(i sin lim 1n1i ∞nπππ⋅∑=→=⎰ππx sin 1dx=-cosx1ππ=π2.3、证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F ’(x)=f(x),则有:⎰ba f (x)dx=F(a)-F(b).证:设除有限个点:y 1,y 2,…,y m 外有F ’(x)=f(x).对[a,b]上的任一分割T ’,T={a=x 0,x 1,…,x n =b}是分割T ’添加分点y 1,y 2,…,y m 后所得到的分割. 在每个小区间[x i-1,x i ]上对F(x)应用拉格朗日中值定理,则 分别存在ηi ∈(x i-1,x i ),i=1,2,…,n ,使得F(b)-F(a)=∑=-n1i 1-i i )]x (F )x ([F =i n1i i x △)η(F ∑='=i n1i i x △)η(f ∑=.∵f 在[a,b]上可积,∴f 在[a,b]上连续,从而一致连续,∴对任给的ε>0,存在δ>0,使 当x ’,x ”∈[a,b]且|x ’-x ”|<δ时,|f(x ’)-f(x ”)|<ab ε-. 于是, 当△x i ≤║T ║<δ时,任取ξi ∈(x i-1,x i ),便有|ξi -ηi |<δ,∴|i n1i i x △)ξ(f ∑=-[F(a)-F(b)]|=|i n1i i i x △])η(f )ξ([f ∑=-|≤i n1i i i x △)η(f )ξ(f ∑=-<a b ε-·∑=n 1i i x △=ε. 由定积分定义,得⎰b a f (x)dx=F(a)-F(b).。
牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼茨公式的内容是一个连续函数在区间[ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。
因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。
牛顿莱布尼茨公式与积分运算知识点:牛顿-莱布尼茨公式与积分运算一、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分基本定理的表述,它建立了微分学与积分学之间的联系。
公式如下:如果函数f(x)在区间[a, b]上连续,并且在区间(a, b)内可导,那么函数f(x)在区间[a, b]上的定积分可以表示为:∫(from a to b) f(x)dx = F(b) - F(a)其中,F(x)是f(x)的一个原函数,即F’(x) = f(x)。
二、积分运算的基本性质1.线性性质:设f(x)和g(x)是两个可积函数,α和β是两个常数,则有:∫(from a to b) (αf(x) + βg(x))dx = α∫(from a to b) f(x)dx + β∫(from a to b) g(x)dx2.保号性:如果f(x)在区间[a, b]上非负(非正),则∫(from a to b)f(x)dx非负(非正)。
3.可加性:如果f(x)和g(x)在区间[a, b]上可积,且它们的区间分界点相同,那么:∫(from a to b) f(x)dx + ∫(from a to b) g(x)dx = ∫(from a to b) (f(x) + g(x))dx4.换元积分法:设 Integration variable change : x = g(t),dx = g’(t)dt,则有:∫(from a to b) f(x)dx = ∫(from g(a) to g(b)) f(g(t))g’(t)dt三、积分运算的基本公式1.幂函数的积分公式:∫(from a to b) x^n dx = (1/n+1)x^(n+1) + C,其中C为积分常数。
2.指数函数的积分公式:∫(fro m a to b) e^x dx = e^x + C。
3.对数函数的积分公式:∫(from a to b) ln|x| dx = ln|x| + C。
莱布尼茨公式与牛顿莱布尼茨公式的区别与联系莱布尼茨公式与牛顿-莱布尼茨公式是微积分领域中两个重要的公式,它们在求解导数和积分问题时发挥着关键作用。
本文将探讨莱布尼茨公式与牛顿-莱布尼茨公式的区别与联系。
一、莱布尼茨公式莱布尼茨公式是由德国数学家莱布尼茨于17世纪提出的,它描述了求解函数导数的方法。
莱布尼茨公式可以用下面的形式表示:\[ \frac{d}{dx}\left( \int_{a}^{x}f(t)dt \right)=f(x) \]其中,f(x)是在区间[a,x]上的一个连续函数。
莱布尼茨公式表示了求函数导数的一个重要性质,即函数的导数等于积分函数的导数。
莱布尼茨公式的应用范围广泛,它常被用于求解复杂函数的导数、计算曲线的斜率以及解决微分方程等问题。
通过莱布尼茨公式,我们可以简单而直接地求解导数,而不需要通过极限定义进行推导。
二、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是由牛顿和莱布尼茨共同发现和建立的,它描述了求解函数积分的方法。
牛顿-莱布尼茨公式可以用下面的形式表示:\[ \int_{a}^{b}f(x)dx = F(b) - F(a) \]其中,F(x)是f(x)的一个原函数。
牛顿-莱布尼茨公式表示了求函数积分的一个重要性质,即函数的积分等于积分函数在积分区间端点处的值之差。
牛顿-莱布尼茨公式的应用也非常广泛,它不仅可以用于计算确定积分,还可以解决曲线下面积、求解定积分的应用问题等。
与莱布尼茨公式相比,牛顿-莱布尼茨公式用于计算函数的积分,是莱布尼茨公式的一种特殊情况。
三、莱布尼茨公式与牛顿-莱布尼茨公式的区别1. 表达形式不同:- 莱布尼茨公式以函数的导数形式出现,描述了函数导数和积分之间的关系;- 牛顿-莱布尼茨公式以函数的积分形式出现,描述了函数积分和原函数之间的关系。
2. 作用领域不同:- 莱布尼茨公式常被用于求解函数的导数、计算曲线斜率和解决微分方程等;- 牛顿-莱布尼茨公式常被用于计算函数的积分和解决曲线下面积、求解定积分的应用问题等。
牛顿奈布尼兹公式牛顿-莱布尼茨公式是微积分中的一个重要公式,它将导数和积分联系在一起,为计算复杂函数的导数提供了一种便捷的方法。
这个公式是由牛顿和莱布尼茨分别独立发现的,被认为是微积分的基石之一。
牛顿-莱布尼茨公式可以用以下形式表达:∫(a到b) f(x) dx = F(b) - F(a)其中,f(x)是函数f的原函数,F(x)是f(x)的一个不定积分。
公式的右边表示函数在区间[a, b]上的定积分,也可以理解为函数在a和b 处的原函数值之差。
牛顿-莱布尼茨公式的证明相对复杂,需要借助于一些数学分析的工具和概念。
简单来说,这个公式的核心思想是将函数的变化率和积分联系在一起。
导数可以理解为函数在某一点的瞬时变化率,积分则表示函数在一段区间上的累积变化量。
牛顿-莱布尼茨公式通过将这两个概念联系在一起,使得我们可以通过积分来计算导数。
利用牛顿-莱布尼茨公式,我们可以更方便地计算一些复杂函数的导数。
以一个简单的例子来说明,假设我们要计算函数f(x) = x^2的导数。
根据牛顿-莱布尼茨公式,我们可以先找到函数f(x)的一个原函数F(x),然后计算F(x)在某一点的导数即可。
对于f(x) = x^2来说,F(x) = (1/3)x^3就是它的一个原函数。
那么根据牛顿-莱布尼茨公式,f(x)的导数就是F(x)的导数,即f'(x) = d/dx((1/3)x^3) = x^2。
牛顿-莱布尼茨公式在实际应用中有着广泛的用途。
它不仅仅用于计算导数,还可以用于计算一些其他与导数相关的量,比如曲线的斜率、函数的平均值等。
通过将函数的积分和导数联系在一起,牛顿-莱布尼茨公式为我们提供了一种更加便捷和直观的方法来处理微积分问题。
总结一下,牛顿-莱布尼茨公式是微积分中的重要工具,它将导数和积分联系在一起,为我们提供了一种更加便捷和直观的方法来计算函数的导数。
这个公式的应用范围广泛,可以用于解决各种微积分相关的问题。
§2 牛顿—莱布尼茨公式
教学目的:熟练掌握和应用牛顿-莱布尼茨公式. 教学内容:牛顿-莱布尼茨公式.
(1) 基本要求:熟练掌握和应用牛顿-莱布尼茨公式.
(2) 较高要求:利用定积分的定义来处理一些特殊的极限. 教学建议:
(1) 要求能证明并应用牛顿-莱布尼茨公式.
(2) 利用定积分的定义来处理一些特殊的极限是一个难点,对学习较好的学生可布置这种类型的题目. 教学程序:
用定义来计算定积分一般是很困难的,下面将要介绍的牛顿—莱布尼茨公式不仅为定积分的计算提供了一个有效的方法,而且在理论上把定积分与不定积分联系了起来。
定理9-1 若函数)(x f 在],[b a 上连续,且存在原函数)(x F ,则)(x f 在],[b a 上可积,且
⎰
-=b
a
a F
b F dx x f )()()(
这即为牛顿—莱布尼茨公式,也常记为
⎰
-==b
a
b
a a F
b F x F dx x f )()()()(。
证 给定],[b a 任意一个分割:b x x x a n =<<<=∆ 10:,
[]∑∑==-∆=-=-n
k k
k n
k k k x f x F x F a F b F 1
1
1)()()()()(η,
这里1--=∆k k k x x x ,],[1k k k x x -∈η,用了Lagrange 中值定理。
],[)(b a C x f ∈,由Cantor 定理,f 在]
,[b a 一致连续,所以0>∀ε,0>∃δ,只要],[,b a ∈ηξ,
δηξ<-,就有
a b f f -<
-ε
ηξ)()(。
于是,当
δ
λ<∆=≤≤k n
k x 1max 时,对],[1k k k x x -∈∀ξ,有
[][]ε
ηξ
ξ
<∆-=
--∆∑∑==n
k k k k
n
k k k
x f f a F b F x f 1
1
)()()()()(。
注1:在实际应用中,定理的条件是可以适当减弱的,如)(x F :在],[b a 上连续,在),(b a 内可导,且
),(),()(b a x x f x F ∈='。
而)(x f 只要在],[b a 上可积即可。
注2:本定理对)(x F 的要求是多余的。
设)(x f 在],[b a 可积(不一定连续),又设)(x F 在],[b a 上连续,并且在),(b a 上,)()(x f x F =',则
)
()()()(a F b F x F dx x f b
a b
a
-==⎰。
证 任给],[b a 一分割b x x x a n =<<<=∆ 10:,由Lagrange 中值定理
∑=∆=-n
k k
k x f a F b F 1
)()()(η,),(1k k k x x -∈η。
因f 在],[b a 可积,令0
max 1→∆=≤≤k n k x λ,则上式右边
⎰→b
a
dx
x f )(。
所以
⎰=-b
a dx
x f a F b F )()()(。
例 1 利用牛顿—莱布尼茨公式计算下列定积分:
1)⎰
b
a
n
dx x (n 为整数)
; 2)⎰
b
a
x
dx 2(0<a<b );3)⎰b a x
dx e ; 4)
⎰
π
sin xdx ;5)⎰-2
24dx x x .
注:因为定积分是一类和式的极限,故可以借助于定积分来为某些特殊的极限。
例 2 利用定积分求极限: J n
n n n =+++++∞
→)212111(
lim . 【解题要领】利用定积分来为极限的关键是把扫求极限转化成某函数的积分和的形式。
课堂练习:P206T1(1)、(3)、(5);P207T2(1)、(4)。
作业:P206T1(2)、(4)、(6)、(8);P207T2(2)、(3)。