高二必修四数学第一单元知识点:任意的三角函数
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
高二数学必修4三角函数知识点总结高二数学知识点总结三角函数是大部分同学在数学考试中遇到的难点,下面是WTT给大家带来的高二数学必修4三角函数知识点总结,希望对你有帮助。
高二数学任意角的三角函数知识点(一)高二数学任意角的三角函数知识点(二)锐角三角函数公式sin alpha;=ang;alpha;的对边 / 斜边cos alpha;=ang;alpha;的邻边 / 斜边tan alpha;=ang;alpha;的对边 / ang;alpha;的邻边cot alpha;=ang;alpha;的邻边 / ang;alpha;的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3alpha;=4sinalpha;·sin(pi;/3+alpha;)sin(pi;/3-alpha;)cos3alpha;=4cosalpha;·cos(pi;/3+alpha;)cos(pi;/3-alpha;)tan3a = tan a · tan(pi;/3+a)· tan(pi;/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asinalpha;+Bcosalpha;=(A^2+B^2)^(1/2)sin(alpha;+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinalpha;+Bcosalpha;=(A^2+B^2)^(1/2)cos(alpha;-t),tant=A/B降幂公式sin^2(alpha;)=(1-cos(2alpha;))/2=versin(2alpha;)/2cos^2(alpha;)=(1+cos(2alpha;))/2=covers(2alpha;)/2tan^2(alpha;)=(1-cos(2alpha;))/(1+cos(2alpha;))高中数学三角函数知识点总结:推导公式tanalpha;+cotalpha;=2/sin2alpha;tanalpha;-cotalpha;=-2cot2alpha;1+cos2alpha;=2cos^2alpha;1-cos2alpha;=2sin^2alpha;1+sinalpha;=(sinalpha;/2+cosalpha;/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(rad;3/2)2-sin2a]=4sina(sin260deg;-sin2a)=4sina(sin60deg;+sina)(sin60deg;-sina)=4sina2sin[(60+a)/2]cos[(60deg;-a)/2]2sin[(60deg;-a)/2]cos[(60deg;-a)/2]=4sinasin(60deg;+a)sin(60deg;-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(rad;3/2)2]=4cosa(cos2a-cos230deg;)=4cosa(cosa+cos30deg;)(cosa-cos30deg;)=4cosa2cos[(a+30deg;)/2]cos[(a-30deg;)/2]{-2sin[(a+30deg;)/2]sin[(a-30deg;)/2]}=-4cosasin(a+30deg;)sin(a-30deg;)=-4cosasin[90deg;-(60deg;-a)]sin[-90deg;+(60deg;+a)]=-4cosacos(60deg;-a)[-cos(60deg;+a)]=4cosacos(60deg;-a)cos(60deg;+a)上述两式相比可得tan3a=tanatan(60deg;-a)tan(60deg;+a)。
高中数学必修 4 知识点总结第一章三角函数正角 : 按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角2、象限角:角的极点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,那么称为第几象限角.第一象限角的会集为k 360o k 360o90o , k第二象限角的会集为k 360o90o k360o180o, k第三象限角的会集为k 360o 180o k360o270o , k第四象限角的会集为k 360o270o k360o360o, k终边在 x 轴上的角的会集为k 180o , k终边在 y 轴上的角的会集为k180o90o , k终边在坐标轴上的角的会集为k 90o, k3、终边相等的角:与角终边相同的角的会集为k 360o, k4、是第几象限角,确定n*所在象限的方法:先把各象限均分 n 等n份,再从 x 轴的正半轴的上方起,依次将各地域标上一、二、三、四,那么原来是第几象限对应的标号即为终边所落在的地域.n例 4.设角属于第二象限,且cos2cos2,那么角属于〔〕2A .第一象限B.第二象限C.第三象限D.第四象限解.C 2k22k,( k Z ), k4k,( k Z ),22当 k2n,( n Z)时,在第一象限;当 k2n1,(n Z ) 时,在第三象限;22而 cos cos cos20,在第三象限;2225、1 弧度:长度等于半径长的弧所对的圆心角叫做1弧度.- 1 -6、半径为 r 的圆的圆心角所对弧的长为 l ,那么角的弧度数的绝对值是l .ro7、弧度制与角度制的换算公式:2360o , 1o, 1180o.1808、假设扇形的圆心角为为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S , 那么弧长l r ,周长 C 2r l ,面积 S 1 lr 1 r 2 .2 2 9、设是一个任意大小的角,的终边上任意一点的坐标是 x, y ,它与原点的距离是 r r x 2y 20 ,那么 siny, cosx, tany x 0 . r r x10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线: sin , cos , tan . y例 7.设 MP 和 OM 分别是角17的正弦线和余弦线,那么给出的以下P T18不等式: ① MP OM 0;②OM 0 MP ; ③OMMP 0 ;OM Ax④ MP0 OM ,其中正确的选项是_____________________________ 。
高二数学必修4三角函数知识点总结高二数学任意角的三角函数知识点(一)高二数学任意角的三角函数知识点(二)锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina某2sin[(60+a)/2]cos[(60°-a)/2]某2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa某2cos[(a+30°)/2]cos[(a-30°)/2]某{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)点击下一页分享更多高二数学必修4三角函数知识点总结高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·s inγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)高中数学三角函数知识点总结:和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 高中数学三角函数知识点总结:积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2高中数学三角函数知识点总结:诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]高中数学三角函数知识点总结:其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可 (4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当某+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π某2/n)+sin(α+2π某3/n)+……+sin[α+2π某(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π某2/n)+cos(α+2π某3/n)+……+cos[α+2π某(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
必修四三角函数知识点三角函数是数学中的一个重要分支,在必修四中,我们对三角函数进行了较为深入的学习。
接下来,让我们一起梳理一下这部分的重要知识点。
一、角的概念的推广在平面内,一条射线绕着它的端点旋转所形成的图形叫做角。
按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角,如果射线没有旋转,那么就形成了零角。
为了更广泛地研究角,我们将角的概念进行了推广。
角可以是任意大小的实数,它的度量单位是弧度制和角度制。
弧度制:长度等于半径长的弧所对的圆心角叫做 1 弧度的角。
用弧度作为单位来度量角的制度叫做弧度制。
弧度与角度的换算公式为:180°=π 弧度。
二、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x,y),它到原点的距离为r(r =√(x²+ y²) ,且 r > 0),则角α的正弦、余弦、正切分别为:正弦:sinα = y / r余弦:cosα = x / r正切:tanα = y / x (x ≠ 0)三角函数值在各个象限的符号:正弦函数在第一、二象限为正,在第三、四象限为负;余弦函数在第一、四象限为正,在第二、三象限为负;正切函数在第一、三象限为正,在第二、四象限为负。
三、同角三角函数的基本关系平方关系:sin²α +cos²α = 1商数关系:tanα =sinα /cosα (cosα ≠ 0)这些关系式在解决三角函数的求值、化简和证明等问题中经常用到。
四、诱导公式诱导公式可以将任意角的三角函数转化为锐角三角函数。
例如:sin(π +α)=sinαcos(π +α)=cosαtan(π +α)=tanα等等,通过这些公式,可以将大角的三角函数值转化为小角的三角函数值,从而简化计算。
五、三角函数的图像和性质1、正弦函数 y = sin x 的图像正弦函数的图像是一个周期为2π 的波浪形曲线,它的定义域为R,值域为-1, 1。
三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的看法的实行①按旋转方向不相同分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角任意角负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地址不相同分为象限角和轴线角.角的极点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,那么称为第几象限角.第一象限角的会集为k360k 36090 , k第二象限角的会集为k36090k 360180 , k第三象限角的会集为k360180k360270 , k第四象限角的会集为k360270k 360360 , k终边在 x 轴上的角的会集为k180 , k终边在 y 轴上的角的会集为k180 90 , k终边在坐标轴上的角的会集为k 90 ,k(2)终边与角α相同的角可写成α+ k·360 °(k∈Z ).终边与角相同的角的会集为k 360, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角.②弧度与角度的换算:360°= 2π弧度; 180°=π弧度.③半径为 r 的圆的圆心角所对弧的长为 l ,那么角的弧度数的绝对值是l r④ 假设扇形的圆心角为为弧度制,半径为 r ,弧长为l,周长为C,面积为S,那么l r ,C2r l ,S1lr1r 2.222.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x, y),它与原点的距离为r r x2y2,那么角α的正弦、余弦、正切分别是: sin α=yr, cos α=xr, tan α=yx.〔三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦〕3.特别角的三角函数值1角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的根本关系与引诱公式A.基础梳理1.同角三角函数的根本关系(1)平方关系: sin2α+ cos2α= 1;〔在利用同角三角函数的平方关系时,假设开方,要特别注意判断符号〕sin α(2)商数关系:=tanα.〔3〕倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k ) tan其中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan(π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.其中的奇、偶是指π引诱公式可概括为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假设是奇数倍,那么函数名称要变( 正弦变余弦,余弦变正弦) ;假设是偶数倍,那么函数名称不变,符号看象限是指:把πα看作锐角时,依照 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与要点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转变.〔 sin cos、sin cos、sin cos三个式子知一可求二〕2(3)巧用 “1〞的变换: 1= sin 2θ+ cos 2θ= sinπ =tan24〔 〕齐次式化切法: tank ,那么 asinbcosa tanb ak b4m sinn cosm tannmkn三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法〔如y sin x 与 y cosx 的周期是〕。
高中数学必修4知识点总结第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、终边相等的角:与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.例4.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解.C 22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限; 而coscoscos0222ααα=-⇒≤,2α∴在第三象限;5、1弧度:长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=. 7、弧度制与角度制的换算公式:2360π= ,1180π= ,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则弧长l r α=,周长2C r l =+,面积21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .例7.设MP 和OM 分别是角1817π不等式:①0<<OM MP ;②0O M M P <<; ③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载必修 4 第一章三角函数知识点详解地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容必修4 第一章三角函数任意角和弧度制一: 角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.正角:按逆时针方向旋转所形成的角.负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.二: 象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
三: 终边相同的角的表示:= 1 \* GB3 ①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):= 2 \* GB3 ②终边在x轴上的角的集合:= 3 \* GB3 ③终边在y轴上的角的集合:= 4 \* GB3 ④终边在坐标轴上的角的集合:= 5 \* GB3 ⑤终边在y=x轴上的角的集合:= 6 \* GB3 ⑥终边在轴上的角的集合:= 7 \* GB3 ⑦若角与角的终边关于x轴对称,则角与角的关系:= 8 \* GB3 ⑧若角与角的终边关于y轴对称,则角与角的关系:= 9 \* GB3 ⑨若角与角的终边在一条直线上,则角与角的关系:= 10 \* GB3 ⑩角与角的终边互相垂直,则角与角的关系:注意: (1) 终边相同的前提是:原点,始边均相同;(2) 终边相同的角不一定相等,但相等的角终边一定相同;(3) 终边相同的角有无数多个,它们相差的360°整数倍.四: 角度与弧度的互换关系:360°=2 180°= 1°=0.01745, 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad=°≈57.30°=57°18ˊ.1°=≈0.01745(rad)五: 弧长公式:,扇形面积公式:,1弧度(1rad).任意角的三角函数一: 任意角的三角函数的定义:设是任意一个角,P是的终边上的任意一点(异于原点),它与原点的距离是,那么,,,,。
任意角的三角函数(一)[学习目标] 1.借助单位圆理解任意角的三角函数定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数的定义理解终边相同角的同一三角函数值相等.知识点一 三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α, 即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)y x叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r,cosα=x r ,tan α=yx.思考 角α三角函数值的大小与角α终边上的点P 离原点距离的远近有关吗?答案 角α的三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关. 知识点二 正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).思考三角函数在各象限的符号由什么决定?答案三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z.题型一三角函数定义的应用例1 已知θ终边上一点P(x,3)(x≠0),且cos θ=1010x,求sin θ,tan θ.解由题意知r=|OP|=x2+9,由三角函数定义得cos θ=xr=xx2+9.又∵cos θ=1010x,∴xx2+9=1010x.∵x≠0,∴x=±1.当x=1时,P(1,3),此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3.跟踪训练1 (1)已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值; (2)已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值.解 (1)r =-4a2+3a2=5|a |.若a >0,则r =5a ,α是第二象限角,则 sin α=y r =3a 5a =35,cos α=x r =-4a5a =-45,tan α=y x =3a-4a =-34,若a <0,则r =-5a ,α是第四象限角,则 sin α=-35,cos α=45,tan α=-34.(2)因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点. 则r =a 2+3a2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32,cos α=a2a =12,tan α=3a a=3.若a <0,则α为第三象限,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3a a=3.题型二 三角函数值符号的判断 例2 判断下列三角函数值的符号: (1)sin 3,cos 4,tan 5; (2)sin(cos θ)(θ为第二象限角). 解 (1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.跟踪训练2 若sin θ<0且tan θ<0,则θ是第 象限的角. 答案 四解析 ∵sin θ<0,∴θ是第三或第四象限或终边在y 轴的非正半轴上的角,又tan θ<0,∴θ是第四象限的角.题型三 诱导公式一的应用 例3 求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64.(2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.跟踪训练3 求下列各式的值:(1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4; (2)sin 810°+tan 765°-cos 360°.解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32;(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.利用任意角的三角函数的定义求值,忽略对参数的讨论而致错例4 已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值. 错解 令x =24k ,y =7k ,则有r =24k 2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.错因分析 点P (24k,7k )中参数k 只告诉了k ≠0,而没有告诉k 的符号,需分k >0与k <0讨论,而上述解法错在默认为k >0. 正解 当k >0时,令x =24k ,y =7k , 则有r =24k2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724. 当k <0时,令x =24k ,y =7k ,则有r =-25k , ∴sin α=y r =-725,cos α=xr =-2425,tan α=y x =724.1.cos(-11π6)等于( )A.12 B .-12 C.32 D .-32 2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-2 3.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于( ) A.12 B .-12 C .-32 D.324.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α= .5.已知角α的终边经过点P (2,-3),求α的三个函数值.一、选择题1.若sin θcos θ>0,则θ在( ) A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限2.sin(-1 380°)的值为( )A .-12 B.12 C .-32 D.323.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为( ) A.25 B.25或-25 C .-25D .与a 有关 4.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π6 6.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .5 二、填空题7.使得lg(cos αtan α)有意义的角α是第 象限角.8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为 . 9.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .10.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是 .三、解答题11.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.12.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)tan 405°-sin 450°+cos 750°.当堂检测答案1.答案 C解析 cos(-116π)=cos(-2π+π6)=cos π6=32.2.答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 3.答案 A解析 ∵2sin 30°=1,-2cos 30°=-3,∴r =2,∴cos α=12.4.答案 -43解析 ∵cos α=332+y 2=35,∴32+y 2=5,∴y 2=16,∵y <0,∴y =-4,∴tan α=-43. 5.解 因为x =2,y =-3, 所以r =22+-32=13.于是sin α=y r=-313=-31313,cos α=x r=213=21313,tan α=y x =-32.课时精练答案一、选择题 1.答案 B 2.答案 D解析 sin(-1 380°)=sin(-360°×4+60°)=sin 60°=32.3.答案 C 解析 ∵a <0,∴r =-4a2+3a 2=5|a |=-5a ,∴cos α=x r =45,sin α=yr =-35,∴2sin α+cos α=-25.4.答案 D解析 ∵tan x <0,∴角x 的终边在第二、四象限, 又sin x -cos x <0,∴角x 的终边在第四象限.故选D. 5.答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限,且tan α=cos 2π3sin 2π3=-33, ∴角α的最小正角为2π-π6=11π6. 6.答案 A解析 ∵r =b 2+16,cos α=-b r =-b b 2+16=-35. ∴b =3.二、填空题7.答案 一或二解析 要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.8.答案 -2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,∴-2<a ≤3.9.答案 2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∵|OP |=m 2+n 2=10|m |=-10m =10.∴m =-1,n =-3,∴m -n =2.10.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2,故函数y =|sin x |cos x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题11.解 当角α的终边在第一象限时,在角α的终边上取点P (1,2),由r =|OP |=12+22=5, 得sin α=25=255,cos α=15=55,tan α=2; 当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2),由r =|OQ |=-12+-22=5, 得sin α=-25=-255, cos α=-15=-55, tan α=2.12.解 (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0°=a 2+b 2-2ab =(a -b )2.(2)tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32.。
知识点串讲必修四第一章:三角函数 1.1.1 任意角1、角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° , k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z ⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍;⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 3、写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z }.4、已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z ) 因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z ) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z ) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k =2n (n ∈Z ),则n ·360°+90°<2α<n ·360°+135°(n ∈Z ) ,当k 为奇数时,令k =2n +1 (n ∈Z ),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) ,负角:按顺时针方向旋转形成的角 始边终边顶点AO B 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角因此2α属于第二或第四象限角. 1。
高中数学必修4三角函数知识点总结§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合:.α{}Z k k ∈+=,2παββ§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .rl =α3、弧长公式:.R Rn l απ==1804、扇形面积公式:.lR R n S 213602==π§1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:α()y x P ,xyx y ===αααtan ,cos ,sin 2、 设点为角终边上任意一点,那么:(设)(),A x yαr =,,,sin y r α=cos x r α=tan yx α=cot x yα=3、 ,,在四个象限的符号和三角函数线的画法.αsin αcos αtan 正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.α6π4π3π2π23π34ππ32π2πsin αcos αtan α§1.2.2、同角三角函数的基本关系式1、 平方关系:.1cos sin 22=+αα2、 商数关系:.αααcos sin tan =3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)Z k ∈1、 诱导公式一: (其中:(),cos 2cos ,sin 2sin απααπα=+=+k k )Z k ∈2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: sin y x =[0,2]x π∈30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,如果存在一个非零常数T ,使得当取定义域内的每一个值时,都有()x f x ,那么函数就叫做周期函数,非零常数T 叫做这个函数的周期.()()x f T x f =+()x f图表归纳:正弦、余弦、正切函数的图像及其性质xysin =xycos =xy tan =图象定义域RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性π2=T π2=T π=T 奇偶性奇偶奇单调性Zk ∈在上单调递增[2,2]22k k ππππ-+在上单调递减3[2,2]22k k ππππ++在上单调递增[2,2]k k πππ-在上单调递减[2,2]k k πππ+在上单调递(,)22k k ππππ-+增对称性Zk ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π=对称中心(,0)2k ππ+无对称轴对称中心,0)(2k π§1.5、函数的图象()ϕω+=x A y sin 1、对于函数:有:振幅A ,周期,初相,相位,频率()()sin 0,0y A x B A ωφω=++>>2T πω=ϕϕω+x .πω21==Tf 2、能够讲出函数的图象与x y sin =的图象之间的平移伸缩变换关系.()sin y A x B ωϕ=++①先平移后伸缩:平移个单位sin y x =||ϕ()sin y x ϕ=+()sin y A x ϕ=+纵坐标变为原来的A 倍()sin y A x ωϕ=+横坐标变为原来的倍1||ω()sin A x Bωϕ=++(上加下减)②先伸缩后平移:sin y =sin y A x =纵坐标变为原来的A 倍sin y A xω=横坐标变为原来的倍1||ω()sin A x ωϕ=+()sin A x Bωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数,x∈R 及函数,x∈R(A,,为常数,且A ≠0)的周期;sin()y x ωϕ=+cos()y x ωϕ=+ωϕ2||T πω=函数,(A,ω,为常数,且A ≠0)的周期.tan()y x ωϕ=+,2x k k Z ππ≠+∈ϕ||T πω=对于和来说,对称中心与零点相联系,对称轴与最值点联系.sin()y A x ωϕ=+cos()y A x ωϕ=+求函数图像的对称轴与对称中心,只需令与sin()y A x ωϕ=+()2x k k Z πωϕπ+=+∈()x k k Z ωϕπ+=∈解出即可.余弦函数可与正弦函数类比可得.x 4、由图像确定三角函数的解析式利用图像特征:,.max min 2y y A -=max min2y y B +=要根据周期来求,要用图像的关键点来求.ωϕ§1.6、三角函数模型的简单应用1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:ααsin αcos αtan 12π426-426+32-§3.1.2、两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、.()tan tan 1tan tan tan αβαβαβ+-+=6、.()tan tan 1tan tan tan αβαβαβ-+-=§3.1.3、二倍角的正弦、余弦、正切公式1、,αααcos sin 22sin =.12sin cos sin 2ααα=2、ααα22sin cos 2cos -=1cos 22-=α.α2sin 21-=变形如下:升幂公式:222cos 1cos 22sin ααα=⎨-=⎪⎩降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、.ααα2tan 1tan 22tan -=4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角所在象限由点的象限决定, ).ϕ(,)a b tan b aϕ=第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度AB AB AB等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2§2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.a a2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规λa a λ定如下: ⑵当时, 的方向与的方向相同;当时, 的方向与的方向相反.0>λa λa 0<λa λa 2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.()0≠a a b λa b λ=§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,21,e e a 有且只有一对实数,使.21,λλ2211e e a λλ+=§2.3.2、平面向量的正交分解及坐标表示1、 .()y x j y i x a ,=+=§2.3.3、平面向量的坐标运算1、 设,则:()()2211,,,y x b y x a == ⑴,()2121,y y x x b a ++=+⑵,()2121,y y x x b a --=-⑶,()11,y x a λλλ=⑷.1221//y x y x b a =⇔2、 设,则:()()2211,,,y x B y x A .()1212,y y x x AB --=§2.3.4、平面向量共线的坐标表示1、设,则()()()332211,,,,,y x C y x B y x A ⑴线段AB 中点坐标为,()222121,y y x x ++⑵△ABC 的重心坐标为.()33321321,y y y x x x ++++§2.4.1、平面向量数量积的物理背景及其含义1、 .θb a ⋅2、 在.a b θ34.5、 .0=⋅⇔⊥b a b a §2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:()()2211,,,y x b y x a ==⑴2121y y x x b a +=⋅2121y x +⑶121200a b a b x x y y ⊥⇔⋅=⇔+=⑷1221//0a b a b x y x y λ⇔=⇔-=2、 设,则:()()2211,,,y x B y x A3、两向量的夹角公式cos a ba bθ⋅==4、点的平移公式平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为,(,)P x y (,)P x y '''(,)PP h k '=则.x x hy y k '=+⎧⎨'=+⎩ 函数的图像按向量平移后的图像的解析式为()y f x =(,)a h k =().y k f x h -=-§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是l AB l AB直线的方向向量.l ⑵.平面的法向量: 若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量nααn α⊥ n α⊥ 叫做平面的法向量.nα⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面的法向量为.α(,,)n x y z =③求出平面内两个不共线向量的坐标.123123(,,),(,,)a a a a b b b b ==④根据法向量定义建立方程组.n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ⑤解方程组,取其中一组解,即得平面的法向量.α(如图)建议收藏下载本文,以便随时学习!2、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即.12,l l a b 、1l 2l a b ()a kb k R =∈ 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即l a αul αa u ⊥ .0a u ⋅= 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.αu βv αβu vu v λ= 即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.12,l l a b、12l l ⊥a b ⊥ 0a b ⋅= 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即l a αu l α⊥a u.a u λ= ②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若l a αm n 、0,.a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面的法向量为,平面的法向量为,要证,只需证,即证.αuβv αβ⊥u v ⊥ 0u v ⋅= 即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,,a b ,a b ,a b θ 则cos .AC BDAC BDθ⋅=9⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为l a αu θa u , 则为的余角或的补角ϕθϕϕ的余角.即有:cos s .in a u a uϕθ⋅== ⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一点O ,分别在两个半平面内作射线βα--l ,则为二面角的平面角.l BO l AO ⊥⊥,AOB ∠βα--l 如图:②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角l αβ--m n 、m n 、ϕ的平面角为,则二面角为的夹角或其补角l αβ--θθm n 、ϕ.πϕ-根据具体图形确定是锐角或是钝角:θ◆如果是锐角,则,θcos cos m n m nθϕ⋅== 即;arccos m n m nθ⋅= ◆如果是钝角,则,θcos cos m n m nθϕ⋅=-=- 即.arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭5、利用法向量求空间距离⑴点Q 到直线距离l 若Q 为直线外的一点,在直线上,为直线的方向向量,=,则点Q 到直线距离为l P l a l b PQ l h =⑵点A 到平面的距离α若点P 为平面外一点,点M 为平面内任一点,αα平面的法向量为,则P 到平面的距离就等于在法向量方向上的投影的绝对值.αn αMP n 即cos ,d MP n MP=10n MP MP n MP ⋅=⋅ n MP n⋅= ⑶直线与平面之间的距离a α 当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n ⋅= ⑷两平行平面之间的距离,αβ 利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅= ⑸异面直线间的距离设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方n ,a b ,,M a P b ∈∈,a b d MP n 向上投影的绝对值. 即.n MP d n⋅= 6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PAa a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AOa a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面内的任一条直线,AD 是的一条斜线AB 在内的射影,且BD⊥AD,垂足为D.设AB ααα与 α(AD)所成的角为, AD 与AC 所成的角为, AB 与AC 所1θ2θ11成的角为.则.θ12cos cos cos θθθ=8、 面积射影定理已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与β()S S 原α()S S '射α平面所成的二面角的大小为锐二面角,则βθ 'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则l 123l l l 、、123θθθ、、有 .2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=(立体几何中长方体对角线长的公式是其特例).。
高中数学必修四第一章:三角函数1.1任意角和弧度制考点1:任意角的概念考点2:终边相同的角考点3:象限角与轴线角1.1.2弧度制考点1:弧度制考点2:弧度制与角度制考点3:用弧度表示有关角考点4:扇形的弧长与面积1.2任意角的三角函数1.2.1任意角的三角函数考点1:任意角的三角函数的定义考点2:三角函数值的符号考点3:诱导公式(一)考点4:三角函数式的化简与证明考点5:三角函数线考点6:三角函数的定义域与值域1.2.2同角三角函数的基本关系考点1:同角三角函数的基本关系考点2:三角函数式的化简考点3:利用sinα,cosα,sinαcos α之间的关系求值考点4:三角函数恒等式的证明1.3三角函数的诱导公式考点1:诱导公式考点2:运用诱导公式化简、求值考点3:诱导公式的综合运用1.4三角函数的图像与性质1.4.1正弦函数、余弦函数的图像1.4.2正弦函数。
余弦函数的性质考点1:函数的周期性考点2:正弦函数与余弦函数的图像考点3:正弦函数与余弦函数的定义域和值域考点4:正弦函数与余弦函数的奇偶性考点5:正弦函数与余弦函数的单调性考点6:正弦函数与余弦函数的对称性1.4.3正切函数的性质与图像考点1:正切函数的图像考点2:正切函数的性质考点3:正切函数的综合问题1.5函数y=Asin(ωx+φ)的综合应用考点1:用“五点法”作函数y=Asin(ωx+φ)的图像考点2:用变换作图法作函数y=Asin(ωx+φ)的图像考点3:由函数y=Asin(ωx+φ)的部分图像确定其解析式考点4:简谐运动的有关概念考点5:函数y=Asin(ωx+φ)的综合应用1.6三角函数模型的简单应用考点1:利用三角函数定义建立三角函数模型考点2:用拟合法建立三角函数模型考点3:三角函数模型应用的综合问题考法整合:考法1:任意角三角函数定义的灵活运用考法2:山脚函数图像的对称性考法3:三角函数的值域与最值问题考法4:利用图像解题第二章:平面向量2.1平面向量的事件背景及基本概念考点1:平面向量的概念考点2:平行向量(共线向量)、相等向量与相反向量考点3:平面向量的应用2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其集合意义考点1:向量的加法考点2:向量的减法考点3:向量的化简考点4:响亮的加减法应用2.2.3向量数乘运算及其集合意义考点1:向量的数乘运算考点2:向量的线性运算考点3:向量的共线问题考点4:利用向量解决平面几个问题2.3平面向量的基本定理及坐标表示2.3.1平面向量的基本定理考点1:平面向量的基本定理考点2:平面向量基本定理的应用考点3:两个平面向量的夹角2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示考点1:平面向量的坐标表示考点2:平面向量的坐标运算考点3:平面向量贡献的坐标表示考点4:线段的定比分点考点5:平面向量坐标表示的应用2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义考点1:平面向量的数量积考点2:数量积的性质及其运算律考点3:两向量的夹角考点4:数量积的应用2.4.2平面向量数量积的坐标表示。
高二必修四数学第一单元知识点:随意的三角函数数学在科学发展和现代生活生产中的应用特别宽泛,查词典数学网为大家介绍了高二必修四数学第一单元知识点,请大家认真阅读,希望你喜爱。
随意角三角函数在随意角三角形中,各边角有以下的函数关系:正弦定理在随意角三角形中,各个角的正弦与它所对的边的比相等,而且等于外接圆的直径。
余弦定理在随意角三角形中,随意一边的平方等于其他两边的平方和减去这两边的乘积的两倍与它们的夹角的余弦的积。
在直角坐标系中 ,⊙ O 的半径为 1,随意角的三角函数定义如下:正弦 :与单位圆的交点 A 的纵坐标与圆半径的比值叫做正弦,表示为 :sin=Ay/OA=Ay;此中 Ay 叫做正弦线。
余弦 : 与单位圆的交点 A 的横坐标与圆半径的比值叫做余弦,表示为 :cos=Ax/OA=Ax;此中 Ax 叫做余弦线。
正切 : 与单位圆的交点 A 的纵坐标与横坐标的比值叫做正切,表示为 :tan=Ay/Ax;余切 : 与单位圆的交点 A 的横坐标与纵坐标的比值叫做余切,表示为 :cot=Ax/Ay; ;照本宣科是一种传统的教课方式,在我国有悠长的历史。
但随着素质教育的展开,照本宣科被作为一种僵化的、阻挡学生能力发展的教课方式,逐渐为人们所摒弃;而另一方面 ,老师们又为提升学生的语文修养呕心沥血。
其实,只需应用适当 , “死记硬背”与提升学生素质其实不矛盾。
相反,它正是提升学生语文水平的重要前提和基础。
正割: 圆半径和与单位圆的交点A 的横坐标的比值叫做正割,表示为 :sec=OA/Ax=1/Ax;余割 : 圆半径和与单位圆的交点 A 的纵坐标的比值叫做余割 , 表示为 :csc=OA/Ay=1/Ay;“教书先生”唯恐是街市百姓最为熟习的一种称号,从最先的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人仰慕甚或敬畏的一种社会职业。
不过更早的“先生”观点并不是源于教书,最先出现的“先生”一词也并不是有教授知识那般的含义。
高二必修四数学第一单元知识点:任意的三
角函数
数学在科学发展和现代生活生产中的应用非常广泛,查字典数学网为大家推荐了高二必修四数学第一单元知识点,请大家仔细阅读,希望你喜欢。
任意角三角函数
在任意角三角形中,各边角有以下的函数关系:
正弦定理在任意角三角形中,各个角的正弦与它所对的边的比相等,并且等于外接圆的直径。
余弦定理在任意角三角形中,任意一边的平方等于其余两边的平方和减去这两边的乘积的两倍与它们的夹角的余弦的积。
在直角坐标系中,⊙O的半径为1,任意角的三角函数定义如下:
正弦:与单位圆的交点A的纵坐标与圆半径的比值叫做正弦,表示为:sin=Ay/OA=Ay;其中Ay 叫做正弦线。
余弦: 与单位圆的交点A的横坐标与圆半径的比值叫做余弦,表示为:cos=Ax/OA=Ax;其中Ax 叫做余弦线。
正切: 与单位圆的交点A的纵坐标与横坐标的比值叫做正切,表示为:tan=Ay/Ax;
余切: 与单位圆的交点A的横坐标与纵坐标的比值叫做余切,表示为:cot=Ax/Ay; ;
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
正割: 圆半径和与单位圆的交点
A的横坐标的比值叫做正割,表示为:sec=OA/Ax=1/Ax;
余割: 圆半径和与单位圆的交点A的纵坐标的比值叫做余割,表示为:csc=OA/Ay=1/Ay;
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
小编为大家提供的高二必修四数学第一单元知识点,大家仔细阅读了吗?最后祝同学们学习进步。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。