基于MATLAB中SSI函数的杆件受力分析
- 格式:docx
- 大小:627.69 KB
- 文档页数:7
MATLAB在结构力学分析中的应用摘要:传统的手算方法解超静定结构工作量繁重,有时甚至是不可能,运用结构有限元编程的一般方法,通过两个实例的对照,展示matlab在结构力学分析中的应用,matlab具有高性能,方法具有普遍的适用性,实现弯矩图自动绘制。
关键词: matlab结构有限元弯矩图abstract:while using the traditional manual method to resolve complex statically indeterminate structures, it is heavy workloads, sometimes even impossible,using finite element programming of the general method, based on two examples, this paper introduces a method of application of matlab in structure mechanics, matlab has the advantages of high performance, it can be applied to many kinds of structures, realization of automatic drawing bending moment diagram.key words: matlab; finite element; bend moment diagram 引言结构力学[3]中,常利用传统的力法与位移法求解超静定结构,力法是几何问题,位移法把复杂的几何图乘转化为代数运算,但它们基本未知量很多时,系数构成的矩阵计算巨大,两者都不能满足科研工作者的需要。
应用matlab软件丰富可靠的矩阵运算、数据处理、图形绘制等便利工具,可使得计算和图象一体化。
对于结构力学计算是十分有利的工具。
基于MATLAB的四杆机构运动分析石河子大学毕业设计(论文)题目:基于MATLAB的四杆机构运动分析与动画模拟系统院(系):机械电气工程学院专业:机械设计制造及其自动化学号: 2002071189姓名:娄元建指导教师:葛建兵完成日期:二零零六年五月基于MATLAB的四杆机构运动分析与动画模拟系统[摘要] 本文介绍MATLAB开发机构运动分析和动画模拟系统的方法,并且利用MATLAB软件实现平面四杆机构的运动仿真。
以MATLAB程序设计语言为平台,将参数化设计与交互式相结合,设计出四杆机构仿真系统,能够实现四杆机构的参数化设计,并且能够进行机构的速度和加速度分析。
系统具有方便用户的良好界面,并给出界面设计程序,从而使机构分析更加方便、快捷、直观和形象,设计者只需输几参数就可得到仿真结果,为平面四杆机构的设计与分析提供一条便捷的途径。
[关键词] 机构;运动分析;动画模拟;仿真;参数化;MATLABAbstract: The kinematical analysis and animation method of the mechanism using MATLAB was discussed in the paper , and the kinematic simulation of planar four—bar mechanism with software MATLAB . And emulational system was developed , the system adopted Matlab as a design , It combined parametic design with interactive design and had good interface for user , that can realize parametic design of four-bar mechanism , also to make real speed and acceleration of mechanism . The emulational resut was obtained as soon as input parameters was imported and the devisers can make decision –making of modification by the comparing emulational result with design demand , which give another efficacious way for the design and analysis of planar four—bar mechanism.Key words:Mechanism;Kenimatical analysis;Animation;Emulation ;parametic ;MATLAB目录第一章绪论 (1)1.1 本论文的研究意义 (1)1.2 本文的研究任务 (2)第二章四杆机构运动学 (3)2.1 四杆机构简介 (3)2.2 四杆机构的综合概述 (4)第三章软件介绍 (6)3.1 MATLAB的简介 (6)3.2 Matlab/Simulink (6)3.3 SimMechanics机构系统应用 (7)第四章机构运动分析的实现过程 (9)4.1 机构简图的参数化绘制方法 (9)4.2 平面图形运动的动画模拟方法 (9)4.3 机构运动的数学模型 (10)4.4 用户界面设计 (11)4.5 程序运行 (12)第五章连杆机构的运动仿真 (16)5.1 平面连杆机构的运动分析 (16)5.2 几种仿真软件的探索 (17)的图象处理功能 (17)基于PRO/M的四杆机构的仿真 (19)5.3 用SimMechanics来实现的仿真 (19)第六章运算程序 (22)6.1四杆机构位置问题的Matlab求解 (22)6.2四杆机构的位移、速度、加速度的求解程序 (23)6.3定义求解方程的程序 (25)6.4四杆机构的绘制及其动画程序 (25)6.5绘制三条曲线的命令 (27)6.6参数调整的程序 (27)第七章结论 (28)参考文献: (29)第一章绪论1.1 本论文的研究意义随着计算机、智能材料等科学技术的飞速发展,人类正在经理一场新的产业革命。
基于Matlab的变载荷刚架力学计算实验报告姓名:L.H.M学号:专业名称:机械理论设计二〇二二年XX月目录一、实验要求 (1)二、实验内容 (1)三、实验数据 (1)四、实验目的 (1)五、计算方法及算法流程 (1)(一)力学法 (1)(二)有限元法 (4)六、实验结果与分析 (9)七、 Matlab代码清单 (10)(一)力学法的Matlab代码清单 (10)(二)有限元法的Matlab代码清单 (16)八、参考文献 (19)一、实验要求1、利用力学的方法,求变载荷作用下的悬臂刚梁的外力、变形和应力2、利用有限元的方法,求变载荷作用下的悬臂刚梁的外力、变形和应力二、实验内容如图1,悬臂刚梁结构。
AB段与BC段长度均为l,BC段上受到均布荷载q 的作用、且AB或BC段上还受到垂直于杆件的集中力F的作用(均布荷载q的大小与方向以及力F的作用位置、大小与方向可以自行定义)。
试编写程序,通过输入以上结构尺寸参数与荷载参数数值,绘制对应结构的剪力图、弯矩图和变形图。
图1 悬臂刚梁结构三、实验数据已知:1、刚架尺寸L=2 m(输入可变)2、均匀分布载荷q=20 kN/m(输入可变)3、集中力F=100 kN(输入可变)4、集中力距B点位置(输入可变)5、刚架的截面尺寸为a×a=100×100 mm(输入可变)6、刚架的材料为Q235-A四、实验目的1、熟悉matlab数学软件的操作2、掌握数学建模的基本方法3、会用基本的数学软件解决力学基本问题4、熟悉数学方法解决问题的流程五、计算方法及算法流程(一)力学法由理论力学知识,悬臂刚梁结构可以拆成两个杆体(即横杆BC和竖杆AB),得到如下受力图(图1-b,图1-c)由平衡方程,我们可以得到横杆BC图1-c中的D点处和B点处的弯曲、剪力和应力,以及竖杆AB图1-b中的B点处和A点处的弯曲、剪力和应力。
D点处:M D=q·(l-x)²/2;Q D=F+q·(l-x)/2;σD=6M D/a³;τD=Q D/a²B点处:M B=F·x+q·l²/2;Q B=F+q·l/2;σB=6M B/a³;τB=Q B/a²B点处:M’B=-M B;Q’B=-Q BA点处:M A=-M B;R Ax=0;R Ay=Q B;σA=6M A/a³;σAB=Q B/a²有了上述分析,就可以用matlab来计算并绘制刚架结构图、弯矩图、剪力图、应力图等。
六杆机构的动力学分析仿真一系统模型建立为了对机构进行仿真分析,首先必须建立机构数学模型,即位置方程,然后利用MATLAB仿真分析工具箱Simulink对其进行仿真分析。
图3.24所示是由原动件(曲柄1)和RRR—RRP六杆机构。
各构件的尺寸为r1=400mm,r2=1200mm,r3=800mm,r4=1500mm,r5=1200mm;各构件的质心为rc1=200mm,rc2=600mm,rc3=400mm,rc5=600mm;质量为m1=1.2kg,m2=3kg,m3=2.2kg;m5=3.6kg,m6=6kg; 转动惯量为J1=0.016kg·m2,J2=0.25kg·m2;J3=0.09kg·m2,J5=0.45kg·m2;构件6的工作阻力F6=1000N,其他构件所受外力和外力矩均为零,构件1以等角速度10 rad/s逆时针方向回转,试求不计摩擦时,转动副A的约束反力、驱动力矩、移动副F的约束反力。
图1-1此机构模型可以分为曲柄的动力学、RRR II级杆组的动力学和RRP II级杆组的动力学,再分别对这三个模型进行相应参数的求解。
图1-2 AB 构件受力模型如上图1-2对于曲柄AB 由理论力学可以列出表达式:111XA Re R ••=+-s m F R X XB 111y A Im R ••=+-s m F R y yB1111111111111cos )(sin )(cos sin ••=---+-++θθθθθJ r r R r r R r R r R M M c yB c XB c yA c XA F由运动学知识可以推得:)cos()2/cos(Re Re 12111111πθθπθθ++++=•••••••c c r r A s )sin()2/sin(Im Im 12111111πθθπθθ++++=•••••••c c r r A s将上述各式合并成矩阵形式有,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+++++-++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡••••••••••g m R F r m r m A m R F r m r m A m M R R yB y c c XBX c c yA XA 111211111111112111111111)sin()2/sin(Im )cos()2/cos(Re πθθπθθπθθπθθ(1-21)如图1-3,对构件BC 的约束反力推导如下,图1-3 BC 构件受力模型222Re ••=++s m R F R XC X XB 2222Im ••=-++s m g m R F R yC y yB2222222222222cos )(sin )(cos sin ••=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yB c XB如图1-4,对构件BC 的约束反力推导如下,图 1-4 CD 构件受力模型333Re ••=-+s m R F R XC X XD 3333Im ••=-++s m g m R F R yC y yD3333333333333cos )(sin )(cos sin ••=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yD c XD由运动学可以推导得,)sin()2/sin(Im Im 22222222πθθπθθ++++=•••••••c c r r B s )cos()2/cos(Re Re 22222222πθθπθθ++++=•••••••c c r r B s )cos()2/cos(Re Re 32333333πθθπθθ++++=•••••••c c r r D s )sin()2/sin(Im Im 32333333πθθπθθ++++=•••••••c c r r D s将上述BC 构件,CD 构件各式合并成矩阵形式有,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------33333333332222222222cos sin cos )(sin )(0010100001010000cos )(sin )(cos sin 001010000101θθθθθθθθc c c c c c c c r r r r r r r r r r r r ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡yD XD yC XC yB XB R R R R R R =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-+-++++-++++-+-++++-++++••••••••••••••••••••••••3333332333333333323333333322222222222222222222222222)sin()2/sin(Im )cos()2/cos(Re )sin()2/sin(Im )cos()2/cos(Re M J g m F r m r m D m F r m r m D m M J g m F r m r m B m F r m r m B m y c c X c c y c c X c c θπθθπθθπθθπθθθπθθπθθπθθπθθ (1-22)如图1-5 对构件5进行约束反力的推导如下,图1-5 CE 杆件受力模型••=++s m R F R xE x xC Re 55 ••=-++s m g m R F R yE y yC Im 5555555555555555cos )(sin )(cos sin ••=-+-+--θθθθθJ r r R r r R r R r R M c yE c xE c yC c xC如图1-6 对滑块进行受力分析如下,滑块受力模型••=--E m R R F F xE x Re sin 666θ ••=-+-E m g m R R F F yE y Im cos 6666θ由运动学可推,)cos()2/cos(C Re Re 5255555πθθπθθ•••••••+++=c c r r s )sin()2/sin(C Re Im 5255555πθθπθθ•••••••+++=c c r r s66cos Re θ••••=s E 66sin Im θ••••=s E⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+---+-++++-++++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------••••••••••••••••g m F s m F s m M J g m F r m r m m F r m r m m R R R R R r r r r r r y x y c c x c c F yE xE yC xC c c c c 66666666655555525555555555255555555665555555555sin cos )sin()2/sin(C Re )cos()2/cos(C Re cos 1000sin 01000cos )(sin )(cos sin 010*******θθθπθθπθθπθθπθθθθθθθθ(1-23)二编程与仿真利用MATLAB进行仿真分析,主要包括两个步骤:首先是编制计算所需要的函数模块,然后利用其仿真工具箱Simulink建立仿真系统框图,设定初始参数进行仿真分析。
基于MATLAB的平面连杆机构运动分析及动画摘要建立了平面机构运动分析的数学模型,利用MATLAB进行了编程并设计了计算交互界面进而求解,为解析法的复杂计算提供了便利的方法,此方法也同样适用于复杂平面机构的运动分析,并为以后机构运动分析的通用软件的设计提供了基础。
建立了平面四杆机构运动分析的数学模型,以MATLAB 程序设计语言为平台,将参数化设计与交互式相结合,设计了平面四杆机构仿真软件,该软件具有方便用户的良好界面,并给出界面设计程序,从而使机构分析更加方便、快捷、直观和形象。
设计者只需输入参数就可得到仿真结果,再将运行结果与设计要求相比较,对怎样修改设计做出决策,它为四杆机构设计提供了一种实用的软件与方法。
以一种平面六连杆为例建立了平面多连杆机构的运动分析数学模型,应用MATLAB 软件进行了优化设计和仿真分析,为机构优化设计提供了一种高效、直观的仿真手段,提高了对平面多连杆机构的分析设计能力。
同时,也为其他机构的仿真设计提供了借鉴。
关键词:解析法,平面连杆机构,MATLAB,运动分析,运动仿真Based on the MATLAB Planar Linkage Mechanism MotionAnalysis and AnimationABSTRACTThis article established the kinematical mathematic model of the planar mechanism ,which is programmed and solved with designing the mutual interface of the calculation by MATLAB.This convenient method is provided for the complicated calculation of the analysis and also applicable to the kinematical analysis of the complex planar mechanism.A mathematical model of motion analysis was established in planar four- linkage ,and emulational software was developed. The software adopted MATLAB as a design language. It combined parametric design with interactive design and had good interfacefor user. Thus,it was faster and more convenient to analyse linkage. The emulational result was obtained as soon as input parameters was imported and the devisers can make decision-making of modification by the comparing emulational result with design demand. It provides an applied software and method for linkage.This paper took a planar six-linkage mechanism as a example to set up the mathematics model of planar multi-linkage mechanisms, and made the optimization design and simulation by the MATLAB software. It gave a efficiently and directly method to optimization design of mechanisms, and improved the ability of analyzing and designing the planar multi-linkage mechanisms. At the same time, it also provides a use for reference to the design and simulation for other mechanisms.KEY WORDS: analysis, planar linkage mechanisms, MATLAB, kinematical analysis, kinematical simulation目录1.1 平面连杆机构的研究意义 (1)1.2 平面连杆机构的研究现状 (1)1.3 MATLAB软件介绍 (2)1.3.1 MATLAB简介 (2)1.3.2 MATLAB软件的特点 (4)1.3.3 用MATLAB处理工程问题优缺点 (5)第2章平面机构运动分析的复数矢量解 (6)第3章平面四杆机构运动分析 (8)3.1 铰链四杆机构曲柄存在条件 (8)3.2 平面四杆机构的位移分析 (9)3.3 平面四杆机构的速度分析 (14)3.4 平面四杆机构的加速度分析 (15)第4章基于MATLAB的平面四杆机构运动分析 (17)4.1 基于MATLAB的平面四杆机构运动参数输入界面 (17)4.2 基于MATLAB的平面四杆机构运动参数计算 (21)4.3 基于MATLAB的平面四杆机构运动分析界面 (24)4.4 基于MATLAB的平面四杆机构运动仿真 (26)4.5 基于MATLAB的平面四杆机构运动参数清空及退出 (30)第5章平面六杆机构运动分析 (32)5.1 构建平面六杆机构数学模型 (32)5.2 平面六杆机构的运动分析 (33)5.2.1 曲柄导杆机构的运动分析 (33)5.2.2 摆动滑块机构的运动分析 (36)第6章基于MATLAB的平面六杆机构运动分析 (39)6.1 基于MATLAB的平面六杆机构运动参数输入界面 (39)6.2 基于MATLAB的平面六杆机构运动参数计算 (45)6.3 基于MATLAB的平面六杆机构运动分析界面 (49)6.4 基于MATLAB的平面六杆机构运动仿真 (52)6.5 基于MATLAB的平面六杆机构运动参数清空及退出 (56)结论 (57)参考文献 (59)第1章前言1.1 平面连杆机构的研究意义机构运动分析是不考虑引起机构运动的外力的影响,而仅从几何角度出发,根据已知的原动件的运动规律(通常假设为匀速运动),确定机构其它构件上各点的位移、速度、加速度,或构件的角位移、角速度、角加速度等运动参数。
六杆机构的动力学分析仿真一系统模型建立为了对机构进行仿真分析,首先必须建立机构数学模型,即位置方程,然后利用MATLAB 仿真分析工具箱Simulink对其进行仿真分析。
图3.24所示是由原动件(曲柄1)和RRR—RRP 六杆机构。
各构件的尺寸为r1=400mm,r2=1200mm,r3=800mm,r4=1500mm,r5=1200mm;各构件的质心为rc1=200mm,rc2=600mm,rc3=400mm,rc5=600mm;质量为m1=1.2kg,m2=3kg,m3=2.2kg;m5=3.6kg,m6=6kg; 转动惯量为J1=0.016kg·m2,J2=0.25kg·m2;J3=0.09kg·m2,J5=0.45kg·m2;构件6的工作阻力F6=1000N,其他构件所受外力和外力矩均为零,构件1以等角速度10 rad/s逆时针方向回转,试求不计摩擦时,转动副A的约束反力、驱动力矩、移动副F的约束反力。
图1-1此机构模型可以分为曲柄的动力学、RRR II级杆组的动力学和RRP II级杆组的动力学,再分别对这三个模型进行相应参数的求解。
图1-2 AB 构件受力模型如上图1-2对于曲柄AB 由理论力学可以列出表达式:111XA Re R ∙∙=+-s m F R X XB 111y A Im R ∙∙=+-s m F R y yB1111111111111cos )(sin )(cos sin ∙∙=---+-++θθθθθJ r r R r r R r R r R M M c yB c XB c yA c XA F由运动学知识可以推得:)cos()2/cos(Re Re 12111111πθθπθθ++++=∙∙∙∙∙∙∙c c r r A s )sin()2/sin(Im Im 12111111πθθπθθ++++=∙∙∙∙∙∙∙c c r r A s将上述各式合并成矩阵形式有,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+++++-++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙∙∙∙∙∙∙∙∙∙g m R F r m r m A m R F r m r m A m M R R yB y c c XBX c c yA XA 111211111111112111111111)sin()2/sin(Im )cos()2/cos(Re πθθπθθπθθπθθ(1-21)如图1-3,对构件BC 的约束反力推导如下,图1-3 BC 构件受力模型222Re ∙∙=++s m R F R XC X XB 2222Im ∙∙=-++s m g m R F R yC y yB2222222222222cos )(sin )(cos sin ∙∙=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yB c XB如图1-4,对构件BC 的约束反力推导如下,图 1-4 CD 构件受力模型333Re ∙∙=-+s m R F R XC X XD 3333Im ∙∙=-++s m g m R F R yC y yD3333333333333cos )(sin )(cos sin ∙∙=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yD c XD由运动学可以推导得,)sin()2/sin(Im Im 22222222πθθπθθ++++=∙∙∙∙∙∙∙c c r r B s )cos()2/cos(Re Re 22222222πθθπθθ++++=∙∙∙∙∙∙∙c c r r B s )cos()2/cos(Re Re 32333333πθθπθθ++++=∙∙∙∙∙∙∙c c r r D s )sin()2/sin(Im Im 32333333πθθπθθ++++=∙∙∙∙∙∙∙c c r r D s将上述BC 构件,CD 构件各式合并成矩阵形式有,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------33333333332222222222cos sin cos )(sin )(0010100001010000cos )(sin )(cos sin 001010000101θθθθθθθθc c c c c c c c r r r r r r r r r r r r ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡yD XD yC XC yB XB R R R R R R =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-+-++++-++++-+-++++-++++∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3333332333333333323333333322222222222222222222222222)sin()2/sin(Im )cos()2/cos(Re )sin()2/sin(Im )cos()2/cos(Re M J g m F r m r m D m F r m r m D m M J g m F r m r m B m F r m r m B m y c c X c c y c c X c c θπθθπθθπθθπθθθπθθπθθπθθπθθ (1-22)如图1-5 对构件5进行约束反力的推导如下,图1-5 CE 杆件受力模型∙∙=++s m R F R xE x xC Re 55 ∙∙=-++s m g m R F R yE y yC Im 5555555555555555cos )(sin )(cos sin ∙∙=-+-+--θθθθθJ r r R r r R r R r R M c yE c xE c yC c xC如图1-6 对滑块进行受力分析如下,滑块受力模型∙∙=--E m R R F F xE x Re sin 666θ ∙∙=-+-E m g m R R F F yE y Im cos 6666θ由运动学可推,)cos()2/cos(C Re Re 5255555πθθπθθ∙∙∙∙∙∙∙+++=c c r r s )sin()2/sin(C Re Im 5255555πθθπθθ∙∙∙∙∙∙∙+++=c c r r s66cos Re θ∙∙∙∙=s E 66sin Im θ∙∙∙∙=s E⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+---+-++++-++++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙g m F s m F s m M J g m F r m r m m F r m r m m R R R R R r r r r r r y x y c c x c c F yE xE yC xC c c c c 66666666655555525555555555255555555665555555555sin cos )sin()2/sin(C Re )cos()2/cos(C Re cos 1000sin 01000cos )(sin )(cos sin 010*******θθθπθθπθθπθθπθθθθθθθθ(1-23)二编程与仿真利用MATLAB进行仿真分析,主要包括两个步骤:首先是编制计算所需要的函数模块,然后利用其仿真工具箱Simulink建立仿真系统框图,设定初始参数进行仿真分析。
基于MATLAB/Solidworks COSMOSMotion的平面连杆机构动力学分析07208517王锡霖4-23在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。
试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于。
构件1上的平衡力偶Mb分别对三个构件进行受力分析如图:构件3受力图构件2受力图构件1受力图(1)滑块2:V S2 =L AB W1 ①a s2 = L AB W12②构件3:S=L AB sinΦ1 ③V3=L AB W1 COSΦ1 ④a3=-L AB W12 sinΦ1 ⑤(2)确定惯性力:F12=m2as2=(G2/g)LABW12 ⑥F13=m3a3=(G3/g)LABW12sinΦ1 ⑦(3)各构件的平衡方程:构件3:∑Fy=0,FR23 =Fr-F13∑Fx=0,FR4’=FR4∑MS3 =0,FR4=FR23LAcosΦ1/h2构件2:∑Fx=0,FR12x=F12cosΦ1∑Fy=0,FR12y=FR32-F12sinΦ1构件1:∑Fx=0,FR41x=FR12x∑Fy=0,FR41y=FR12y∑MA =0,Mb=FR32LABcosΦ1总共有八个方程,八个未知数。
归纳出一元八次方程矩阵:1 0 0 0 0 0 0 0 FR23 Fr-F130 1 -1 0 0 0 0 0 FR4’ 0-LAB COSΦ1/h20 1 0 0 0 0 0 FR40 0 0 1 0 0 0 0 FR12x = F12cosΦ1-1 0 0 0 1 0 0 0 FR12y -F12sinΦ10 0 0 -1 0 1 0 0 FR41x 00 0 0 0 -1 0 1 0 FR41y 0-LABCOSΦ1 0 0 0 0 0 0 1 Mb 0 AX=B进而可得:X=A\B。
作者简介:黄鹤辉(1947-),男,广西宜州市人,广西工学院副教授。
收稿日期:2002-12-17基于M A TLAB 的四杆变幅机构结构参数分析黄鹤辉,陈 晨(广西工学院机械工程系,广西柳州 545006)摘要:本文介绍利用M A TLAB [1]数值计算和数据可视化功能对门座式起重机四杆变幅机构结构参数进行分析,各参数变化时对运动规律的影响。
关键词:门座式起重机;四杆变幅机构;结构分析中图分类号:TB 11 文献标识码:A :1004-2148(2003)01-0029-04引言 四杆变幅机构是门座式起重机应用最广泛的一种装置。
它的设计要求是:在变幅过程中由物品引起的臂架力矩要尽量地小,变幅轨迹的最大铅垂落差要尽量地小,速度要均匀,机构重量要轻等。
由于四杆变幅机构结构参数较多,用一般的解析法或图解法很难分析其运动规律。
本文介绍利用M A TLAB 强大的数值计算功能和数据可视化功能,当初步选定某一结构方案后,计算臂架一定转角范围内象鼻梁端点(起吊点)的轨迹坐标和臂架力矩值并绘制曲线,并在其它参数确定的情况下将某一参数在一定范围内取不同值绘制轨迹曲线和力矩曲线,分析各参数对轨迹、力矩曲线的影响规律,为合理确定各参数提供直观、可靠的依据。
在此基础上,也可借助M A TLAB 优化工具箱的函数进行优化计算[2],最后再次将优化结果绘制曲线验证。
由于M A TALB 语言书写简洁,且无须设计者进行复杂的优化计算基础编程工作,易于在实际设计工作中推广应用。
1 四杆变幅机构运动分析[3] 四杆变幅机构结构简图如图1所示。
图中S m ax ,S m in —机构最大、最小的变幅值: h —起升高度;(x ,y )—象鼻梁E 点坐标;(x 0,y 0)—拉杆固定支点B 0的坐标;l 0—A 0B 0间的长度;l 0—臂架A 0D 的长度;l 2—象鼻梁后臂DB 的长度;l 3—拉杆B 0B 的长度;l 4—象鼻梁前臂D E 的长度;图1 四杆变幅机构Η—象鼻梁前后臂之间的夹角;Α—臂架的摆角;Β—拉杆的摆角;Υ—象鼻梁前臂与x 轴的夹角。
基于matlab的平面四连杆机构设计以及该机构的运动仿真分析摘要四连杆机构因其结构方便灵活,能够传递动力并实现多种运动形式而被广泛应用于各个领域,因此对其进行运动分析具有重要的意义。
传统的分析方法主要应用几何综合法和解析综合法,几何综合法简单直观,但是精确度较低;解析法精确度较高,但是计算工作量大。
随着计算机辅助数值解法的发展,特别是MATLAB软件的引入,解析法已经得到了广泛的应用。
对于四连杆的运动分析,若应用MATLAB 则需要大量的编程,因此我们引入proe软件,我们不仅可以在此软件中建立实物图,而且还可以对其进行运动仿真并对其运动分析。
在设计四连杆时,我们利用解析综合法建立数学模型,再根据数学模型在MATLAB中编程可以求得其他杆件的长度。
针对范例中所求得的各连杆的长度,我们在proe软件中画出其三维图(如图4)并在proe软件中进行仿真分析得出CB,的角加速度的变化,从而得到CB,两接触处所受到的力是成周期性变化的,可以看出CB,两点处的疲劳断裂,我们提B,两点处极易疲劳断裂,针对C出了在设计四连杆中的一些建议。
关键字:解析法 MATLAB 软件 proe 软件 运动仿真建立用解析法设计平面四杆机构模型对于问题中所给出的连架杆AB 的三个位置与连架杆CD 的三个位置相对应,即三组对应位置为:332211,,,,,ψϕψϕψϕ,其中他们对应的值分别为: 52,45,82,90,112,135,为了便于写代数式,可作出AB 与CD 对应的关系,其图如下:图—2 AB 与CD 三个位置对应的关系通过上图我们可以通过建立平面直角坐标系并利用解析法来求解,其直角坐标系图如下:φααi θi φi图—3 平面机构直角坐标系通过建立直角坐标系OXY ,如上图所示,其中0α与0φ为AB 杆与CD 杆的初始角,各杆件的长度分别用矢量d c b a ,,,,表示,将各矢量分别在X 轴与Y 轴上投影的方程为⎩⎨⎧=++=+)sin(*)sin(*)sin(*)cos(*)cos(*)cos(*φθαφθαc b a c d b a在上述的方程中我们可以消除θ,从而可以得到α与φ之间的关系如下:)cos(2)cos(2)cos(2)(2222αφαφab ac cd b d c a +-=+-++ (1) 为便于化简以及matlab 编程我们可以令:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-++=c d H a d H ac b d c a H 32222212 (2) 通过将(2)式代入(1)式中则可以化简得到如下等式: )cos()cos()cos(321αφαφH H H +-=+ (3)我们可以通过(3)式将两连架杆对应的位置带入(3)式中,我们可以得到如下方程:⎪⎩⎪⎨⎧+-=++-=++-=+)cos()cos()cos()cos()cos()cos()cos()cos()cos(333332123222211311121ϕψϕψϕψϕψϕψϕψH H H H H H H H H (4) 联立(4)方程组我们可以求得321,,H H H ,再根据(2)中的条件以及所给定的机架d 的长度,我们可以求出其它杆件的长度为:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++===1222322acH d c a b H d c H d a (5)四连杆设计范例:在日常生活中,我们经常看到消防门总能自动关上,其实它是利用四连杆机构与弹簧组成的。
……………………. ………………. …………………毕业论文基于MATLAB的平面四杆机构运动分析院部机械与电子工程学院装订线……………….……. …………. …………. ………摘要 (I)Abstract (II)1 绪论 (1)2 平面四杆机构运动分析 (2)2.1 平面四杆机构简介 (2)2.2 平面四杆机构类型分析 (3)2.3 建立平面四杆机构的数学模型 (4)2.3.1 建立平面四杆机构的封闭矢量位置方程式 (4)2.3.2 运用矢量法和矩阵法求解封闭矢量方程式 (5)2.3.3 求解过程涉及的数学、物理计算方法 (6)3 基于MATLAB 的运动分析程序设计 (7)3.1 MATLAB简介 (7)3.2 程序设计流程 (8)3.3 编写程序的M文件 (10)3.3.1编写fun函数 (10)3.3.2编写主程序 (10)3.4 程序运行输出结果 (12)4 基于MATLAB的GUI分析系统设计 (15)4.1 GUI简介 (15)4.2 GUI界面设计 (15)4.3 GUI代码编写 (16)4.3.1 Edit Text代码编写 (16)4.3.2 Pop-up Menu代码编写 (16)4.4 GUI分析系统运行效果 (17)5 结论 (18)参考文献 (20)致谢 (20)附录 (20)附录一主函数程序代码 (20)附录二popupmenu4_Callback函数下程序代码 (23)Abstract (II)1 Introduction (1)2 The analysis of motion for planar four-bar mechanism (2)2.1 Intoduction to the planar four-bar mechanism (2)2.2 Analysis for the types of planar four-bar mechanism (3)2.3 Build the mathematical model of planar four-bar mechanism (4)2.3.1 Build the closed position vector equation for planar four-bar mechanism (4)2.3.2 Apply the vector & matrix method to solve the closed vector equation (4)2.3.3 Mathematical & physical calculation method involved in the solving process (5)3 The program design for the motion analysis based on MATLAB (7)3.1 Introduction to MATLAB (7)3.2 The program design process (7)3.3 Write the M-file for program (9)3.3.1 Write the fun function (9)3.3.2 Write the main function (9)3.4 The output of running the program (11)4 The design of GUI analysis system based on MATLAB (14)4.1 Introducton to GUI (14)4.2 The interface design of GUI (14)4.3 Write the GUI code (15)4.3.1 Write the Edit Text code (15)4.3.2 Write the Pop-up Menu code (15)4.4 The running effect of the GUI analysis system (16)5 Conclusion (19)References (20)Acknowledgement (21)Appendix (22)Appendix I The main function code (22)Appendix II The popupmenu4_Callback function code (25)基于MATLAB的平面四杆机构运动分析摘要:建立以平面四杆机构为研究对象的数学模型,以MATLAB软件为载体,利用MATLAB矩阵数据分析处理功能,设计了平面四杆机构运动分析程序。
2015-6-1
基于MATLAB中SSI 函数的杆件受力分析
姓名:王博
班级:工程造价11043
学号:1416220327
指导老师: 詹志兰
基于MATLAB中SSI函数的杆件受力分析
摘要:我们对杆件组合的受力分析是通过对关键点进行分析得到的,是对各个点组合的分析,本文以图论的思维来来分析杆件受力,并通过matlab中的ssi程序实现各个受力计算,并进行绘图。
关键字:杆件受力分析;matlab;ssi函数
1.引言
MATLAB是美国MathWorks公司出品的商业数学软件,主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。
本文利用matlab中的ssi和绘图程序进行杆件组合的静力学分析。
2.SSI函数
1)原理
由静力学的静力平衡公式可以知道,我们对一个杆件组合的受力分析是通过对关键面和关键点得到的,各个点的数值在X方向,Y方向和Z方向的加总之和是为0的。
由此我们只需找准计算起止点,并对过程中相互作用的各个点进行分析就可以了。
2)程序
function [ Elem ] = SSI( Joint,Elem,SuptUnknow,varargin) %SSI 使用联立法计算单元坐标系中单元杆端内力
%
%调用:[ Elem ] = SSI( Joint,Elem,SuptUnknow)
% 计算刚架单元杆端内力,无内力约束条件
% [ Elem ] = SSI( Joint,Elem,SuptUnknow,Rest)
% 计算刚架单元杆端内力,有内力约束条件
% [ Elem ] = SSI( Joint,Elem,Rest,SuptUnknow,varargin)
% 计算结构单元杆端内力
%
%输入: Joint = 结点信息
% Elem = 单元信息
% SuptUnknow = 支座反力向量
% varargin{1} = Rest,单元杆端内力约束条件矩阵
% 每行为:[单元编号,单元杆端内力分量编号(1~6)] % varargin{2} = JointVec:按刚架结点和桁架结点分类存放结点编号的元胞数组
% 默认:JointVec = 1:NJointNo,NJointNo为最大结点号
% varargin{3} = isCom:存放刚架结点与桁架结点逻辑变量的向量
% isCom = [isCom1,isCom2]
% isCom1或isCom2 = true:刚架结点
% isCom1或isCom2 = false:桁架结点
% 默认:isTruss = false
% varargin{4} = ElemVec:按刚架单元和桁架单元分类存放单元编号的元胞数组
% 默认:ElemVec = 1:NElemNo,NElemNo为最大单元号% varargin{5} = isTruss:存放刚架或桁架单元的逻辑变量的向量
% isTruss = [isTruss1,isTruss2]
% isTruss1或isTruss2 = true:桁架单元
% isTruss1或isTruss2 = false:刚架单元
% 默认:isTruss = false
%
%输出:Elem.InFL = 单元坐标系中单元杆端内力
3.案例分析
图1 杆件组合受力及其分析
对图中的案例分析,
1)单元及力的表示
图2 单元力分析图
如图2所示,我们将我们将杆件单元中的杆段内力写成6v1的矩阵
Fe=[F X1 0 0 F X2 0 0]T
对结构坐标中单元杆端内力写为
FE=[F X1 F Y1 0 F X2 F Y2 0 0]T
表示杆端弯矩为0,杆件单元在结构坐标系中只有4个杆段内力。
2) 杆件组合数据输入
%---基础数据的输入
%输入结点坐标
Joint.Coord(1,:)=[-3,4];Joint.Coord(2,:)=[-
1.5,2];Joint.Coord(3,:)=[0,0];
Joint.Coord(4,:)=[5,0];Joint.Coord(5,:)=[5,4];
%输入单元结点号
Elem.Def(1,:)=[1,2];Elem.Def(2,:)=[2,3];Elem.Def(3,:)=[3,4];
Elem.Def(4,:)=[4,5];
%---输入荷载
q=10;P=10;
Joint.Load(1,:)=[2,P,0,0]; %结点荷载
Elem.Load(1,:)=[3,1,q,q]; %输入单元非结点荷载
2)平衡方程列入及计算
>> syms FRx1 FRy1 FRx5 FRy5 FRx3 FRy3
FR1=[FRx1 FRy1 FRx5 FRy5 FRx3 FRy3];
%---建立平衡方程组
%---AC的平衡方程,注意:铰处连接力FRx3、FRy3取AC隔离体的正向
Eq1.SX1=FRx1+FRx3+P;%x方向力平衡方程
Eq1.SY1=FRy1+FRy3;%y方向力平衡方程
Eq1.SM1=-FRx1*4-FRy1*3-P*2;%对C的弯矩平衡方程
%---BC的平衡方程
Eq1.SX2=-FRx3+FRx5;%x方向力平衡方程
Eq1.SY2=-FRy3+FRy5+q*5;%y方向力平衡方程
Eq1.SM2=-FRx5*4+FRy5*5+q*5*5/2;%对C的弯矩平衡方程
>> double(SolEqu(FR1,Eq1))
ans =
4.8438-13.1250 -14.8438 -36.8750 -14.8438
3)绘图
>>13.1250FR=double(SolEqu(FR,Eq));
%把支座反力作为荷载加入结点荷载矩阵
Joint.Load(end+1,:)=[1,FR(1),FR(2),0];
%计算单元在结构坐标系和单元坐标系中的杆端内力Elem=SFI(Joint,Elem);
%绘制结构内力图
SSG(Joint,Elem);
请输入绘制结构内力图的比例(取值0~1):0.5
结构内力图比例是否满足要求,
如满足要求,输入Y;否则,输入N:n
请重新输入大写字符 Y 或 N :N
请输入绘制结构内力图的比例(取值0~1):0.5
结构内力图比例是否满足要求,
如满足要求,输入Y;否则,输入N:Y
4)结果
4参考文献
【1】纪元,工程力学[M],吉林科学技术出版社,2012
【2】丁星,matlab杆系结构分析(第三版)[M],科学出版社,2010 【3】王建伟,MATLAB7.X程序设计[M],中国水利水电出版社,2007。