备战2018-2019学年上学期期末考试八年级数学优质好题精选:专题08_二元一次方程(原卷版)(推荐).doc
- 格式:doc
- 大小:100.00 KB
- 文档页数:3
2018-2019学年江西省南昌二中八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)在每小题给出的四个选项中,只有一项是正确的,请将正确答案的代号填入题后的括号内.1中的x 的取值范围是( ) A .2x <-B .2x -…C .2x >-D .2x -…2.化简21211a aa a ----的结果为( ) A .11a a +- B .1a -C .aD .13.下列运算正确的是( )A =B =C 35=D 2= 4.如图,在ABCD 中,已知4AC cm =,若ACD ∆的周长为13cm ,则ABCD 的周长为( )A .26cmB .24cmC .20cmD .18cm5.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )A .B .C .D .6.如图所示,圆柱的高3AB =,底面直径3BC =,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C D.二、填空题(本大题共6小题,每小题3分,共18分)7.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为米.8.如图,数轴上点A表示的数为a,化简:a+=.9.如图,在ABCD中,10⊥.则BD=.AD=,AC BCAB=,610.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,ABC+=,3=,BC=,求AC的长,如果设AC x∠=︒,10∆中,90ACBAC AB则可列方程为.11.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S =.现已知ABC ∆的三边长分别为1,2,则ABC ∆的面积为 .12.若关于x 的方程2134416m m x x x ++=-+-无解,则m 的值为 . 三、解答题(本大题共5小题,每小题6分,共30分,解答应写出演算步骤)13.(111|2|()2---(2)计算:2-- 14.解分式方程:21133x xx x =-++.15.先化简,再求值:2222()ab b a b a a a---÷,其中11a b == 16.已知:如图,ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F .求证:AE CF =.17.嘉嘉参加机器人设计活动,需操控机器人在55⨯的方格棋盘上从A 点行走至B 点,且每个小方格皆为正方形,主办单位规定了三条行走路径1R ,2R ,3R ,其行经位置如图与表所示:已知A 、B 、C 、D 、E 、F 、G 七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断1R 、2R 、3R 这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.四、解答题(本大题共3小题,每小题8分,共24分)18.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?19.小刚根据学习“数与式”的经验,想通过由“特殊到一般”的方法探究下面二次根式的运算规律.以下是小刚的探究过程,请补充完整; (1)具体运算,发现规律.特例12=;特例2=;特例=;特例4: (举一个符合上述运算特征的例子) (2)观察、归纳,得出猜想.如果n 为正整数,用含n 的式子表示这个运算规律; . (3)证明猜想,确认猜想的正确性.20.在四边形ABCD中,AB ACDC=∠=∠=︒,6BD=,4=,45ABC ADC(1)当D、B在AC同侧时,求AD的长;(2)当D、B在AC两侧时,求AD的长.五、解答题(本大题共2小题,每小题9分,共18分)21.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?22.已知:如图,在Rt ABC=,3=,动点P从点B出发沿AC cmAB cm∆中,90C∠=︒,5射线BC以1/cm s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当ABP∆为直角三角形时,求t的值;(3)当ABP∆为等腰三角形时,求t的值.六、解答题(本大题1小题,共12分)23.如图,等边ABCcm s→→→的方向以3/∆的边长为8,动点M从点B出发,沿B A C B 的速度运动,动点N从点C出发,沿C A B Ccm s的速度运动.→→→方向以2/(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.2018-2019学年江西省南昌二中八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)在每小题给出的四个选项中,只有一项是正确的,请将正确答案的代号填入题后的括号内.1中的x 的取值范围是( ) A .2x <-B .2x -…C .2x >-D .2x -…【解答】解:由题意,得240x +…,解得2x -…, 故选:D .2.化简21211a aa a ----的结果为( ) A .11a a +- B .1a -C .aD .1【解答】解:原式21211a aa a -=+-- 2(1)1a a -=- 1a =-故选:B .3.下列运算正确的是( )A =B =C 35=D 2=【解答】解:A 不能合并, 所以A 选项错误;B 、原式=,所以B 选项错误;C 、原式==,所以C 选项错误;D 、原式2==,所以D 选项正确 .故选:D .4.如图,在ABCD 中,已知4AC cm =,若ACD ∆的周长为13cm ,则ABCD 的周长为( )A .26cmB .24cmC .20cmD .18cm【解答】解:4AC cm =,若ADC ∆的周长为13cm ,1349()AD DC cm ∴+=-=.又四边形ABCD 是平行四边形, AB CD ∴=,AD BC =,∴平行四边形的周长为2()18AB BC cm +=.故选:D .5.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )A .B .C .D .【解答】解:A 、22272425+=,222152024+≠,222222025+≠,故A 不正确;B 、22272425+=,222152024+≠,故B 不正确;C 、22272425+=,222152025+=,故C 正确;D 、22272025+≠,222241525+≠,故D 不正确.故选:C .6.如图所示,圆柱的高3AB =,底面直径3BC =,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A.B.C D.【解答】解:蚂蚁也可以沿A B C+=,AB BC--的路线爬行,6把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt ADCADπ=,CD AB==,AD为底面半圆弧长, 1.5∠=︒,3∆中,90ADC所以AC====<,6故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为6⨯米.1.510-【解答】解:6=⨯,0.0000015 1.510-故答案为:6⨯.1.510-8.如图,数轴上点A表示的数为a,化简:a+=2.【解答】解:由数轴可得: 02a <<,则a +a =(2)a a =+-2=.故答案为:2.9.如图,在ABCD 中,10AB =,6AD =,AC BC ⊥.则BD =【解答】解:四边形ABCD 是平行四边形, 6BC AD ∴==,OB OD =,OA OC =, AC BC ⊥,8AC ∴==,4OC ∴=,OB ∴==,2BD OB ∴==故答案为:.10.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,ABC ∆中,90ACB ∠=︒,10AC AB +=,3BC =,求AC 的长,如果设AC x =,则可列方程为 2223(10)x x +=- .【解答】解:设AC x =, 10AC AB +=, 10AB x ∴=-.在Rt ABC ∆中,90ACB ∠=︒,222AC BC AB ∴+=,即2223(10)x x +=-.故答案为:2223(10)x x +=-.11.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S =.现已知ABC ∆的三边长分别为1,2,则ABC ∆的面积为 1 .【解答】解:1[4S =,ABC ∴∆的三边长分别为1,2,则ABC ∆的面积为:1S ==,故答案为:1. 12.若关于x 的方程2134416m m x x x ++=-+-无解,则m 的值为 1-或5或3. 【解答】解:去分母得:4(4)3x m x m ++-=+,可得:(1)51m x m +=-,当10m +=时,一元一次方程无解, 此时1m =-, 当10m +≠时, 则5141m x m -==±+, 解得:5m =或13-,综上所述:1m =-或5或13-,故答案为:1-或5或13-.三、解答题(本大题共5小题,每小题6分,共30分,解答应写出演算步骤)13.(111|2|()2---(2)计算:2--【解答】解:(1):原式22+- 0=;(2)原式612(202)=-+--1818=--=-.14.解分式方程:21133x xx x =-++. 【解答】解:方程两边同乘以最简公分母3(1)x +,得 32(33)x x x =-+, 解得34x =-.检验:当34x =-时,333(1)3(1)044x +=⨯-+=≠.∴34x =-是原分式方程的解.15.先化简,再求值:2222()ab b a b a a a---÷,其中11a b == 【解答】解:原式222()()a ab b aa ab a b -+=+-2()()()a b aa ab a b -=+-a b a b-=+,当1a =1b =-时,原式==.16.已知:如图,ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F .求证:AE CF =.【解答】证明:ABCD 的对角线AC ,BD 交于点O ,AO CO ∴=,//AD BC , EAC FCO ∴∠=∠,在AOE ∆和COF ∆中 EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOE COF ASA ∴∆≅∆, AE CF ∴=.17.嘉嘉参加机器人设计活动,需操控机器人在55⨯的方格棋盘上从A 点行走至B 点,且每个小方格皆为正方形,主办单位规定了三条行走路径1R ,2R ,3R ,其行经位置如图与表所示:已知A 、B 、C 、D 、E 、F 、G 七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断1R 、2R 、3R 这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.【解答】=,11+++=+++,=25101+<+<+++,∴最长路径为A E D F B →→→→;最短路径为A G B →→.四、解答题(本大题共3小题,每小题8分,共24分)18.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【解答】解:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, 根据题意,得6060(6)501.2x x++=,解得 2.5x =.经检验, 2.5x =是方程的解,且符合题意. ∴甲同学所用的时间为:606261.2x+=(秒), 乙同学所用的时间为:6024x=(秒).2624>, ∴乙同学获胜.答:乙同学获胜.19.小刚根据学习“数与式”的经验,想通过由“特殊到一般”的方法探究下面二次根式的运算规律.以下是小刚的探究过程,请补充完整; (1)具体运算,发现规律.特例12=;特例2=特例=;特例45= (举一个符合上述运算特征的例子) (2)观察、归纳,得出猜想.如果n 为正整数,用含n 的式子表示这个运算规律; . (3)证明猜想,确认猜想的正确性. 【解答】解:(1)由例子可得,特例425==,25=;(2)如果n 为正整数,用含n =,=(3)证明:n 是正整数,∴==.=20.在四边形ABCD 中,AB AC =,45ABC ADC ∠=∠=︒,6BD =,4DC = (1)当D 、B 在AC 同侧时,求AD 的长; (2)当D 、B 在AC 两侧时,求AD 的长.【解答】解:(1)如图1,过点A 作AE AD ⊥交DC 的延长线于E , 45ADC ∠=︒,ADE ∴∆为等腰直角三角形, AB AC =,45ABC ∠=︒, ABC ∴∆为等腰直角三角形,在ABD ∆和ACE ∆中, AB AC BAD CAE AB AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE ∴∆≅∆, 6CE BD ∴==,10DE =,AD ∴==; (2)如图2,过点A 作AE AD ⊥,使AE AD =,连接CE , 在ABD ∆和ACE ∆中, AB AC BAD CAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE ∴∆≅∆,6BD EC ∴==,90CDE ADC ADE ∠=∠+∠=︒,在Rt CDE ∆中,DE ==,AD ∴==.五、解答题(本大题共2小题,每小题9分,共18分)21.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?【解答】解:(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(30)x +千克材料, 根据题意,得100080030x x=+, 解得120x =.经检验,120x =是所列方程的解. 当120x =时,30150x +=.答:A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)设购进A 型机器人a 台,则购进B 型机器人(20)a -台, 根据题意,得150120(20)2800a a +-…, 解得403a ….a 是整数,14a ∴….答:至少购进A 型机器人14台.22.已知:如图,在Rt ABC ∆中,90C ∠=︒,5AB cm =,3AC cm =,动点P 从点B 出发沿射线BC 以1/cm s 的速度移动,设运动的时间为t 秒. (1)求BC 边的长;(2)当ABP ∆为直角三角形时,求t 的值; (3)当ABP ∆为等腰三角形时,求t 的值.【解答】解:(1)在Rt ABC ∆中,222225316BC AB AC =-=-=,4()BC cm ∴=;(2)由题意知BP tcm =,①当APB ∠为直角时,点P 与点C 重合,4BP BC cm ==,即4t =; ②当BAP ∠为直角时,BP tcm =,(4)CP t cm =-,3AC cm =, 在Rt ACP ∆中,2223(4)AP t =+-,在Rt BAP ∆中,222AB AP BP +=, 即:22225[3(4)]t t ++-=, 解得:254t =, 故当ABP ∆为直角三角形时,4t =或254t =;(3)①当AB BP =时,5t =;②当AB AP =时,28BP BC cm ==,8t =;③当BP AP =时,AP BP tcm ==,(4)CP t cm =-,3AC cm =, 在Rt ACP ∆中,222AP AC CP =+, 所以2223(4)t t =+-, 解得:258t =, 综上所述:当ABP ∆为等腰三角形时,5t =或8t =或258t =.六、解答题(本大题1小题,共12分)23.如图,等边ABC∆的边长为8,动点M从点B出发,沿B A C B→→→的方向以3/cm s 的速度运动,动点N从点C出发,沿C A B C→→→方向以2/cm s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及ABC∆的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【解答】解:(1)由题意得:3216t t+=,解得:165t=;(2)①当83t剟时,点M、N、D的位置如图2所示:四边形ANDM为平行四边形,DM AN∴=,//DM AN.60MDC ABC∴∠=∠=︒ABC∆为等腰三角形,60C∴∠=︒.MDC C∴∠=∠.MD MC∴=8MC BN AN BN∴+=+=,即:328t t+=,85t=,此时点D在BC上,且245BD=(或16)5CD=,②当843t<…时,此时A、M、N三点在同一直线上,不能构成平行四边形;③1643t<…时,点M、N、D的位置如图所1示:四边形ANDM为平行四边形,DN AM∴=,//AM DN.60MDB ACB∴∠=∠=︒ABC∆为等腰三角形,60B∴∠=︒.MDB B∴∠=∠.MD MB∴=.8MB NC AN CN∴+=+=,38288t t-+-=,解得:245t=,此时点D在BC上,且325BD=(或8)5CD=,④当1683t<…时,点M、N、D的位置如图所3示:则162BN t=-,243BM t=-,由题意可知:BNM∆为等边三角形,BN BM∴=,即:28316t t-=-,解得8t=,此时M、N重合,不能构成平行四边形.答:运动了85或245时,A、M、N、D四点能够成平行四边形,此时点D在BC上,且245BD=或325.。
人教版2018-2019学年八年级(上册)期末数学试卷有答案2018-201年八年级(上)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.要使分式有意义,则x的取值应满足()A。
x≠2 B。
x≠-1 C。
x=2 D。
x=-12.若三角形的三边长分别为3,4,x-1,则x的取值范围是()B。
2<x<8 A。
<x<8 C。
<x<6 D。
2<x<63.分式可变形为()A。
B。
- C。
D。
-4.下列代数运算正确的是()C。
(x+1)2=x2+1 A。
(x3)2=x5 B。
(2x)2=2x2 D。
x3·x2=x55.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()C。
90° A。
70° B。
80° D。
100°6.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是()A。
m+1 B。
2m C。
2 D。
m+27.化简结果正确的是()D。
b2-a2 A。
ab B。
-ab C。
a2-b28.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()D。
4a2-a-2 A。
a2+4 B。
2a2+4a C。
3a2-4a-49.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠XXX;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()B。
2组 A。
1组 C。
3组 D。
4组10.已知a+b=2,则a2-b2+4b的值是()D。
6 A。
2 B。
3 C。
411.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()C。
(3,2) A。
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2B.2C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5B.3,4,5C.5,6,7D.6,7,84.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2B.=3C.=﹣3D.=﹣37.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A.3B.1C.2D.4二、填空题:(共8小题,每题3分,共24分。
将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.11.函数y=kx的图象过点(﹣1,2),那么k=.12.取=1.4142135623731…的近似值,若要求精确到0.01,则=.13.如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是.14.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为.三、解答题(共10小题,共102分。
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图案分别是清华、北大、人大、复旦大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列一组数:,,-,,0.080080008…(相邻两个8之间依次增加一个0)其中无理数的个数是()A. 0B. 1C. 2D. 33.蓝鲸是世界上体积最大的动物,有一只蓝鲸的体重约为1.68×105kg,1.68×105这个近似数它精确到()A. 百位B. 百分位C. 千分位D. 千位4.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比()A. 向上平移3个单位B. 向下平移3个单位C. 向右平移3个单位D. 向左平移3个单位5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A. 7B. 6C. 5D. 46.一次函数y=(a2+1)x-a的图象上有两点A(-1,y1),B(-2,y2),则y1与y2的大小关系为()A. B. C. D. 不能确定7.在同一平面直角坐标系中,直线y=x-2与直线y=-x-b的交点一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A. 3B. 4C. 5D. 6二、填空题(本大题共10小题,共30.0分)9.分式、的最简公分母是______.10.在函数中,自变量x的取值范围是______.11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:______,使△AEH≌△CEB.12.若m为整数,且<m<,则m=______.13.若直角三角形的两直角边a,b满足+b2-12b+36=0,则斜边c上中线的长为______.14.一个正数a的平方根分别是2m-1和-3m+,则这个正数a为______.15.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为______.16.已知点O是△ABC的三条角平分线的交点,若△ABC的周长为12cm,面积为36cm2,则点O到AB的距离为______cm.17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,若AC=2,AE=1,则BC=______.18.已知点A(2m-1,4m+2015)、B(-n+,-n+2020)在直线y=kx+b上,则k+b值为______.三、计算题(本大题共3小题,共28.0分)19.解分式方程:(1)=+1(2)-=120.先化简代数式(-)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.21.甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的函数图象如图.(1)A地与B地相距______km,甲的速度为______km/分;(2)求甲、乙两人相遇时,乙行驶的路程;(3)当乙到达终点A时,甲还需多少分钟到达终点B?四、解答题(本大题共7小题,共68.0分)22.()-1-|2-|-(π-3.14)0+23.如图,在平面直角坐标系中,已知△ABC的顶点坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)将△ABC向右平移3个单位得到△A1B1C1,请画出平移后的△A1B1C1;(2)将△A1B1C1沿x轴翻折得到△A2B2C2,请画出翻折后的△A2B2C2;(3)若点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标______.24.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=62°,求∠BDC的度数.25.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.26.2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?27.在平面直角坐标系xOy中,有一点P(a,b),实数a,b,m满足以下两个等式:2a-6m+4=0,b+2m-8=0.(1)当a=1时,点P到x轴的距离为______;(2)若点P在第一三象限的角平分线上,求点P的坐标;(3)当a<b时,则m的取值范围是______.28.如图1,在平面直角坐标系中,△OAB是等边三角形,点B的坐标为(4,0),点C(a,0)是x轴上一动点,其中a≠0,将△AOC绕点A逆时针方向旋转60°得到△ABD,连接CD.(1)求证;△ACD是等边三角形;(2)如图2,当0<a<4时,△BCD周长是否存在最小值?若存在,求出a的值;若不存在,请说明理由.(3)如图3,当点C在x轴上运动时,是否存在以B、C、D为顶点的三角形是直角三角形?若存在,求出a的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,本选项错误;B、是轴对称图形,本选项正确;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:B.结合轴对称图形的概念进行求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:-,,0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:D.根据无理数的定义即可求出答案.本题考查无理数,解题的关键是正确理解无理数的定义,本题属于基础题型.3.【答案】D【解析】解:∵1.68×105=168000,∴近似数1.68×105是精确到千位.故选:D.把数还原后,再看首数1.68的最后一位数字8所在的位数是千位,即精确到千位.此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.【答案】C【解析】解:若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比向右平移3个单位,故选:C.根据把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度可直接得到答案.此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.5.【答案】C【解析】解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选:C.根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.6.【答案】A【解析】∵函数y=(a2+1)x-a是一次函数,∴a2+1=1,解得:a=0,即该函数的解析式为:y=x,∵函数y=x的图象上的点y随着x的增大而增大,又∵点A(-1,y1),B(-2,y2)在该函数图象上,且-1>-2,∴y1>y2,故选:A.根据“y=(a2+1)x-a是一次函数”,得到关于a的方程,解之,得到该函数的解析式,根据该函数图象的增减性,结合点A和点B横坐标的大小关系,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【答案】B【解析】解:∵直线y=x-2经过第一、三、四象限,直线y=-x-b,当b>0时,该直线经过第二、三、四象限,当b<0时,该直线经过第一、二、四象限,∴直线y=x-2与直线y=-x-b的交点一定不在第二象限,故选:B.根据题目中的函数解析式和一次函数的性质,可以判断直线y=x-2与直线y=-x-b的交点一定不在哪个象限,本题得以解决.本题考查两条直线相交或平行问题、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8.【答案】C【解析】解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=D5B,BD6=CD6∵△ABC是直角三角形,∴D3,D5重合,故能得到符合题意的等腰三角形5个.故选:C.首先根据勾股定理的逆定理判定△ABC是直角三角形,再根据等腰三角形的性质分别利用AC、BC为腰以及AB为底得出符合题意的图形即可.此题考查了勾股定理的逆定理,等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论是解题关键.9.【答案】12a3b3【解析】解:分式、的最简公分母是12a3b3;故答案为:12a3b3.根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母,求解即可.本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.10.【答案】x≥4【解析】解:根据题意,知,解得:x≥4,故答案为:x≥4.根据被开方数为非负数及分母不能为0列不等式组求解可得.本题主要考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.11.【答案】AH=CB等(只要符合要求即可)【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°-∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°-∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.【答案】3【解析】解:∵4<5<9<10<16,∴2<<3<<4,则整数m=3.故答案为:3.依据2<<3<<4,即可确定出m的值.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.13.【答案】5【解析】解:∵+b2-12b+36=0,∴a-8=0,b-6=0,∴a=8,b=6,∴c==10,∴斜边c上的中线长为5,故答案为:5根据非负数的性质得到两直角边的长,已知直角三角形的两直角边根据勾股定理计算斜边长,根据斜边中线长为斜边的一半计算斜边中线长.本题考查了直角三角形中勾股定理,考查了斜边中线为斜边长的一半的性质,本题中正确的运用非负数的性质是解题的关键.14.【答案】4【解析】解:根据题意,得:2m-1+(-3m+)=0,解得:m=,∴正数a=(2×-1)2=4,故答案为:4.直接利用平方根的定义得出2m-1+(-3m+)=0,进而求出m的值,即可得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.15.【答案】9【解析】解:∵点A(m-1,-5)和点B(2,m+1),直线AB∥x轴,∴m+1=-5,解得m=-6.∴2-(-6-1)=9,故答案为:9.根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.16.【答案】6【解析】解:连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,∵OB平分∠ABC,OD⊥AB,OE⊥BC,∴OD=OE,同理,OD=OE=OF,则AB•OD+AC•OF+CB•OE=36,即×(AB+AC+BC)×OD=36,∴OD=6(cm),故答案为:6.连接OA、OB、OC,作OD⊥AB于D,OF⊥AC于F,OE⊥BC于E,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算,得到答案.本题考查的是角平分线的性质,角的平分线上的点到角的两边的距离相等.17.【答案】1.5【解析】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE,设BC=BE=x,∴AB=1+x,∵AC2+BC2=AB2,∴22+x2=(1+x)2,解得:x=1.5,故答案为:1.5.根据余角的性质得到∠BCD=∠A.根据角平分线的定义得到∠ACE=∠DCE.根据三角形的外角的性质得到∠BEC=∠BCE,求得BC=BE,设BC=BE=x,根据勾股定理列方程即可得到结论.本题考查了勾股定理,直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.18.【答案】2019【解析】解:把点A(2m-1,4m+2015)代入直线y=kx+b得:4m+2015=k(2m-1)+b ①,把点B(-,-n+2020)代入直线y=kx+b得:-n+2020=k(-+)+b ②,①-②得:4m+n-5=k(2m),k==2,把k=2代入①得:4m+2015=2(2m-1)+b,解得:b=2017,则k+b=2+2017=2019,故答案为:2019.把点A(2m-1,4m+2015)和点B(-,-n+2020)分别代入直线y=kx+b,经过整理变形,即可得到k的值,利用代入法,可求得b的值,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.19.【答案】解:(1)两边都乘以(x-1)(x+2),得:x(x-1)=2(x+2)+(x-1)(x+2),整理,得:4x+2=0,解得:x=-,经检验:x=-是原分式方程的解,所以原分式方程的解为x=-;(2)两边都乘以(x+1)(x-1),得:(x+1)2-4=(x+1)(x-1),整理,得:2x-2=0,解得:x=1,检验:当x=1时,(x+1)(x-1)=0,∴x=1是分式方程的增根,则原分式方程无解.【解析】(1)方程两边都乘以(x-1)(x+2)化分式方程为整式方程,解整式方程求得x的值,再检验即可得;(2)方程两边都乘以(x+1)(x-1)化分式方程为整式方程,解整式方程求得x的值,再检验即可得.本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.【答案】解:原式=[-]÷=•=,∵x≠±3且x≠1,∴在0≤x≤3可取x=0或x=2,当x=0时,原式=-1.当x=2时,原式=1.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.21.【答案】24【解析】解:(1)观察图象知A、B两地相距为24km,∵甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,∴甲的速度是千米/分钟;故答案为:24,.(2)由纵坐标看出AB两地的距离是24千米,设乙的速度是x千米/分钟,由题意,得,解得:x=千米/分钟,∴甲、乙相遇时,乙所行驶的路程:(千米/分钟).(3)相遇后乙到达A地还需:(分钟),相遇后甲到达B站还需:(分钟)当乙到达终点A时,甲还需54-4=50分钟到达终点B.(1)观察图象知A、B两地相距为24km,由纵坐标看出甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,则甲的速度是千米/分钟;(2)根据路程与时间的关系,可得乙的速度,再根据甲、乙相遇时,乙所行驶的路程=12×乙的速度,即可解答;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.22.【答案】解:原式=2-(2-)-1+2=2-2+-1+2=1+.【解析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.23.【答案】(m+3,-n)【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)点P(m,n)是△ABC内一点,点Q是△A2B2C2内与点P对应的点,则点Q坐标:(m+3,-n).故答案为:(m+3,-n).(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(3)直接利用平移的性质以及轴对称的性质得出对应点坐标.此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.24.【答案】证明:(1)∵∠EAD=∠BAC∴∠BAE=∠CAD,且AB=AC,AD=AE,∴△ABE≌△ACD(SAS)∴∠ABD=∠ACD(2)∵AB=AC,∠ACB=62°∴∠ABC=∠ACB=62°,∴∠BAC=180°-62°-62°=56°∵∠BAO+∠ABO+∠AOB=180°,∠DCA+∠DOC+∠BDC=180°∴∠BAC=∠BDC=56°【解析】(1)由“SAS”可证△ABE≌△ACD,可得∠ABD=∠ACD;(2)由三角形内角和定理可求∠BDC的度数.本题考查了全等三角形的判定和性质,三角形内角和定理,熟练运用全等三角形的判定是本题的关键.25.【答案】解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=-6,即点A的坐标为:(-6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,-6-8=-14,-6+8=2,即点C的坐标为:(-14,0)或(2,0).【解析】(1)分别把x=0和y=0代入y=x+4,解之,得到点B和点A的坐标,根据三角形的面积公式,计算求值即可,(2)根据“过B点作直线BC与x轴相交于点C,若△ABC的面积是16”,结合点B的坐标,求出线段AC的距离,即可得到答案.本题考查了一次函数图象上点的坐标特征,解题的关键:(1)正确掌握代入法和三角形的面积公式,(2)正确掌握三角形的面积公式.26.【答案】解:设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据题意得:,解得:t=3.6,经检验,t=3.6是原分式方程的解,且符合题意,∴2.5t=9.答:A车行驶的时间为9小时,B车行驶的时间为3.6小时.【解析】设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据平均速度=路程÷时间结合A 车的平均速度比B车的平均速度慢150km/h,即可得出关于t的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.27.【答案】6 m<2【解析】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.28.【答案】(1)证明:由旋转变换的性质可知,AC=AD,∠CAD=60°,∴ACD是等边三角形;(2)解:存在,a=2,理由如下:∵△OAB和△ACD都是等边三角形,∴AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠OAB-∠CAB=∠CAD-∠CAB,即∠OAC=∠BAD,在△OAC和△BAD中,,∴△OAC≌△BAD(SAS)∴BD=OC,∴△BCD周长=BC+BD+CD=BC+OC+CD=OB+CD,当CD最小时,△BCD周长最小,∵ACD是等边三角形,∴CD=AC,当AC⊥OB时,即OC=2,AC最小,最小值为=2,∴△BCD周长的最小值为4+2,此时a=2;(3)解:当点C在x轴的负半轴上时,∠BDC=90°,则∠ADB=30°,∵△OAC≌△BAD,∴∠ACO=∠ADB=30°,∴∠BCD=30°,∴BD=BC,∴OC=BC,∴OC=4,则a=-4;当点C在线段OB上时,∠BDC=120°,∴不存在以B、C、D为顶点的三角形是直角三角形,∴a不存在;当点C在点B的右侧时,∠BCD=90°,则∠ACO=30°,∵∠AOC=60°,∴∠OAC=90°,又∠ACO=30°,∴OC=2OA=8,∴a=8.【解析】(1)根据旋转变换的性质、等边三角形的判定定理证明;(2)证明△OAC≌△BAD,根据全等三角形的性质得到BD=OC,根据等边三角形的性质计算即可;(3)分点C在x轴的负半轴上、点C在线段OB上、点C在点B的右侧三种情况,根据直角三角形的性质计算.本题考查的是旋转变换的性质、等边三角形的判定和性质、直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.。
2018-2019学年新人教版八年级上学期期末考试数学试题一、选择题(每小题4分,共计48分) 1.下列各数中最小的是( )A .π-B .1C .D .02.下列语言叙述是命题的是( ) A .画两条相等的线段 B .等于同一个角的两个角相等吗? C .延长线段AO 到C ,使OC=OAD .两直线平行,内错角相等3.点P(3,-5)关于x 轴对称的点的坐标为( ) A .(3,5)B .(3,-5)C .(-3,5)D .(-3,-5)4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F 出现,按照规定的目标表示方法,目标E ,F 的位置表示为E(3,300°),F(5,210°),按照此方法在表示目标A ,B ,D ,E 的位置时,其中表示不正确的是( ) A .A(4,30°)B .B(2,90°)C.C(6,120°)D.D(3,240°)第4题图 第5题图5.如图,阴影部分是一个长方形,它的面积是( ) A.3cm 2B.4cm 2C.5cm 2D.6cm 26.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A.中位数B.平均数C.方差D.众数7.下列各式计算正确的是( )A.2=-B.2(4=3=-4=8.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C -6°,则∠C 的度数为( )A.90°B.58°C.54°D.32°9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵. 设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.523220x y x y +=⎧⎨+=⎩B.522320x y x y +=⎧⎨+=⎩C.202352x y x y +=⎧⎨+=⎩D.203252x y x y +=⎧⎨+=⎩10.已知直线2y x =与y x b =-+的交点的坐标为(1,a ),则方程组的解是( )A.12x y =⎧⎨=⎩B.21x y =⎧⎨=⎩C.23x y =⎧⎨=⎩D.13x y =⎧⎨=⎩11.关于一次函数y=-2x+b(b 为常数),下列说法正确的是( ) A. y 随x 的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=-2x+3相交于第四象限内一点12.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之是的函数关系如图,则这次长跑的全程为( )米。
2018-2019学年第一学期八年级数学期末测试数学试题卷一、选择题:本题有12 小题,每小题3 分,共36 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A.B.C.D.2.下列图形,不一定是轴对称图形的是( )D.直角三角形A.角B.等腰三角形C.长方形x 13.若分式有意义,则x 须满足的条件是( ) x 1A.x=1 B.x=-1 C.x≠1 D.x≠-14.△ABC 中,∠A=∠B+∠C,则对△ABC 的形状判断正确的是( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.已知△ABC 是直角坐标系中任意位置的一个三角形,现将△ABC 各顶点的纵坐标乘以-1,得到△A1B1C1,则它与△ABC 的位置关系是( )A.关于x 轴对称B.关于y 轴对称C.关于直线x=-1 对称D.关于直线y=-1 对称6.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A.60°B.120°C.60°或150°D.60°或120°7.如图,△ABC≌△ADE,若∠BAC=75°,∠E=40°,则∠B 的度数为( )A.40°B.65°C.75°D.115°8.某校八(1)班6 名女同学的体重(单位:kg)分别为35,38,36,40,42,42,则这组数据的中位数和众数分别是( )A.36 kg,42 kg B.38 kg,40 kg C.39 kg,42 kg D.38 kg,39 kg 9.如图,DE是△ABC 中AC 边的垂直平分线,若BC=8,AB=10,AC=7,则△EBC 的周长是( ) A.13 B.16 C.18 D.20第9 题图第12 题图10.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是( )A.①②B.②③C.①③D.①②③11.在某校“我的中国梦”演讲比赛中,有9 名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5 名,不仅要了解自己的成绩,还要了解这9 名学生成绩的()A.众数B.方差C.平均数D.中位数12.如图,AD 是△ABC 的角平分线,∠C=20 ,AB BD AC ,将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E,那么∠AED 等于( )A.80 B.60 C.40 D.30二、填空题:本题有6 个小题,每小题4 分,共24 分.2 x13.若分式的值为零,则x 的值为.x 214.已知等腰三角形一个内角的度数为100°,则其余两个内角的度数分别为.15.如图,线段AC、BD 相交于点O,且AO=OC,请添加一个条件使△ABO≌△CDO,应添加的条件为.(添加一个条件即可)第15 题图第16 题图第17 题图16.如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿着直线AD 对折,点C 落在点E 的位置.如果BC=2,那么线段BE 的长度为.17.如图,把三角形纸片ABC 沿DE 折叠,使点A 落在四边形BCDE 的内部,已知∠1+∠2=80°,则∠A 的度数为.18.在△ABC 中,∠BAC=α.边AB 的垂直平分线交边BC 于点D,边AC 的垂直平分线交边BC 于点E,连结AD,AE,则∠DAE 的度数为.(用含α 的代数式表示)三、解答题:本题有6 小题,共60 分.解答应写出文字说明或推演步骤.a2 1 a2 2 1a19.(本小题满分8 分)先化简 ,然后从1,2,3 中选取一个你a 2 a 2 a 2认为合适的数作为a 的值代入求值.20.(本小题满分8 分)如图,已知线段a,b 和∠1,用直尺和圆规作△ABC,使AB=a,AC=b,∠A=∠1.(不写作法,保留作图痕迹)╮1ab21.(本小题满分8 分)如图,在△ABC 中,点D,E 分别在边AC,AB 上,BD 与CE 交于点O.给出下列3 个条件:①∠EBO=∠DCO;②BE=CD;③OB=O C.(1)上述3 个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.22.(本小题满分10 分)潍坊某中学初二年级400 名学生参加质量检测,为了分析语文成绩情况,从中随机抽取了20 名学生,记录他们的分数,按照30 x 40,40 x 50,……,分组整理得到如下频数分布直方图.(1)从总体的400 名学生中随机抽取一人,估计其分数小于60 的概率为;(2)样本中分数的中位数在组;(3)成绩大于等于80 分才算优秀,估计全校语文质量检测成绩优秀的人数. 23.(本小题满分12 分)有两个 AOB与 EDC, EDC保持不动,且一边CD∥AO,另一边DE 与直线OB 相交于点F.若 AOB 40 , EDC 60 ,解答下列问题:(1)如图1,当点E、O、D 在同一条直线上,即点O 与点F 重合时, BOE ;(2)如图2,图3,当点E、O、D 不在同一条直线上时,分别求 BFE的度数;(3)若 AOB , EDC ,且 ,其他条件保持不变,请直接写出 BFE的度数(用含 , 的式子表示)图1 图2 图324.(本小题满分14 分)如图,等边△ABC 中,BM 是 ABC 内部的一条射线,且 ABM30 ,点A 关于BM 的对称点为D ,连接AD ,BD ,CD ,其中AD 、CD 的延长线分别交射线BM 于点E ,P . (1)依题意补全图形;(2)若 ABM ,求 BDC 的大小(用含 的式子表示); (3)用等式表示线段PB ,PC 与PE 之间的数量关系,并证明.MCA。
2018—2019学年度第一学期八年级上册数学期末试卷1(考试时间:100分 ,总分:120分) 班级:__________姓名:__________分数:____________一.选择题(共10小题,每小题3分,满分30分)题目 1 2 3 4 5 6 7 8 9 10答案13.一个多边形的内角和是其外角和的3倍,则此多边形的边数为____________14.如图,在△ABC 中,∠B=45°,∠C=30°,AD ⊥BC 于点D,BD=4cm,则AC 长为_____________cm. 15.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO,CO,则∠BOC= ____________16.如图,从边长为(a+5)cm 的正方形纸片中剪去一个边长为 (a+2) cm 的正方形(a >0),剩余部分沿虚线拼成一个长方形(不重叠无缝隙),则长方形的面积为____________ cm ² 三.解答题(一)(本大题3小题,每小题6分,共18分)17.因式分解:x 3—2x 2+ x 18.已知多项式A=(x+1)²—(x ²—4y ).(1)化简多项式A. (2)若x+2y=1,求A 的值.19.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=6,求CD的长.22.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数. 五.解答题(三)(本大题3小题,每小题9,共27分)23、如图,正五边形ABCDE的对角线BD,CE相交于点F,图中等腰三角形有____个,分别是________________________。
备战第一学期期末考试八年级数学优质好题精选
二元一次方程
一、单选题
1.(2016-2017学年浙江省台州市书生中学七年级下学期期中考试数学试卷(带解析))下列方程组中是二元一次方程组的是( )
A.
B. 437{
1
x y y z +=-= C. 2{
3
x y y +== D. 2
2
5{
4
x y x y +=-=
一次方程2318x y +=的正整数解的个数有( )个 A. 1 B. 2 C. 3 D. 4
3.(山东省威海市文登区八校(五四学制)2016-2017学年七年级下学期期中考试数学试题)下列各
组数中①2{2x y ==; ②2{1x y ==;③2{2x y ==-;④1{6
x y ==是方程410x y +=的解的有( ) A. 1个 B. 2个 C. 3个 D. 4个
4.(2016-2017学年浙江省台州市书生中学七年级下学期期中考试数学试卷)已知方程组2{22
x y k
x y +=+=的解满足x+y=2,则的算术平方根为( ). A. 4 B. ﹣2 C. ﹣4 D. 2
5.(人教版数学七年级下册(贵州专版) 期末综合检测)已知2,{
1
x y ==是二元一次方程组
8,{
-1
mx ny nx my +==的解,则2m- n 的算术平方根为 ( )
6.(河南省洛阳市2016-2017学年七年级(下)期末数学试卷)关于x ,y 的方程组的解
为
,则
=( )
A. ﹣3
B. 3
C. 81
D. ﹣81
7.(2017年河北省石家庄市裕华区中考数学模拟试卷(3月份))关于x ,y 的方程组 的
解是
,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )
A. ﹣
B.
C. ﹣
D.
8.(山东省龙口市第五中学(五四学制)2016-2017学年七年级下学期期中考试)关于x ,y 的方程
组244x y a x y a +=⎧⎨-=⎩
的解是方程3x+2y=10的解,那么a 的值为( )
A. ﹣2
B. 2
C. ﹣1
D. 1
9.(河南省周口市西华县2016-2017学年七年级下学期期末考试)已知1{2
x y ==是二元一次方程组
32{1
x y m nx y +=-= 的解,则m n -的值是( ) A. 1 B .2 C .3 D .4
10.(山东省淄博市临淄区边河乡中学2016-2017学年八年级下学期期中考试)已知密文和明文的对应规则为:明文a 、b 对应的密文为ma-nb 、na+mb.例如,明文1、2对应的密文是-3,4.若密文是1,7时,则对应的明文是( )2
A. -1,1
B. 1,3
C. 3,1
D. 1,l
11.(新疆乌鲁木齐市第九十八中学2016-2017学年七年级下学期第二次月考)若2{
1
x y =-=是方程组
1{
7
ax by bx ay +=+=的解,则(a+b )·(a -b )的值为( )
12.(山东省济南兴济中学北师大版八年级上册第五章二元一次方程组单元检测题)方程组
25{
328
y x x y =--=消去y 后所得的方程是( )
A. 3x -4x +10=8
B. 3x -4x +5=8
C. 3x -4x -5=8
D. 3x -4x -10=8 13.(福建省漳州市北师大版八年级数学上册校本作业)用代入法解方程组2{ 27x y x y +=-=,①,②
正确的
解法是( )
A. 先将①变形为2x y =+,再代入②
B. 先将①变形为2x y =-,再代入②
14.(2017-2018学年人教版七年级下册 第八单元 二元一次方程组 单元测试)已知方程5m -2n =1,当m 与n 相等时,m 与n 的值分别是( )【
15.(北师大版八年级数学上册同步练习:5.8 三元一次方程组)已知方程组3{ 5
x y mx y +=-=的解是方
程x ﹣y=1的一个解,则m 的值是( ) A. 1 B. 2 C. 3 D. 4
16.(2017-2018学年八年级数学上册(北师大版)检测卷:期末达标测试卷)如果二元一次方程组
3{
9x y a x y a
+=-
=的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( )2
17.(2017年秋北师大版八年级数学上册章末检测卷:第5章二元一次方程组)若|a +b -1|+(a -b +3)2
=0,则a b
的值( )【 A. 1 B. 2 C. 3 D. -1
18.(2017年秋北师大版八年级数学上册章末检测卷:第5章二元一次方程组)若方程组
(){
3
12
y kx b y k x =+=-+有无穷多组解,则2+b 2的值为( )2
A. 4
B. 5
C. 8
D. 10
19.(山东省淄博市临淄区第八中学2016-2017学年八年级下学期期中考试)二元一次方程组
的解的和为10,则的值等于( )
A. 4
B. 10
C. 24
D.
20.(江苏省泰州市姜堰区2017年中考适应性考试(二)数学试题)我们用[a ]表示不大于a 的最大
整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;.已知x 、y 满足方程[][][][]329{30
x y x y +=-=,则[]x y +可能的值有
( )
A. 1个
B. 2个
C. 3个
D. 4个。