2021年江苏省南通市中考数学压轴题总复习(附答案解析)
- 格式:docx
- 大小:2.11 MB
- 文档页数:193
专题10 选择填空方法综述例1.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y =110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是___________.同类题型1.1 如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=13,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD-DC-CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()A.B.C.D.同类题型1.2 如图1.在四边形ABCD中,AB∥CD,AB⊥BC,动点P从点B出发,沿B→C→D→A的方向运动,到达点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图2所示,那么AB边的长度为____________.同类题型1.3 如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒BD 表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y(m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C例2.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.72B.2 73C.3 55D.264同类题型2.1 如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为____________.同类题型2.2 如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 2 B.10 C.2 26 D.2 29同类题型2.3例3.如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH =3,则S△ADF=()A.6 B.4 C.3 D.2同类题型3.1如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).同类题型3.2 如图,在矩形ABCD中,AB=2,AD=2 2 ,点E是CD的中点,连接AE,将△ADE 沿直线AE折叠,使点D落在点F处,则线段CF的长度是()A.1 B.22C.23D.23同类题型3.3如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=__________.同类题型3.4 如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE=_________.例4.如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2 5 -2;④当线段DG最小时,△BCG的面积S=8+855 .其中正确的命题有____________.(填序号)同类题型4.1 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= 2 ;③DF=DC;④CF=2AF,正确的是()A.①②③B.②③④C.①③④D.①②④同类题型4.2 点E、F分别在平行四边形ABCD的边BC、AD上,BE=DF,点P在边AB上,AP:PB=1:n(n>1),过点P且平行于AD的直线l将△ABE分成面积为S1、S2的两部分,将△CDF分成面积为S3、S4的两部分(如图),下列四个等式:①S1:S3=1:n②S1:S4=1:(2n+1)③(S1+S4):(S2+S3)=1:n④(S3-S1):(S2-S4)=n:(n+1)其中成立的有()A.①②④B.②③C.②③④D.③④同类题型4.3 如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D 重合).点P为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转90°后,角的两边交射线DA于H,G两点,有下列结论:①DH=DE;②DP=DG;③DG+DF= 2 DP;④DP﹒DE=DH﹒DC,其中一定正确的是()A.①②B.②③C.①④D.③④例5.如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为 2 ,∠AOB=∠OBA=45°,则k的值为______________.同类题型5.1 如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.专题10 选择填空方法综述例1.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y =110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是___________.解:由图象可以判定:BE=BC=10 cm.DE=4 cm,当点P在ED上运动时,S△BPQ =12BC﹒AB=40cm2,∴AB=8 cm,∴AE=6 cm,∴当0<t≤10时,点P在BE上运动,BP=BQ,∴△BPQ是等腰三角形,故①正确;S△ABE =12AB﹒AE=24 cm2,故②错误;当14<t<22时,点P在CD上运动,该段函数图象经过(14,40)和(22,0)两点,解析式为y =110-5t,故③正确;△ABP为等腰三角形需要分类讨论:当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个符合同意的P点,当PA=PB时,点P在AB垂直平分线上,所以BE和CD上各存在一个符号题意的P点,共有4个点满足题意,故④错误;⑤△BPQ 与△ABE 相似时,只有;△BPQ ∽△BEA 这种情况,此时点Q 与点C 重合,即PC BC =AE AB =34 ,∴PC =7.5,即t =14.5. 故⑤正确.综上所述,正确的结论的序号是①③⑤.同类题型1.1 如图,在四边形ABCD 中,DC ∥AB ,AD =5,CD =3,sinA =sinB = 13 ,动点P 自A点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD -DC -CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t (秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A .B .C .D .解:过点Q 做QM ⊥AB 于点M . 当点Q 在线段AD 上时,如图1所示,∵AP =AQ =t (0≤t ≤5),sinA =13,∴QM =13t ,∴s =12AP ﹒QM =16t 2;当点Q 在线段CD 上时,如图2所示,∵AP =t (5≤t ≤8),QM =AD ﹒sinA =53 ,∴s =12AP ﹒QM =56t ;当点Q 在线段CB 上时,如图3所示,∵AP =t (8≤t ≤2023 +3(利用解直角三角形求出AB =2023 +3),BQ =5+3+5-t =13-t ,sinB =13,∴QM =13(13-t ),∴s =12AP ﹒QM =-16(t 2-13t ),∴s =-16(t 2 -13t )的对称轴为直线x =132 .∵t <13, ∴s >0.综上观察函数图象可知B选项中的图象符合题意.选B.同类题型1.2 如图1.在四边形ABCD中,AB∥CD,AB⊥BC,动点P从点B出发,沿B→C→D→A 的方向运动,到达点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图2所示,那么AB边的长度为____________.解:根据题意,当P在BC上时,三角形面积增大,结合图2可得,BC=4;当P在CD上时,三角形面积不变,结合图2可得,CD=3;当P在DA上时,三角形面积变小,结合图2可得,DA=5;过D作DE⊥AB于E,∵AB∥CD,AB⊥BC,∴四边形DEBC是矩形,∴EB=CD=3,DE=BC=4,AE=AD2-DE2=52-42=3,∴AB=AE+EB=3+3=6.同类题型1.3 如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒BD 表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y(m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为⌒BD ,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),选D.同类题型1.4例2.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.72B.2 73C.3 55D.264解:如图,连接DP ,BD ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AC ⊥BD ,B 、D 关于AC 对称,∴PB +PM =PD +PM ,∴当D 、P 、M 共线时,P ′B +P ′M =DM 的值最小,∵CM =13BC =2, ∵∠ABC =120°,∴∠DBC =∠ABD =60°,∴△DBC 是等边三角形,∵BC =6,∴CM =2,HM =1,DH =3 3 ,在Rt △DMH 中,DM =DH 2+HM 2=(33)2+12=27 , ∵CM ∥AD ,∴P ′M DP ′=CM AD =26=13 ,∴P ′M =14DM =72. 选A .同类题型2.1 如图,已知菱形OABC 的边OA 在x 轴上,点B 的坐标为(8,4),点P 是对角线OB 上的一个动点,点D (0,2)在y 轴上,当CP +DP 最短时,点P 的坐标为____________.解:如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .在Rt △OBK 中,OB =BK 2+OK 2=82+42=4 5 ,∵四边形OABC 是菱形,∴AC ⊥OB ,GC =AG ,OG =BG =2 5 ,设OA =AB =x ,在Rt △ABK 中,∵AB 2=AK 2+BK 2 ,∴x 2=(8-x )2+42 ,∴x =5,∴A (5,0),∵A 、C 关于直线OB 对称,∴PC +PD =PA +PD =DA ,∴此时PC +PD 最短,∵直线OB 解析式为y =12 x ,直线AD 解析式为y =-25x +2, 由⎩⎪⎨⎪⎧y =12x y =-25x +2 解得⎩⎪⎨⎪⎧x =209y =109, ∴点P 坐标(209 ,109).同类题型2.2 如图,在平面直角坐标系中,反比例函数y = k x(x >0)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是( )A .6 2B .10C .2 26D .2 29解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,k 6 ),N (k 6,6), ∴BN =6-k 6 ,BM =6-k 6,∵△OMN 的面积为10,∴6×6-12×6×k 6-12×6×k 6-12×(6-k 6)2 =10, ∴k =24,∴M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,∵AM =AM ′=4,∴BM ′=10,BN =2,∴NM ′=BM ′2+BN 2=102+22=226 ,选C .同类题型2.3例3.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°.∵△AEF 等边三角形,∴AE =EF =AF ,∠EAF =60°.∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,⎩⎪⎨⎪⎧AE =AF AB =AD, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE =DF ,∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF ,∴△CEF 是等腰直角三角形,∵AE =AF ,∴AC 垂直平分EF ,∴EG =GF ,∵GH⊥CE,∴GH∥CF,∴△EGH∽△EFC,∵S△EGH=3,∴S△EFC=12,∴CF=2 6 ,EF=4 3 ,∴AF=4 3 ,设AD=x,则DF=x-2 6 ,∵AF2=AD2+DF2,∴(43)2=x2+(x-26)2,∴x=6+3 2 ,∴AD=6+3 2 ,DF=32- 6 ,∴S△ADF =12AD﹒DF=6.选A.同类题型3.1如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).解:如图,连接BD ,在等腰Rt △ABC 中,点D 是AC 的中点,∴BD ⊥AC ,∴BD =AD =CD ,∠DBC =∠A =45°,∠ADB =90°,∵∠EDF =90°,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,⎩⎪⎨⎪⎧∠A =∠DBFAD =BD ∠ADE =∠BDF, ∴△ADE ≌△BDF (ASA ),∴AE =BF ,DE =DF ,在Rt △DEF 中,DF =DE =m .∴EF =2DE = 2 m ,∴△BEF 的周长为BE +BF +EF =BE +AE +EF =AB +EF =2+ 2 m .同类题型3.2 如图,在矩形ABCD 中,AB =2,AD =2 2 ,点E 是CD 的中点,连接AE ,将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是( )A .1B .22C .23D .23解:过点E 作EM ⊥CF 于点M ,如图所示.在Rt △ADE 中,AD =2 2 ,DE =12AB =1, ∴AE =AD 2+DE 2 =3.根据折叠的性质可知:ED =EF ,∠AED =∠AEF .∵点E 是CD 的中点,∴CE =DE =FE ,∴∠FEM =∠CEM ,CM =FM .∵∠DEA +∠AEF +∠FEM +∠MEC =180°,∴∠AEF +∠FEM =12×180°=90°. 又∵∠EAF +∠AEF =90°,∴∠EAF =∠FEM .∵∠AFE =∠EMF =90°,∴△AFE ∽△EMF ,∴MF FE =FE EA ,即MF 1=13 , ∴MF =13 ,CF =2MF =23. 选C .同类题型3.3如图,在矩形ABCD 中,BE ⊥AC 分别交AC 、AD 于点F 、E ,若AD =1,AB =CF ,则AE =__________.解:∵四边形ABCD 是矩形,∴BC =AD =1,∠BAF =∠ABC =90°,∴∠ABE +∠CBF =90°,∵BE ⊥AC ,∴∠BFC =90°,∴∠BCF +∠CBF =90°,∴∠ABE =∠FCB ,在△ABE 和△FCB 中,⎩⎪⎨⎪⎧∠EAB =∠BFC =90°AB =CF ∠ABE =∠FCB, ∴△ABE ≌△FCB ,∴BF =AE ,BE =BC =1,∵BE ⊥AC ,∴∠BAF +∠ABF =90°,∵∠ABF +∠AEB =90°,∴∠BAF =∠AEB ,∵∠BAE =∠AFB ,∴△ABE ∽△FBA ,∴AB BF =BE AB ,∴ABAE=1AB,∴AE=AB2,在Rt△ABE中,BE=1,根据勾股定理得,AB2+AE2=BE2=1,∴AE+AE2=1,∵AE>0,∴AE=5-12.同类题型3.4 如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE=_________.解:如图,连接EF.∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∴AM=BM=1,在Rt △ADM 中,DM =AD 2+AM 2=22+12= 5 ,∵AM ∥CD ,∴AM DC =MP PD =12 , ∴DP =253 ,∵PF =56, ∴DF =DP -PF =52 , ∵∠EDF =∠PDC ,∠DFE =∠DCP ,∴△DEF ∽△DPC ,∴DF DC =DE DP, ∴522=DE253 , ∴DE =56, ∴CE =CD -DE =2-56=76.例4.如图,正方形ABCD 的边长为4,点E 、F 分别从点A 、点D 以相同速度同时出发,点E 从点A 向点D 运动,点F 从点D 向点C 运动,点E 运动到D 点时,E 、F 停止运动.连接BE 、AF 相交于点G ,连接CG .有下列结论:①AF ⊥BE ;②点G 随着点E 、F 的运动而运动,且点G 的运动路径的长度为π;③线段DG 的最小值为2 5 -2;④当线段DG 最小时,△BCG 的面积S =8+85 5 .其中正确的命题有____________.(填序号)解:∵点E 、F 分别同时从A 、D 出发以相同的速度运动,∴AE =DF ,∵四边形ABCD 是正方形,∴AB =DA ,∠BAE =∠D =90°,在△BAE 和△ADF 中,⎩⎪⎨⎪⎧AE =DE∠BAE =∠ADF =90°AB =AD, ∴△BAE ≌△ADF (SAS ),∴∠ABE =∠DAF ,∵∠DAF +∠BAG =90°,∴∠ABE +∠BAG =90°,即∠AGB =90°,∴AF ⊥BE .故①正确;∵∠AGB =90°,∴点G 的运动路径是以AB 为直径的圆所在的圆弧的一部分,由运动知,点E 运动到点D 时停止,同时点F 运动到点C ,∴点G 的运动路径是以AB 为直径的圆所在的圆弧所对的圆心角为90°,∴长度为90π×2180=π,故命题②正确;如图,设AB 的中点为点P ,连接PD ,∵点G 是以点P 为圆心AB 为直径的圆弧上一点,∴当点G 在PD 上时,DG 有最小值,在Rt △ADP 中,AP =12AB =2,AD =4,根据勾股定理得,PD =2 5 , ∴DG 的最小值为2gh(5) -2,故③正确;过点G 作BC 的垂线与AD 相交于点M ,与BC 相交于N ,∴GM ∥PA ,∴△DMG ∽△DAP ,∴GM AP =DG DP , ∴GM =10-255, ∴△BCG 的高GN =4-GM =10+255, ∴S △BCG =12×4×10+255=4+455,故④错误, ∴正确的有①②③.同类题型4.1 如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连结DF ,下列四个结论:①△AEF ∽△CAB ;②tan ∠CAD =2 ;③DF =DC ;④CF =2AF ,正确的是( ) A .①②③ B .②③④ C .①③④ D .①②④解:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∵BE ⊥AC 于点F , ∴∠EAC =∠ACB ,∠ABC =∠AFE =90°,∴△AEF ∽△CAB ,故①正确; ∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE BC =AF CF , ∵AE =12AD =12BC , ∴AF CF =12, ∴CF =2AF ,故④正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,故③正确;设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有b a =2a b,即b = 2 a , ∴tan ∠CAD =DC AD =b 2a =22.故②不正确; 正确的有①③④,选C .同类题型4.2 点E 、F 分别在平行四边形ABCD 的边BC 、AD 上,BE =DF ,点P 在边AB 上,AP :PB =1:n (n >1),过点P 且平行于AD 的直线l 将△ABE 分成面积为S 1 、S 2的两部分,将△CDF 分成面积为S 3 、S 4的两部分(如图),下列四个等式: ①S 1 :S 3=1:n ②S 1 :S 4=1:(2n +1) ③(S 1+S 4 ):(S 2+S 3)=1:n④(S 3-S 1 ):(S 2-S 4)=n :(n +1) 其中成立的有( )A .①②④B .②③C .②③④D .③④解:由题意∵AP :PB =1:n (n >1),AD ∥l ∥BC , ∴S 1S 1+S 2=(1n +1)2 ,S 3=n 2S 1,S 3S 3+S 4=(n n +1)2, 整理得:S 2=n (n +2)S 1 ,S 4=(2n +1)S 1, ∴S 1 :S 4=1:(2n +1),故①错误,②正确, ∴(S 1+S 4 ):(S 2+S 3)=[S 1+(2n +1)S 1]:[n (n +2)S 1+n 2S 1]=1:n ,故③正确, ∴(S 3-S 1 ):(S 2-S 4)=[n 2S 1-S 1]:[n (n +2)S 1-(2n +1)S 1]=1:1,故④错误, 选B .同类题型4.3 如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE <PD ,将∠DPF 绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:①DH =DE ;②DP =DG ;③DG +DF =2 DP ;④DP ﹒DE =DH ﹒DC ,其中一定正确的是( )A .①②B .②③C .①④D .③④解:∵∠GPF =∠HPD =90°,∠ADC =90°,∴∠GPH =∠FPD ,∵DE 平分∠ADC ,∴∠PDF =∠ADP =45°,∴△HPD 为等腰直角三角形,∴∠DHP =∠PDF =45°,在△HPG 和△DPF 中,∵⎩⎪⎨⎪⎧∠PHG =∠PDFPH =PD ∠GPH =∠FPD, ∴△HPG ≌△DPF (ASA ),∴PG =PF ;∵△HPD 为等腰直角三角形,∴HD = 2 DP ,HG =DF ,∴HD =HG +DG =DF +DG ,∴DG +DF = 2 DP ;故③正确,∵DP ﹒DE =22 DH ﹒DE ,DC =22 DE , ∴DP ﹒DE =DH ﹒DC ,故④正确,由此即可判断选项D 正确,选D .例5.如图,在平面直角坐标系中,经过点A 的双曲线y = k x(x >0)同时经过点B ,且点A 在点B 的左侧,点A 的横坐标为 2 ,∠AOB =∠OBA =45°,则k 的值为______________.解:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示:则OD =MN ,DN =OM ,∠AMO =∠BNA =90°,∴∠AOM +∠OAM =90°,∵∠AOB =∠OBA =45°,∴OA =BA ,∠OAB =90°,∴∠OAM +∠BAN =90°,∴∠AOM =∠BAN ,在△AOM 和△BAN 中,⎩⎪⎨⎪⎧∠AOM =∠BAN∠AMO =∠BNA OA =BA, ∴△AOM ≌△BAN (AAS ),∴AM =BN = 2 ,OM =AN =k 2 , ∴OD =k2+ 2 ,BD =k 2- 2 , ∴B (k2+ 2 ,k2- 2 ),∴双曲线y =k x(x >0)同时经过点A 和B , ∴(k2+2)﹒(k 2- 2 )=k , 整理得:k 2-2k -4=0,解得:k =1± 5 (负值舍去),∴k =1+ 5 .同类题型5.1 如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y = 1x和y = 9x 在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交y = 1x的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是________.解:∵点B 是y =kx 和y =9x 的交点,y =kx =9x,解得:x =3k ,y =3k ,∴点B 坐标为(3k,3gh(k) ), 点A 是y =kx 和y =1x 的交点,y =kx =1x, 解得:x =1k ,y =k ,∴点A 坐标为(1k,k ), ∵BD ⊥x 轴,∴点C 横坐标为3k ,纵坐标为13k =k 3, ∴点C 坐标为(3k ,k 3 ), ∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则(3k -1k )2+(3k -k)2=3k -k 3 , 解得:k =377; ②AC =BC ,则(3k -1k )2+(k -k 3)2=3k -k 3 , 解得:k =155; 故k =377 或155.。
最新江苏省中考数学压轴试题(含答案)一.(10分)(中考压轴题)已知BC是⊙O的直径,BF是弦,AD过圆心O,AD⊥BF,AE⊥BC于E,连接FC.(1)如图1,若OE=2,求CF;(2)如图2,连接DE,并延长交FC的延长线于G,连接AG,请你判断直线AG与⊙O的位置关系,并说明理由.二.(中考压轴题)(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70 销售量y(千克)100 80 60 (1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.三.(中考压轴题)(10分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)四.(中考压轴题)(12分)我们定义:如图1、图2、图3,在△ABC 中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.五.(中考压轴题)(14分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.六.(中考压轴题)(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.七.(中考压轴题)(13分)如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.八.(中考压轴题)(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H 关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.九.(中考压轴题)如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.答案一.解:(1)∵BC是⊙O的直径,AD过圆心O,AD⊥BF,AE⊥BC于E,∴∠AEO=∠BDO=90°,OA=OB,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OE=OD=2,∵BC是⊙O的直径,∴∠CFB=90°,即CF⊥BF,∴OD∥CF,∵O为BC的中点,∴OD为△BFC的中位线,∴CF=2OD=4;(2)直线AG与⊙O相切,理由如下:连接AB,如图所示:∵OA=OB,OE=OD,∴△OAB与△ODE为等腰三角形,∵∠AOB=∠DOE,∴∠ADG=∠OED=∠BAD=∠ABO,∵∠GDF+∠ADG=90°=∠BAD+∠ABD,∴∠GDF=∠ABD,∵OD为△BFC的中位线,[来源:Z。
2021年江苏省南通市中考数学会考试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.物体的影子在正东方向,则太阳在物体的( ) A .正东方向 B .正南方向 C .正西方向 D .正北方向 2.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( )A .20°B .50°C .40°D .80°3.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面4. 边长为4的正方形ABCD 的对称中心是坐标原点O,AB ∥x 轴,BC ∥y 轴, 反比例函数y =2x 与y =-2x 的图象均与正方形ABCD 的边相交,则图中的阴影部分的面积是( ) A .2B .4C .8D .65.若反比例函数的图象xky 经过点(-3,4),则此函数图象必定不经过点( ) A .(3,-4)B .(4,-3)C .(-4,3)D .(-3,-4)6.如图,有一张矩形纸片ABCD ,AB=2.5,AD=1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则CF 的长为( ) A .0.5B .0.75C .1D .1.257. 已知反比例函数y =kx (k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( ) A .正数B .负数C .非正数D .不能确定8.下列各图表示正比例函数 y=kx 与反比例(0)ky k x=-<的大致图象,其中正确( )A .B .C .D .9.如图,学校的保管室里,有一架5 m 长的梯子斜靠在墙上,此时梯子与地面所成的角为45°.如果梯子底端0固定不动,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB 为( ) A .5(21)2+mB .5(32)2+m C .32D .5(31)2+ m10.如图所示,若六边形ABCDEF 绕着中心 0旋转∠α得到的图形与原来的图形重合,则α的最小值为( ) A . 180°B .120°C .90°D . 60°二、填空题11.在山坡上种树,要求株距为 5.5m ,测得斜坡的倾斜角为 30°,则斜坡上的相邻两株间 的坡面距离是 m .12.在如图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为 .13.如图所示,把一个面积为1的正方形等分成两个面积为12的矩形,接着把一个面积为12的矩形等分成两个面积为14的矩形,再把一个面积为14的矩形等分成两个面积为18的矩形,如此进行下去.试利用图形揭示的规律计算:11111111248163264128256+++++++= .解答题(共40分)14.平行四边形相邻两边长分别为7和2,若较短的一条对角线与相邻两边所围成的三角形的周长为偶数.则这条对角线的长为.15.如图,在三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为________.16.如图,正方形ABCD经平移后成成为正方形CEFG,则该图形为对称图形,对称中心为,D点的对称点为,C点的对称点为,图中三点在一直线上的有.17.已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________.18.一副扑克共有54张牌,现拿掉大王、小王后,从中任取一张牌刚好是梅花的概率是 . 19.如图,∠A=80°,∠2=130°,则∠l= .20.甲、乙两人分别从相距S千米的A、B两地同时出发,相向而行,已知甲的速度是每小时m千米,乙的速度是每小时n千米,则经过小时两人相遇.21.当12x=-,1y=时,分式1x yxy--= .22.填上适当的数,使等式成立:24x x-+ =(x- )223.小明买了20本练习本,店主给他八折优惠,结果少花了1.60元,则每本练习本的标价是元.三、解答题24.如图,△ABC 是边长为 2 的正三角形,以 BC 为直径作⊙O交AB,AC于D、E,连结DE.求:(1)⌒DE的度数;(2)DE 的长.25.举反例说明定理“三角形的中位线等于第三边的一半”没有逆定理.26.某商店对一周内甲、乙两种计算器每天销售情况统计如下(单位:个):品种\星期一二三四五六日甲3443455乙4334356(1)求出本周内甲、乙两种计算器平均每天各销售多少个?(2)甲、乙两种计算器哪个销售更稳定一些?请你说明理由.27.如图,在四边形ABCD中,AC⊥DC,∠ADC的面积为30cm2,DC=12 cm ,AB=3 cm ,BC=4 cm,求△ABC的面积.28.一要剪出如图所示的“花瓶”及“王”字,你想怎样剪才能使剪的次数尽可能少?29.如图,将图中左上角的小旗先向右移动五格,再向下移动四格,画出移动后的像.30.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆.”乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.C5.D6.C7.D8.B9.A10.D二、填空题11.12. 1213.25525614. 715.60°16.中心 C 点 E 点 C 点 B ,C ,G ;D ,C ,E ;A ,C ,F17.8,718.1419. 130°20.nm S21. 122.4,223.0.40三、解答题 24.(1)连结 OD 、OE ,∵∠ B= ∠C= 60°,OB= OD=OE=OC , ∴∠BOD=∠COE=∠EOD=60°,∴⌒DE 的度数为60°(2)∵∠BOD=∠GOE=∠EOD=60°,∴BD= DE= EC ,∵∠DOE=60°,OD=OE , ∴∠ODE= ∠BDO=60°,∠ADE=60°,∴DE ∥BC .∴∠ADE=∠B=∠C= ∠AED=∠A= 60°,AD= DE=AE= BD ,∵AB=2,∴DE=12AB=1.25.逆命题:端点在三角形两边上且等于该三角形第三边一半的的线段是三角形的中位线,假命题,举反例略26.(1)4个,4个;(2)甲方差为74,乙方差为78,∴甲销售更稳定. 27.6cm 228.因这两个图都是轴对称图形,所以只要把纸对折后以折痕为对称轴再剪29.图略30.高峰时段三环路、四环路的车流量分别是每小时11000辆和每小时13000辆.。
2021年江苏省南通市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知线段 AB=2,点 C 是 AB 的一个黄金分割点,且 AC>BC ,则 AC 的长是( ) A .512- B .51- C .352- D .35-2.一个等腰梯形的两底之差为12,高为6,则等腰梯形的两底的一个锐角为( ) A .30°B .45°C .60°D .75°3.下列图形中,不是正方体的表面展开图的是( )4.小数表示2610-⨯结果为( ) A . 0.06 B . -0.006 C .-0.06 D .0.006 5.用平方差公式计算2(1)(1)(1)x x x -++的结果正确的是( )A .4(1)x -B .41x +C .41x -D .4(1)x + 6.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( ) A .6个 B .5个 C .4个 D .3个 7. 如图,△ABC 的两个外角平分线交于点O, 若∠BOC=76°,则∠A 的值为( ) A .76° B .52° C .28° D .38° 8.计算(2)(3)x x -+的结果是( )A .26x -B .26x +C . 26x x +-D .26x x --9.若关于x 的一元一次方程23=132x k x k---的解是1x =-,则k 的值是( ) A .27B .1C .1311-D . 010.计算222222113(22)(46)32a cb a bc +-+---的结果是( ) A . 225106a b +B . 221106a b --C . 221106a b -+D . 225106a b -11.与数轴上的点一一对应的数是( ) A . 自然数B .整数C .有理数D .实数二、填空题12.如图,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环,则该圆环的面积为 .13.如图,⊙O 的直径为 10,弦AB= 8,P 是 AB 上的一个动点,那么OP 长的取值范围是 .14.一组数据35,35,36,36,37,38,38,38,39,40的极差是 .15.“含有相同的字母,并且相同字母的指数也相同的项,叫做同类项”是 的定义. 16.如图,∠1 和∠2 是一对 (填“同位角”;“内错角”或“同旁内角” ).17.如图所示,图①经过 变为图②,再经过 变为图③.解答题三、解答题18.如图,已知⊙O 1 与⊙O 2外切于A ,⊙O 1 的直径 CE 的延长线与⊙O 2相切于B ,过 C 作⊙O 1的切线与O 2O 1 的延长线相交于D ,⊙O 1和⊙O 的半径长分别是2和 3,求 CD 的长.19.如图,∠PAQ 是直角,⊙O 与 AP 相切于点 T ,与 AQ 交于B 、C 两点. (1)BT 是否平分∠OBA ?说明你的理由. (2)若已知 AT=4,弦 BC=6,试求⊙O 的半径R.20.已知锐角α的三角函数值,使用计算器求锐角α(精确到 1").(1) tanα= 1.6982;(2) sinα=0. 8792;(3) cosaα= 0.3469.21.某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量 y(张)之间有如下关系:x (元)3456y(张)20151210对(x,y)的对应点;(2)猜测并确定 y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为ω元,试求ω与x之间的函数关系式,如果物价局规定此贺卡售价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?22.长36cm的铝丝能否将其剪成相等的两段,用其中一段弯成一个长方形,另一段弯成一个底边为8cm的等腰三角形,且使长方形面积与等腰三角形面积相等,若能,求出长方形的边长,若不能,说明理由.23.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.24.如图,EF 过□ABCD 的对角线交点0,交AD 于点E ,交BC 于点F ,若AB=4,BC=5,OE=1.5,求四边形EFCD 的周长.25.计算:(1)41()[2()]2a b b a -÷-;(2)32(36246)6x x x x -+÷;(3)62(310)(610)⨯÷-⨯26.下列各个分式中的字母满足什么条件时,分式有意义? (1)251y -;(2)1|1|a -;(3)1||1b -27.利用图形变换,分析如图的花边图案是怎样形成的,请类似地利用图形变换设计一条花边图案.28.如图梯形的个数和周长的关系如下表所示1121112112112梯形个数 1 2 3 4 … n图形周长5811…(1)请将表中的空白处填上适当的数或代数式; (2)若n=20时,求图形的周长29.下面是小马虎解的一道数学题.30.在数轴上表示下列各数:0,-2.5,213,-2,+5,311,并按从大到小的顺序排列.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.A5.C6.D7.C8.C9.B10.C11.D二、填空题 12.9π 13.3≤OP ≤514.515.同类项16.同旁内角17.平移变换,轴对称变换三、解答题 18.连结O 2B ,则 O 2B ⊥BC ,∴2221122534BO O O O B =-=-=, 又∵CD 为⊙O 1的切线,∴CD ⊥BC ,∴CD ∥O 2B ,∴211O B BO CD O C=, ∴342CD =,∴CD=1.5. 19.(1) BT 平分∠OBA .理由如下:连结 OT ,则 OT ⊥AP.∵∠PAQ=90°,∴∠PAQ+∠OTA=180°∴OT ∥AQ ,∴∠OTB=∠ABT ,又∠OTB=∠OBT ,∴∠ABT=∠0BT ,∴BT 平分∠0BA (2)作 OE ⊥BC 于E 点,则 BE=3,四边形 AEOT 是矩形,∴ OE=AT=4, ∴22435R =+=20.(1)0593029α'''≈;(2)0613246α'''≈;(3)69428oα'''≈21.(1)如图,(2)是反比例函数,60y x= (x 为正整数)图象如解图.(3)12060w x=- ,当定价x 定为10元/张时,利润最大,为48 元.22.解:设矩形的长为xcm ,则宽为(9-x )cm由题意得(9-x )x =12 ×3×8,解得x 1=9+33 2 ,x 2=9-33 2 答:矩形的边长为9+33 2 cm 和9-33 2cm . 23.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一)24.证△AOE ≌△COF(ASA),再得四边形EFCD 的周长=10.525.(1)31()4b a -;(2)641x x -+;3510-⨯26.(1)1y ≠±;(2)1a ≠;(3)1b ≠±27.略28.(1)14,3n+2;(2)6229.题目:在同一平面内,若∠BOA=70°,∠BOC =150°,求∠AOC的度数.解:根据题意可作出如图所示的图形.因为∠AOC =∠BOA-∠BOC=70°- 15°=55°,所以∠AOC=55°.若你是老师,会给小马虎满分吗?若会,说明理由;若不会,请你指出小马虎的错误,并给出你认为正确的解法.不会给小马虎满分.小马虎只考虑了∠BOC在∠BOA 的内部一种情况,其实∠BOC也可以在∠BOA 的外部(如图所示). 所以本题的正确解法为:若∠BOC在∠BOA 的内部,则∠AOC=∠BOA- ∠BOC=70° -15°= 55°;若∠LBOC在∠BOA的外部,则∠AOC=∠BOA+∠BOC=70°+15°=85°即∠AOC的度数为 55°或 85°30.略。
中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.阅读下列有关材料并解决有关问题.我们知道|x|={x (x>0) 0 (x=0)−x (x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x−2|时,可令x+1=0和x−2=0,分别求得x=−1和x=2(称-1,2分别为|x+1|与|x−2|的零点值).在有理数范围内,零点值x=−1和x=2可将全体有理数分成不重复且不遗漏的三种情况:①x<−1;②−1≤x<2;③x≥2.化简|x+1|+|x−2|时,对应三种情况为:①当x<−1时,原式=−(x+1)−(x−2)=−2x+1;②当−1≤x<2时,原式=(x+1)−(x−2)=3;③当x≥2时,原式=(x+1)+(x−2)=2x−1.通过以上阅读,请你解决问题:(1)|x−3|+|x+4|零点值是_________和__________;(2)化简代数式|x−3|+|x+4|;(3)解方程|x−3|+|x+4|=9;(4)|x−3|+|x+4|+|x−2|+|x−2020|的最小值为_________,此时x的取值范围为____________.2.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式x2−xy+4x−4y和a2−b2−c2+2bc.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:(1)x2−xy+4x−4y=(x2−xy)+(4x−4y)=x(x−y)+4(x−y)=(x−y)(x+4)(2)a2−b2−c2+2bc=a2−(b2+c2−2bc)=a2−(b−c)2=(a+b−c)(a−b+c)这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)m3−2m2−3m+6(2)x2−2xy−9+y23.阅读下列材料:已知实数x y 满足(x 2+y 2+1)(x 2+y 2−1)=63 试求x 2+y 2的值.解:设x 2+y 2=a 则原方程变为(a +1)(a −1)=63 整理得a 2−1=63 a 2=64 根据平方根意义可得a =±8 由于x 2+y 2⩾0 所以可以求得x 2+y 2=8.这种方法称为“换元法” 用一个字母去代替比较复杂的单项式、多项式 可以达到化繁为简的目的.根据阅读材料内容 解决下列问题:(1)已知实数x y 满足(2x +2y +3)(2x +2y −3)=27 求x +y 的值.(2)已知a b 满足方程组{3a 2−2ab +12b 2=472a 2+ab +8b 2=36;求1a +12b 的值; (3)填空:已知关于x y 的方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 则关于x y 的方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2的解是_______. 4.例:解不等式(x ﹣2)(x +3)>0解:由实数的运算法则:“两数相乘 同号得正”得①{x −2>0x +3>0 或②{x −2<0x +3<0解不等式组①得 x >2解不等式组②得 x <﹣3所以原不等式的解集为x >2或x <﹣3.阅读例题 尝试解决下列问题:(1)平行运用:解不等式x 2﹣9>0;(2)类比运用:若分式x+1x−2的值为负数 求x 的取值范围.5.定义:有一个内角为90° 且对角线相等的四边形称为准矩形.(1)如图1 准矩形ABCD 中 ∠ABC =90° 若AB =2 BC =3 则BD =_____;(2)如图2 正方形ABCD中点E F分别是边AD AB上的点且CF∠BE 求证:四边形BCEF是准矩形;(3)已知准矩形ABCD中∠ABC=90° ∠BAC=60° AB=2 当△ADC为等腰三角形时求这个准矩形的面积.6.仔细阅读下面例题解答问题.【例题】已知:m2−2mn+2n2−8n+16=0求m n的值.解:∠m2−2mn+2n2−8n+16=0∠(m2−2mn+n2)+(n2−8n+16)=0∠(m−n)2+(n−4)2=0∠m−n=0n−4=0∠m=4n=4.∠m的值为4 n的值为4.【问题】仿照以上方法解答下面问题:(1)已知x2+2xy+2y2−6y+9=0求x y的值.(2)在Rt∠ABC中∠C=90°三边长a b c都是正整数且满足a2+b2−12a−16b+100=0求斜边长c的值.x+4与x轴y轴分别交于点A和点B.7.如图直线y=43(1)求A B两点的坐标;(2)过B点作直线与x轴交于点P 若∠ABP的面积为8 试求点P的坐标.(3)点M是OB上的一点若将∠ABM沿AM折叠点B恰好落在x轴上的点B1处求出点M的坐标.(4)点C在y轴上连接AC 若∠ABC是以AB为腰的等腰三角形请直接写出点C的坐标.8.定义:把斜边重合且直角顶点不重合的两个直角三角形叫做共边直角三角形.(1)概念理解:如图1 在△ABC和△DBC中∠A=90∘,AB=3,AC=4,BD=2,CD=√21说明△ABC 和△DBC是共边直角三角形.(2)问题探究:如图2 △ABC和△DBC是共边直角三角形E F分别是AD BC的中点连结EF求证EF⊥AD.(3)拓展延伸:如图3 △ABC和△DBC是共边直角三角形且BD=CD连结AD求证:AD平分∠BAC.9.【定义】如果1条线段将一个三角形分成2个等腰三角形那么这1条线段就称为这个三角形的“好线” 如果2条线段将一个三角形分成3个等腰三角形那么这2条线段就称为这个三角形的“好好线”.【理解】如图① 在△ABC中∠A=27° ∠C=72° 请你在这个三角形中画出它的“好线” 并标出等腰三角形顶角的度数.如图② 已知△ABC是一个顶角为45°的等腰三角形请你在这个三角形中画出它的“好好线” 并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中已知一个内角为24° 若它只有“好线” 请你写出这个三角形最大内角的所有可能值(按从小到大写);(2)在△ABC中∠C=27° AD和DE分别是△ABC的“好好线” 点D在BC边上点E在AB边上且AD =DC BE=DE 根据题意写出∠B的度数的所有可能值.10.【阅读】如图1 若ΔABD∽ΔACE且点B,D,C在同一直线上则我们把ΔABD与ΔACE称为旋转相似三角形.【理解】(1)如图2 ΔABC和ΔADE是等边三角形点D在边BC上连接CE.求证:ΔABD与ΔACE是旋转相似三角形.【应用】(2)如图3 ΔABD与ΔACE是旋转相似三角形AD//CE.求证:AC=DE.【拓展】(3)如图4 AC是四边形ABCD的对角线∠D=90°∠B=∠ACD BC=25AC=20AD= 16.试在边BC上确定一点E使得四边形AECD是矩形并说明理由.11.定义:如果三角形上有两点其中一点为一边的中点且这两点的连线将三角形分成周长相等的两部分我们就称这条线段为该三角形的“等分周线”.如图1 在△ABC中D是BC的中点点E在AB上若BD+BE=CD+AC+AE则DE为△ABC的一条“等分周线”.概念理解:(1)任意三角形的“等分周线”有______条若某三角形的一条“等分周线”有一个端点是三角形的顶点则这个三角形是______.规律探究:(2)如图1 在△ABC中DE为△ABC的一条“等分周线”.若AB>AC∠A=αAC=m求DE 的长.(用含mα的代数式表示).拓展应用(3)如图2 在四边形ABCD中BC=2CD AC平分∠BCD BA⊥AC点E在线段AC上连接ED EB 且AB=√3EC=√3+1∠BEC=120°求ED的长.12.(1)如图① 四边形ABCD中AB=AD ∠B=∠ADC=90°.E F分别是BC CD上的点且BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.小明同学探究此问题的方法是:延长FD到G 使DG=BE 连结AG.先证明△ABE≌△ADG再证明△AEF≌△AGF从而得出∠EAF=∠GAF 最后得出∠EAF与∠BAD之间的数量关系是.(2)将(1)中的条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②)其余条件不变上述数量关系是否成立成立请证明;不成立说明理由(3)如图③ 中俄两国海军在南海举行联合军事演习中国舰艇在指挥中心(O)北偏西30°的A处俄罗斯舰艇在指挥中心南偏东70°的B处两舰艇到指挥中心距离相等.接到行动指令后中国舰艇向正东方向以60海里/小时的速度前进俄罗斯舰艇沿北偏东50°的方向以80海里/小时的速度前进2小时后指挥中心观测到两舰艇分别到达E F处且相距280海里.求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.13.定义:如图1 点M N把线段AB分割成AM MN和BN若以AM MN BN为边的三角形是一个直角三角形则称点M N是线段AB的勾股点.已知点M N是线段AB的勾股点若AM=1 MN=2 则BN =.(1)【类比探究】如图2 DE是△ABC的中位线M N是AB边的勾股点(AM<MN<NB)连接CM CN 分别交DE于点G H.求证:G H是线段DE的勾股点.(2)【知识迁移】如图3 C D是线段AB的勾股点以CD为直径画∠O P在∠O上AC=CP连结P A PB若∠A=2∠B求∠B的度数.(x>0)上的动点直线y=−x+2与坐标轴(3)【拓展应用】如图4 点P(a b)是反比例函数y=2x分别交于A B两点过点P分别向x y轴作垂线垂足为C D且交线段AB于E F.证明:E F是线段AB的勾股点.14.【了解概念】有一组对角互余的凸四边形称为对余四边形连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图① 对余四边形ABCD中AB=5 BC=6 CD=4 连接AC.若AC=AB求sin∠CAD的值;(2)如图② 凸四边形ABCD中AD=BD AD∠BD当2CD2+CB2=CA2时判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中点A(﹣1 0)B(3 0)C(1 2)四边形ABCD是对余四边形点E=u点D的纵坐标为t请直接写出u关于t 在对余线BD上且位于∠ABC内部∠AEC=90°+∠ABC.设AEBE的函数解析式.15.定义:若四边形有一组对角互补一组邻边相等且相等邻边的夹角为直角像这样的图形称为“直角等邻对补”四边形简称“直等补”四边形根据以上定义解决下列问题:(1)如图1 正方形ABCD中E是CD上的点将ΔBCE绕B点旋转使BC与BA重合此时点E的对应点F在DA的延长线上则四边形BEDF为“直等补”四边形为什么?(2)如图2 已知四边形ABCD是“直等补”四边形AB=BC=5CD=1AD>AB点B到直线AD的距离为BE.①求BE的长.②若M N分别是AB AD边上的动点求ΔMNC周长的最小值.16.定义:在平行四边形中若有一条对角线是一边的两倍则称这个平行四边形为两倍四边形其中这条对角线叫做两倍对角线这条边叫做两倍边.如图1 四边形ABCD是平行四边形BE//AC延长DC交BE于点E连结AE交BC于点F AB=1AD=m.(1)若∠ABC=90°如图2.①当m=2时试说明四边形ABEC是两倍四边形;②是否存在值m使得四边形ABCD是两倍四边形若存在求出m的值若不存在请说明理由;(2)如图1 四边形ABCD与四边形ABEC都是两倍四边形其中BD与AE为两倍对角线AD与AC为两倍边求m的值.17.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.【问题理解】(1)如图1 点A B C在∠O上∠ABC的平分线交∠O于点D 连接AD CD.求证:四边形ABCD是等补四边形;【拓展探究】(2)如图2 在等补四边形ABCD中AB=AD 连接AC AC是否平分∠BCD?请说明理由;【升华运用】(3)如图3 在等补四边形ABCD中AB=AD 其外角∠EAD的平分线交CD的延长线于点F.若CD=6 DF =2 求AF的长.18.我们把方程(x−m)2+(y−n)2=r2称为圆心为(m,n)半径长为r的圆的标准方程.例如圆心为(1,−2)半径长为3的圆的标准方程是(x−1)2+(y+2)2=9.在平面直角坐标系中⊙C与x轴交于点A B且点B的坐标为(8,0)与y轴相切于点D(0,4)过点A B D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)求抛物线的解析式;(3)试判断直线AE与⊙C的位置关系并说明理由.19.定义:点P(a b)关于原点的对称点为P' 以PP'为边作等边∠PP'C则称点C为P的“等边对称点”;(1)若P(1 √3)求点P的“等边对称点”的坐标.(x>0)上一动点当点P的“等边对称点”点C在第四象限时(2)若P点是双曲线y=2x①如图(1)请问点C是否也会在某一函数图象上运动?如果是请求出此函数的解析式;如果不是请说明理由.②如图(2)已知点A(1 2)B(2 1)点G是线段AB上的动点点F在y轴上若以A G F C 这四个点为顶点的四边形是平行四边形时求点C的纵坐标y c的取值范围.20.【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”两条弦所在直线..的交点为等垂弦的分割点.如图① AB CD是∠O的弦AB=CD AB∠CD垂足为E则AB CD是等垂弦E为等垂弦AB CD的分割点.【数学理解】(1)如图② AB是∠O的弦作OC∠O A OD∠OB分别交∠O于点C D连接CD.求证:AB CD是∠O的等垂弦.(2)在∠O中∠O的半径为5E为等垂弦AB CD的分割点BEAE =13.求AB的长度.【问题解决】(3)AB CD是∠O的两条弦CD=12AB且CD∠AB垂足为F.①在图③中利用直尺和圆规作弦CD(保留作图痕迹不写作法).②若∠O的半径为r AB=mr(m为常数)垂足F与∠O的位置关系随m的值变化而变化直接写出点F 与∠O的位置关系及对应的m的取值范围.参考答案1.解:(1)令x−3=0和x+4=0解得:x=3和x=−4故答案为:3 ﹣4.(2)当x<−4时|x−3|+|x+4|=−(x−3)−(x+4)=−2x−1;当−4≤x<3时|x−3|+|x+4|=−(x−3)+(x+4)=7;当x≥4时|x−3|+|x+4|=x−3+x+4=2x+1综上所述|x−3|+|x+4|={−2x−1,x<−4 7,−4≤x<32x+1,x>3.(3)当x<−4时3−x−x−4=9解得x=−5;当−4≤x<3时3−x+x+4=9方程无解;当x≥3时x−3+x+4=9解得x=4;∠方程的解为x=−5或x=4.(4)|x−3|+|x+4|+|x−2|+|x−2020|中的零点值分别为:x=3,x=−4,x=2,x=2020当x<−4时|x−3|+|x+4|+|x−2|+|x−2020|=3−x−x−4−x+2−x+2020=−4x+2021;当−4≤x<2时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4−x+2−x+2020=−2x+ 2029;当2≤x≤3时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4+x−2−x+2020=2025;当3<x<2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2−x+2020=2x+ 2019;当x≥2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2+x−2020=4x−2021;显然当2≤x≤3时原式取得最小值最小值为2025故答案为:2025 2≤x≤3.2.解:(1)m3−2m2−3m+6=m2(m−2)−3(m−2)=(m−2)(m2−3);(2)x2−2xy−9+y2=x2−2xy+y2−9=(x−y)2−32=(x−y+3)(x−y−3).3.解:(1)设2x +2y =a 则原方程变为(a +3)(a −3)=27整理 得:a 2−9=27 即a 2=36解得:a =±6则2x +2y =±6∴x +y =±3;(2)令a 2+4b 2=x ab =y则原方程变为:{3x −2y =472x +y =36解之得:{x =17y =2 ∠a 2+4b 2=17 ab =2∠(a +2b )2=a 2+4ab +4b 2=17+8=25∠a +2b =±5∠1a +12b =2b+a2ab =±54; (3)由方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2 得{a 1x 2−2a 1x +a 1+b 1y =c 1a 2x 2−2a 2x +a 2+b 2y =c 2整理 得:{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2∵方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 ∴方程组{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2的解是:{(x −1)2=9y =5 ∴x −1=±3 且y =5解得:{x =4y =5 或{x =−2y =5. 4.解:(1)解不等式x 2﹣9>0 即为解(x +3)(x −3)>0根据“两数相乘 同号得正”得①{x −3>0x +3>0 或②{x −3<0x +3<0解不等式组①得 x >3解不等式组②得 x <﹣3∠原不等式的解集为x >3或x <﹣3;(2)由题得不等式x+1x−2<0根据“两数相除 同号得正 异号得负”得①{x +1>0x −2<0 或②{x +1<0x −2>0解不等式组①得−1<x<2不等式组②无解∠原不等式的解集为−1<x<2.5.解:(1)∠∠ABC=90∠BD=√AB2+BC2=√4+9=√13故答案为√13(2)∠四边形ABCD是正方形∠AB=BC,∠A=∠ABC=90°∠∠EBF+∠EBC=90°∠BE∠CF∠∠EBC+∠BCF=90°∠∠EBF=∠BCF∠∠ABE∠∠BCF(AAS)∠BE=CF 且∠CBF=90°∠四边形BCEF是准矩形;(3)∠∠ABC=90° ∠BAC=60°∠∠ACB=30°∠AB=2∠AC=4 BC=2√3准矩形ABCD中BD=AC=4①当AC=AD时则AD=AC=BD 如图1 作DE∠AB∠AE=BE=12AB=1∠DE=√AD−2AE2=√16−1=√15∠S准矩形ABCD =S△ADE+S梯形BCDE=12DE×AE+12(BC+DE )×BE=12×√15×1+12(2√3+√15)×1=√15+√3;②当CA=CD 时 则CD=CA=BD 如图2 作DF∠BC 垂足为F∠BD=CD∠BF=CF=12BC=√3∠DF=√CD 2−CF 2=√16−3=√13∠S 准矩形ABCD =S △DCF +S 梯形ABFD=12FC×DF+12(AB+DF )×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当DA=DC 如图3 取AC 中点G 连DG 则DG∠AC . 连接BG过B 作BH∠DG 垂足为H .在Rt △ABC 中 ∠ABC =90° ∠BAC =60° AB =2 G 为AC 中点∠AG=BG=12AC=AB=2∠∠ABG 为等边三角形 ∠∠BGC=120° ∠BGH=30°又BD=AC=4在Rt △BHG 中 BG=2 ∠BGH=30°∠BH=1 HG=√3在Rt △DHB 中 BH=1 BD=4∠DH=√15∠DG=DH ﹣HG=√15﹣√3∠S 准矩形ABCD =S △ABC +S △ACD=12AB×BC+12AC×DG=12×2√3×2+12×4×(√15﹣√3) =2√15;故答案为√15+√3;√39+√3;2√15.6.解:(1)∠x 2+2xy +2y 2−6y +9=0∠(x 2+2xy +y 2)+(y 2−6y +9)=0∠(x +y)2+(y −3)=20∠x +y =0,y −3=0∠x =−3,y =3(2)∠a 2+b 2−12a −16b +100=0∠(a 2−12a +36)+(b 2−16b +64)=0∠(a −6)2+(b −8)2=0∠a −6=0 b −8=0∠a =6 b =8 在Rt ∠ABC 中 ∠C =90°∠c =√a 2+b 2=√62+82=10.7.解:(1)对于y =43x +4 令y =0 即y =43x +4=0 解得x =﹣3 令x =0 则y =4 故点A B 的坐标分别为(﹣3 0) (0 4);(2)设点P (x 0)则∠ABP 的面积=12×AP ×OB =12×4×|x +3|=8 解得x =1或﹣7故点P 的坐标为(1 0)或(﹣7 0);(3)由点A B 的坐标知 OA =3 BO =4 则AB =√AO 2+BO 2=5=AB 1 故点B 1的坐标为(2 0)设点M 的坐标为(0 m )由题意得:MB =MB 1 即m 2+4=(m ﹣4)2 解得m =1.5故点M 的坐标为(0 1.5);(4)设点C (0 t )则AB =5 AC =√32+t 2当AB =BC 时 则5=|t ﹣4| 解得t =9或﹣1当AB =AC 时 即25=9+t 2 解得t =4(舍去)或﹣4故点C 的坐标为(0 9)或(0 ﹣1)或(0 ﹣4).8.解:(1)∠在△ABC 中∠BC=√32+42=5∠BD =2,CD =√21∠BD 2+CD 2=25=BC 2∠∠BCD 是直角三角形∠△ABC 和△DBC 是共边直角三角形.(2)如图 连接AE,DE∠E 点是BC 中点∠AE,DE 分别是Rt∠ABC 和Rt∠DBC 斜边上的中线∠AE=12BC DE=12BC ∠AE=DE∠∠ADE 是等腰三角形∠F 点是AD 中点∠EF∠AD ;(3)作DN∠AB DM∠AC 的延长线于M 点∠∠BAC=90°∠四边形ANDM 是矩形∠∠NDM=90°∠∠NDC+∠CDM=90°又∠BDC=90°∠∠NDC+∠BDN=90°∠∠BDN= CDM∠∠BND=∠CMD=90° BD=CD∠∠BDN∠∠CDM∠DN=DM∠AD平分∠BAC.9.解:(理解)如图① 如图②所示(应用)(1)①如图③当∠B=24° AD为“好线”则A C=AD=BD这个三角形最大内角是∠BAC=106°;②如图④当∠B=24° AD为“好线”则AB=AD AD=CD 这个三角形最大内角是∠BAC=144°;③如图⑤当∠ABC=24°时BD为“好线”则AD=BD CD=BC 故这个三角形最大内角是∠C=148°④如图⑥ 当∠B=24°时CD为“好线”则AD=CD=BC 故这个三角形最大内角是∠ACB=117°⑤如图⑦ 当∠B=24°时CD为“好线”则AD=AC CD=BD 故这个三角形最大内角是∠ACB=70°⑥如图⑧ 当∠B=24°时AD为“好线”则AB=BD AD=CD 故这个三角形最大内角是∠BAC=117°上所述这个三角形最大内角的所有可能值是70°或106°或117或144°或148°故答案为70°或106°或117或144°或148°;(2)设∠B=x°①当AD=DE时如图1(a)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠DAE=2x°∠27×2+2x+x=180∠x=42∠∠B=42°;②当AD=AE时如图1(b)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠ADE=2x°∠2x+x=27+27∠x=18∠∠B=18°.③当EA=DE时∠90﹣x+27+27+x=180∠x不存在应舍去.综合上述:满足条件的x=42°或18°.10.(1)证明:ΔABC和ΔADE是等边三角形∠AB=AC AD=AE∠BAC=∠DAE=60°∠AB AD =ACAE∠BAD=∠CAE∠ΔABD∽ΔACE又∠点B,D,C在同一直线∠ΔABD和ΔACE是旋转相似三角形.(2)证明:∠ΔABD与ΔACE是旋转相似三角形∠ΔABD∽ΔACE∠AB AC =ADAE∠BAD=∠CAE∠B=∠ACE∠∠BAC=∠DAE∠ΔABC∽Δ∠ADE∠∠B=∠ADE∠AED=∠ACB ∠ ∠ADE=∠ACE.∠AD//CE∠∠ADE=∠DEC∠ ∠ACE=∠DEC.∠∠AED=∠ACB∠∠AEC=∠DCE.又∠CE=CE∠ΔAEC≌ΔDCE(ASA)∠AC=DE.(3)解:如图过点A作AE⊥BC垂足为E连接DE.∠∠AEB=∠ADC=90°∠B=∠ACD∠ ΔABE∽ΔACD∠AB AC =AEAD∠BAE=∠CAD∠∠BAC=∠EAD ∠ΔABC∽ΔAED∠BC DE =ACAD∠ 25DE =2016∠DE=20.∠ΔABE∽ΔACD∠AE AD =BECD∠AE BE =√202−162=43.设AE=4k则BE=3k CE=25−3k在ΔACE中(4k)2+(25−3k)2=202解得k=3∠AE=12.又AD=16DE=20∠ΔADE是直角三角形∠DAE=90°.又∠AEC=∠ADC=90°∠四边形AECD是矩形.11.解:(1)∠任意三角形有三条边∠任意三角形有三条“等分周线”∠某三角形的一条“等分周线”有一个端点是三角形的顶点而另一点为一边的中点且将三角形的周长分为相等的两部分∠这个三角形是等腰三角形故答案为:3 等腰三角形;(2)延长BA 使AF=AC 连接CF 过点A 作AG∠CF 于G则∠ACF 为等腰三角形∠CG=GF=12CF ∠AGC=90° ∠ACF=∠AFC∠∠A =α 即∠BAC =α又∠BAC=∠ACF+∠AFC∠∠ACF=∠AFC=12∠BAC=12α∠ED 为∠ABC 的“等分周线”∠EB+BD=CD+CA+AE 又BD=CD∠EB=CA+AE=AF+AE=EF∠点E 为BF 的中点∠DE=12CF=CG在Rt∠AGC 中 ∠ACF=12α AC=m∠CG=m·cos 12α∠DE= m·cos 12α;(3)取BC 的中点F 连接EF 则BF=FC∠∠BEC=120°∠∠BEA=60°∠BA∠AC∠在Rt∠ABE 中 ∠ABE=30°∠AE=AB tan60∘=√3√3=1 BE=2AE=2∠EC =√3+1∠AB +AE =√3+1=EC∠BF=FC∠AB+AE+BF=CE+CF∠EF是∠ABC的一条“等分周线”由(2)知EF=AB·cos12∠BAC=√3cos45∘=√62∠BC=2CD∠CD=CF又∠AC平分∠BCD∠∠FCE=∠DCE 又CE=CE∠∠FCE∠∠DCE(SAS),∠ED=EF=√62.12.解:(1)如图① 延长FD到G 使DG=BE 连结AG.在∠ABE和∠ADG中AB=AD BE=DG ∠B=∠ADG=90°∠∠ABE∠∠ADG ∠AE=AG在∠AEF和∠AGF中AE=AG AF=AF EF=BE+FD=DG+FD=GF ∠∠AEF∠∠AGF ∠∠EAF=∠GAF=∠GAD+∠DAF=∠EAB+∠DAF∠∠BAD=∠EAF+∠EAB+∠DAF=2∠EAF∠∠EAF=12∠BAD(2)∠EAF=12∠BAD仍然成立.证明:如图② 延长FD到G 使DG=BE 连接AG.∠∠B+∠ADC=180° ∠ADC+∠ADG=180° ∠∠B=∠ADG∠∠ABE∠∠ADG(SAS).∠AE=AG ∠BAE=∠DAG.又∠EF=BE+DF DG=BE ∠EF=DG+DF=GF.∠∠AEF∠∠AGF(SSS).∠∠EAF=∠GAF.又∠∠GAF=∠DAG+∠DAF ∠∠EAF=∠DAG+∠DAF=∠BAE+∠DAF.而∠EAF+∠BAE+∠DAF=∠BAD∠∠EAF=1∠BAD2(3)如图③ 连接EF 延长AE BF相交于点C.∠2小时后舰艇甲行驶了120海里舰艇乙行驶了160海里即AE=120 BF=160.而EF=280 ∠在四边形AOBC中有EF=AE+BF又∠OA=OB 且∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°∠符合(2)中的条件.∠AOB =70°.又∠∠AOB=30°+90°+(90°﹣70°)=140° ∠∠EOF=12答:此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小为70°.13.解:定义:∠点M N是线段AB的勾股点∠BN=√AM2+MN2=√5或BN=√MN2−AM2=√3∠BN=√3或√5.(1)如图∠CD =DA CE =EB∠DE ∠AB∠CG =GM CH =HN∠DG =12AM GH =12MN EH =12BN ∠BN 2=MN 2+AM 2∠14BN 2=14MN 2+14AM 2 ∠(12BN )2=(12MN )2+(12AM )2∠EH 2=GH 2+DG 2∠G H 是线段DE 的勾股点.(2)如图所示 连接PD∠AC =PC∠∠A =∠APC∠∠PCD =2∠A∠C D 是线段AB 的勾股点∠AC 2+BD 2=CD 2∠PC 2+BD 2=CD 2∠CD 是∠O 的直径∠∠CPD =90°∠PC 2+PD 2=CD 2∠PD=BD∠∠PDC=2∠B∠∠A=2∠B∠∠PDC=∠A在Rt∠PCD中∠∠PCD+∠PDC=90°∠2∠A+∠A=90°解得∠A=30°则∠B=12∠A=15°.(3)∠点P(a b)是反比例函数y=2x(x>0)上的动点∠b=2a.∠直线y=﹣x+2与坐标轴分别交于A B两点∠点B的坐标为(0 2)点A的坐标为(2 0);当x=a时y=﹣x+2=2﹣a∠点E的坐标为(a2﹣a);当y=2a 时有﹣x+2=2a解得:x=2﹣2a∠点F的坐标为(2﹣2a 2a ).∠BF=√(2−2a −0)2+(2a−2)2=√2(2﹣2a)EF=√(2−2a −a)2+[2a−(2−a)]2,=√2|2﹣a﹣2a| AE=√(2−a)2+[0−(2−a)]2=√2(2﹣a).∠BF2+AE2=16+2a2﹣8a+8a2﹣16a=EF2∠以BF AE EF为边的三角形是一个直角三角形∠E F是线段AB的勾股点.14.解:(1)过点A作AE∠BC于E 过点C作CF∠AD于F.∠AC=AB∠BE=CE=3在Rt∠AEB中AE=√AB2−BE2=√52−32=4∠CF∠AD∠∠D+∠FCD=90°∠∠B+∠D=90°∠∠B=∠DCF∠∠AEB=∠CFD=90°∠∠AEB∠∠DFC∠EB CF =ABCD∠3 CF =54∠CF=125∠sin∠CAD=CFAC =1255=1225.(2)如图②中结论:四边形ABCD是对余四边形.理由:过点D作DM∠DC 使得DM=DC 连接CM.∠四边形ABCD中AD=BD AD∠BD∠∠DAB=∠DBA=45°∠∠DCM=∠DMC=45°∠∠CDM=∠ADB=90°∠∠ADC=∠BDM∠AD=DB CD=DM∠∠ADC∠∠BDM(SAS)∠AC=BM∠2CD2+CB2=CA2CM2=DM2+CD2=2CD2∠CM2+CB2=BM2∠∠BCM=90°∠∠DCB=45°∠∠DAB+∠DCB=90°∠四边形ABCD是对余四边形.(3)如图③中过点D作DH∠x轴于H.∠A(﹣1 0)B(3 0)C(1 2)∠OA=1 OB=3 AB=4 AC=BC=2√2∠AC2+BC2=AB2∠∠ACB=90°∠∠CBA=∠CAB=45°∠四边形ABCD是对余四边形∠∠ADC+∠ABC=90°∠∠ADC=45°∠∠AEC=90°+∠ABC=135°∠∠ADC+∠AEC=180°∠A D C E四点共圆∠∠ACE=∠ADE∠∠CAE+∠ACE=∠CAE+∠EAB=45°∠∠EAB=∠ACE∠∠EAB=∠ADB∠∠ABE=∠DBA∠∠ABE∠∠DBA∠BE AB =AEAD∠AE BE =ADAB∠u=AD4设D(x t)由(2)可知BD2=2CD2+AD2∠(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2整理得(x+1)2=4t﹣t2在Rt∠ADH中AD=√AH2+AD2=√(x+1)2+t2=2√t∠u=AD4=√t2(0<t<4)即u=√t2(0<t<4).15.解:(1)如图1由旋转的性质得:∠F=∠BEC ∠ABF=∠CBE BF=BE ∠∠BEC+∠BED=180° ∠CBE+∠ABE=90°∠∠F+∠BED=180°∠ABF+∠ABE=90°即∠FBE=90°故满足“直等补”四边形的定义∠四边形BEDF为“直等补”四边形;(2)∠四边形ABCD是“直等补”四边形AB=BC∠∠A+∠BCD=180° ∠ABC=∠D=90°如图2 将∠ABE绕点B顺时针旋转90°得到∠CBF则∠F=∠AEB=90° ∠BCF+∠BCD=180° BF=BE∠D C F共线∠四边形EBFD是正方形∠BE=FD设BE=x 则CF=x-1在Rt∠BFC中BC=5由勾股定理得:x2+(x−1)2=25即x2−x−12=0解得:x=4或x=﹣3(舍去)∠BE=4(3)如图3 延长CD到P 使DP=CD=1 延长CB到T 使TB=BC=5,则NP=NC MT=MC,∠∠MNC的周长=MC+MN+NC=MT+MN+NP≥PT当T M N P共线时∠MNC的周长取得最小值PT过P作PH∠BC 交BC延长线于H∠∠F=∠PHC=90°,∠BCF=∠PCH,∠∠BCF∠∠PCH,∠BC PC =BFPH=CFCH,即52=4PH=3CH解得:CH=65,PH=85,在Rt∠PHT中TH=5+5+65=565,PT =√PH 2+HT 2=8√2,∠ΔMNC 周长的最小值为8√2.16.(1)①证明:∠四边形ABCD 是平行四边形∠AB∠CD BC=AD=2∠BE//AC AB∠CE∠四边形ABEC 是平行四边形 BC =2AB∴四边形ABEC 是两倍四边形;②存在 理由如下:当AC=2AB 时 则AC=2∠∠ABC =90° ∠BC =√AC 2−AB 2=√22−12=√3,∠m=AD=BC=√3;当AC=2AD 时 则AC=2m∠m 2+12=(2m)2解得m=√33或m=-√33(舍去)∠m 的值为√3或√33时 四边形ABCD 是两倍四边形;(2)∠四边形ABCD 是两倍四边形 BD 为两倍对角线 AD 为两倍边∠AD=DG∠∠DAG=∠AGD∠四边形ABEC 是两倍四边形 AE 为两倍对角线 AC 为两倍边∠AC=AF∠∠ACF=∠AFC又∠∠DAG=∠ACF∠∠DAG=∠AGD=∠ACF=∠AFC ∠∠ADG=∠CAF又∠ADBD =12ACAE=12∠AD BD =ACAE∠∠ADB∠∠ACE又∠AB=CE∠相似比为1∠∠ADB∠∠ACE∠AC=AD作DM∠AC于M 如图1设AM=x 则AC=AD=4x在Rt∠ADM中由勾股定理得:DM=√15x在Rt∠DMC中由勾股定理得:CD=2√6x∠CD=AB=1∠ 2√6x=1∠x=√612∠AD=4x=√63即m=√63.17.(1)证明:∠四边形ABCD为圆内接四边形∠∠A+∠C=180° ∠ABC+∠ADC=180°.∠BD平分∠ABC∠∠ABD=∠CBD∠弧AD=弧CD∠AD=CD∠四边形ABCD是等补四边形(2)AC平分∠BCD 理由如下:过点A作AE∠BC于E AF∠CD于F则∠AEB=∠AFD=90°∠四边形ABCD是等补四边形∠∠ADC+∠B=180°又∠∠ADC+∠ADF=180°∠∠B=∠ADF在∠AFD与∠AEB中{∠ADF=∠B ∠AEB=∠AFD AB=AD∠ΔAFD∠ΔAEB∠AE=AF∠点A一定在∠BCD的平分线上即AC平分∠BCD.(3)连接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=12∠BCD同理∠FAD=12∠EAD∠∠FCA=∠FAD.又∠∠F=∠F∠∠FAD∠∠FCA∠AF DF =CFAF即AF2=DF⋅CF=DF(DF+CF)=2×(2+6)=16∠AF=418.解:(1)如图连接CD CB 过点C作CM∠AB于M 设∠C的半径为r.∠与y轴相切于点D(0 4)∠CD∠OD∠∠CDO=∠CMO=∠DOM=90°∠四边形ODCM是矩形∠CM=OD=4 CD=OM=r∠B(8 0)∠OB=8 ∠BM=8-r在Rt∠CMB中∠BC2=BM2+CM2∠ r2=42+(8−r)2解得r=5 ∠C (5 4)∠∠C 的标准方程为(x −5)2+(y −4)2=25.(2)连接AC CE .∠CM∠AB ∠AM=BM=3 ∠A (2 0) B (8 0)∠可设抛物线的解析式为y=a (x -2)(x -8)把D (0 4)代入y=a (x -2)(x -8) 可得a=14 ∠抛物线的解析式为y=14(x -2)(x -8)=14x 2−52x +4=14(x −5)2−94;(3)结论:AE 是∠C 的切线.理由:由(2)可得抛物线的顶点E (5 −94) ∠AE=√(5−2)2+(−94)2=154 CE= 4−(−94)=4+94=254 AC=5∠CE 2=AC 2+AE 2 ∠∠CAE=90° ∠CA∠AE∠AE 是∠C 的切线.19.解:(1)∠P (1 √3)∠P '(﹣1 ﹣√3)∠PP '=4设C (m n )∠等边∠PP ′C∠PC =P 'C =4∠√(m −1)2+(n −√3)2=√(m +1)2+(n +√3)2=4∠m =﹣√3n∠(﹣√3n ﹣1)2+(n ﹣√3)2=16.解得n =√3或﹣√3∠m =﹣3或m =3.如图1 观察点C 位于第四象限 则C (﹣3 √3).即点P 的“等边对称点”的坐标是(3 √3).(2)①设P (c 2c )∠P '(﹣c ﹣2c )∠PP'=2√c2+4c2设C(s t)PC=P'C=2√c2+4c2∠√(s−c)2+(t−2c )2=√(s+c)2+(t+2c)2=2√c2+4c2∠s=﹣2tc2∠t2=3c2∠t=±√3c∠C(﹣2√3c √3c)或C(2√3c﹣√3c)∠点C在第四象限c>0∠C(2√3c﹣√3c)令{x=2√3cy=−√3c∠xy=﹣6 即y=﹣6x(x>0);②当AG为平行四边形的边时G与B重合时为一临界点通过平移可求得C(1 ﹣6)∠y c≤﹣6;当AG为平行四边形的对角线时G与B重合时求得C(3 ﹣2)G与A重合时C(2 ﹣3)此时﹣3<y c≤﹣2综上所述:y c≤﹣6或﹣3<y c≤﹣2.20.解:(1)如图① 连接BC∠OC∠O A OD∠OB∠∠AOC=∠BOD=90°∠∠AOB=∠COD∠AB=CD∠AC=AC∠∠ABC=1∠AOC=45°.2∠BOD=45°同理∠∠BCD=12∠∠AEC=∠ABC+∠BCD=90°即AB∠CD∠AB=CD AB∠CD∠ AB CD是∠O的等垂弦.(2)如图② 若点E在∠O内作OH∠AB垂足为H作OG∠CD垂足为G∠AB CD是∠O的等垂弦∠AB=CD AB∠CDAB OA=OD∠AHO=∠DGO∠AH=DG=12∠∠AHO∠∠DGO∠OH=OG∠矩形OHEG为正方形∠OH=HE .∠BE AE =13又AH=BH∠AH=2BE=2OH在Rt∠AOH中AO2=AH2+OH2.即(2OH)2+OH2=AO2=25解得OH=√5则AB=4HE=4√5;若点E在∠O外同理AH=√5则AB=2AH=2√5.(3)①如图所示弦CD即为所求;②∠AB是∠O的弦∠AB≤2r 即m≤2当点F在圆上时如图所示此时AB=mr CD=mr2AD=2r由勾股定理得(mr)2+(mr2)2=(2r)2解得m=45√5因此当0<m<45√5时点F在∠O外;当m=45√5时点F在∠O上;当45√5<m≤2时点F在∠O内.。
2021年中考数学第三轮冲刺:函数图像的应用综合压轴题专题复习1、已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2、甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?3、A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.4、某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x (天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?5、在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是千米1时,B,C两地的路程为千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.6、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?7、2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20/km h,游轮行驶的时间记为()t h的图象如图2所示(游轮s km关于()t h,两艘轮船距离杭州的路程()在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?8、甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y 千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.9、为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为3480m ,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量()3y m 与注水时间()t h 之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量()3y m 与注水时间()t h 之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?10、因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)11、暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.12、小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s (米)与时间t (分钟)的函数关系的图象;图2中线段AB 表示小华和商店的距离1y (米)与时间t (分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M的坐标是___________;y(米)与时间t(分钟)的函数关系式,并(2)直接写出妈妈和商店的距离2在图2中画出其函数图象;(3)求t为何值时,两人相距360米.13、为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)14、某商店代理销售一种水果,六月份的销售利润y(元)与销售量()x kg之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.15、2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系式为24(020)5112(2030)5x xpx x⎧+<⎪⎪=⎨⎪-+<⎪⎩,销售量y(千克)与x之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)16、团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.参考答案2021年中考数学第三轮冲刺:函数图像的应用综合压轴题专题复习1、已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为75 千米/时,a= 3.6 ,b= 4.5 .(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.【解答】解:(1)乙车的速度为:(270﹣60×2)÷2=75千米/时,a=270÷75=3.6,b=270÷60=4.5.故答案为:75;3.6;4.5;(2)60×3.6=216(千米),当2<x≤3.6时,设y=k1x+b1,根据题意得:,解得,∴y=135x﹣270(2<x≤3.6);当3.6<x≤4.6时,设y=60x,∴;(3)甲车到达距B地70千米处时行驶的时间为:(270﹣70)÷60=(小时),此时甲、乙两车之间的路程为:135×﹣270=180(千米).答:当甲车到达距B地70千米处时,求甲、乙两车之间的路程为180千米.2、甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有270 个,甲机器每小时加工20 个零件,乙机器排除故障后每小时加工40 个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?【解答】解:(1)这批零件一共有270个,甲机器每小时加工零件:(90﹣550)÷(3﹣1)=20(个),乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);故答案为:270;20;40;(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,把B(3,90),C(6,270)代入解析式,得,解得,∴y=60x﹣90(3≤x≤6);(3)设甲价格x小时时,甲乙加工的零件个数相等,①20x=30,解得x=15;②50﹣20=30,20x=30+40(x﹣3),解得x=4.5,答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.3、A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN 所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C 市的路程之和是460千米.【详解】(1)由图象可知甲车在8t =时行驶到C 市,此时行驶的路程为480km ,故速度为48060km/h 8=, ∴乙车的行驶速度为:602080km/h +=,∴乙车由C 市到A 市需行驶4806h 80=, ∴图中括号内的数为4610+=,故答案为:60,10;(2)设线段MN 所在直线的解析式为 y = kt + b ( k ≠ 0 ) .把点M (4,0),N (10,480)代入y = kt + b ,得:4010480k b k b +=⎧⎨+=⎩, 解得:80320k b =⎧⎨=-⎩, ∴线段MN 所在直线的函数解析式为y = 80t -320.(3)若在乙车出发之前,即4t <时,则48060460t -=,解得13t =; 若乙车出发了且甲车未到C 市时,即48t <<时,则()48060804460t t -+-=,解得17t =(舍);若乙车出发了且甲车已到C 市时,即8t >时,则()60480804460t t -+-=,解得9t =; 综上,甲车出发13小时或9小时时,两车距C 市的路程之和是460千米.4、某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y (cm )与生长时间x (天)之间的关系大致如图所示.(1)求y 与x 之间的函数关系式;(2)当这种瓜苗长到大约80cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【解答】解:(1)当0≤x ≤15时,设y =kx (k ≠0),则:20=15k ,解得k =43,∴y =43x ;当15<x ≤60时,设y =k ′x +b (k ≠0),则:{20=15k ′+b170=60k ′+b ,解得{k ′=103b =−30,∴y =103x −30,∴y ={43x(0≤x ≤15)103x −30(15<x ≤60);(2)当y =80时,80=103x −30,解得x =33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.5、在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是 60 千米1时,B ,C 两地的路程为 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【解答】解:(1)由题意可得:(10,600)F ,∴甲车的行驶速度是:6001060÷=千米/时,M 的纵坐标为360,B ∴,C 两地之间的距离为360千米,故答案为:60;360;(2)甲车比乙车晚1.5小时到达C 地,∴点(8.5,0)E ,乙的速度为3602(100.5 1.5)90⨯÷--=千米/小时,则360904÷=,(4,360)M ∴,(4.5,360)N ,设NE 表达式为y kx b =+,将N 和E 代入,08.5360 4.5k b k b =+⎧⎨=+⎩,解得:90765k b =-⎧⎨=⎩,y∴(千米)与x(小时)之间的函数关系式为:;(3)设出发x小时,行驶中的两车之间的路程是15千米,①在乙车到B地之前时,60015S S--=乙甲,即600609015x x--=,解得:3910x=,②(600360)604-÷=小时,360904÷=小时,∴甲乙同时到达B地,当乙在B地停留时,17156044÷+=小时;③当乙车从B地开始往回走,追上甲车之前,15(9060) 4.55÷-+=小时;④当乙车追上甲车并超过15km时,(3015)(9060) 4.56+÷-+=小时;⑤当乙车回到C地时,甲车距离C地15千米时,39(60015)604-÷=小时.综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或174小时或5小时或6小时或394小时.6、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【解答】解:(1)设函数表达式为(0)y kx b k=+≠,把(1.6,0),(2.6,80)代入y kx b=+,得0 1.680 2.6k bk b=+⎧⎨=+⎩,解得:80128kb=⎧⎨=-⎩,y∴关于x的函数表达式为80128(1.6 3.1)y x x=-;(2)当20080120y=-=时,12080128x=-,解得 3.1x=,由图可甲的速度为80501.6=(千米/小时),货车甲正常到达B地的时间为200504÷=(小时),18600.3÷=(小时),415+=(小时),5 3.10.3 1.6--=(小时),设货车乙返回B地的车速为v千米/小时,1.6120v∴,解得75v.答:货车乙返回B地的车速至少为75千米/小时.7、2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20/km h,游轮行驶的时间记为()t h,两艘轮船距离杭州的路程()s km关于()t h的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km ?【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h . ∴游轮在“七里扬帆”停靠的时长23(42020)23212()h =-÷=-=.(2)①2802014h ÷=,∴点(14,280)A ,点(16,280)B ,36600.6()h ÷=,230.622.4-=,∴点(22.4,420)E ,设BC 的解析式为20s t b =+,把(16,280)B 代入20s t b =+,可得40b =-, 2040(1623)s t t ∴=-,同理由(14,0)D ,(22E ,4,420)可得DE 的解析式为50700(1422.4)s t t =-, 由题意:204050700t t -=-,解得22t =,22148()h -=,∴货轮出发后8小时追上游轮.②相遇之前相距12km 时,204(50700)12t t ---=,解得21.6t =.相遇之后相距12km 时,50700(2040)12t t ---=,解得22.4t =,21.6h ∴或22.4h 时游轮与货轮何时相距12km .8、甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x 小时后离甲地的路程为y 千米,图中折线OCDE 表示接到通知前y 与x 之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为 千米/小时;(2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【详解】解:(1)由图象可知,休息前汽车行驶的速度为80180÷=千米/小时; 故答案为:80;(2)休息后按原速继续前进行驶的时间为:()24080802-÷=(小时), ∴点E 的坐标为(3.5,240),设线段DE 所表示的y 与x 之间的函数表达式为y kx b =+,则: 1.5803.5240k b k b +=⎧⎨+=⎩,解得8040k b =⎧⎨=-⎩, ∴线段DE 所表示的y 与x 之间的函数表达式为8040y x =-;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290800.5 4.125÷+=(小时),从早上8点到中午12点需要12-8=4(小时),∵4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.9、为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为3480m ,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量()3y m 与注水时间()t h 之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量()3y m 与注水时间()t h 之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?【详解】解:(1)设y=kt+100,把(2,380)代入得,2k+100=380,解得k=140,∴y=140t+100,当y=480时,则480=140t+100,解得t=197, (480-100)÷197=140m 3/h ;∴y=140t+100,同时打开甲、乙两个进水口的注水速度是140m 3/h ; (2)设甲的注水速度是x m 3/h ,则乙的注水速度是(140-x) m 3/h ,由题意得48044803140x x=⨯-, 解得x=60,经检验x=60符合题意,480=860(h), ∴单独打开甲进水口注满游泳池需8h .10、因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b , 将点(60,100)、(70,80)代入一次函数表达式得:100608070k bk b ⎩+⎨+⎧==, 解得:2220k b -⎧⎨⎩==,故函数的表达式为:y=-2x+220;(2)设药店每天获得的利润为W 元,由题意得: w=(x-50)(-2x+220)=-2(x-80)2+1800, ∵-2<0,函数有最大值,∴当x=80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元. 11、暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示. (1)求1k 和b 的值,并说明它们的实际意义; (2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩,解得11530k b =⎧⎨=⎩,115k =表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,30b =表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为150.625÷=(元), 则2250.820k =⨯=;(3)选择方案一所需费用更少.理由如下: 由题意可知,11530y x =+,220y x =.当健身8次时,选择方案一所需费用:115830150y=⨯+=(元),选择方案二所需费用:2208160y=⨯=(元),150160<,∴选择方案一所需费用更少.12、小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离1y(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.【详解】解:(1)由题意可得:小华步行的速度为:180030=60(米/分钟),妈妈骑车的速度为:1800601010-⨯=120(米/分钟);妈妈回家用的时间为:1800120=15(分钟),∵小华到达商店比妈妈返回商店早5分钟, ∴可知妈妈在35分钟时返回商店, ∴装货时间为:35-15×2=5(分钟), 即妈妈在家装载货物的时间为5分钟;由题意和图像可得妈妈在M 点时开始返回商店, ∴M 点的横坐标为:15+5=20(分钟), 此时纵坐标为:20×60=1200(米), ∴点M 的坐标为()20,1200; 故答案为:120,5,()20,1200; (2)①当0≤t <15时y 2=120t , ②当15≤t <20时y 2=1800,③当20≤t ≤35时,设此段函数解析式为y 2=kx+b ,将(20,1800),(35,0),代入得180020035k b k b =+⎧⎨=+⎩,解得1204200k b =-⎧⎨=⎩,∴此段的解析式为y 2=-120x+4200,综上:2120(015)1800(1520)1204200(2035)tt y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩; 其函数图象如图,;(3)由题意知,小华速度为60米/分钟,妈妈速度为120米/分钟, ①相遇前,依题意有601203601800t t ++=,解得8t =(分钟); ②相遇后,依题意有601203601800t t +-=,解得12t =(分钟); ③依题意,当20t =分钟时,妈妈从家里出发开始追赶小华, 此时小华距商店180********-⨯=(米),只需10分钟,即30t =分钟时,小华到达商店,而此时妈妈距离商店为180010120600-⨯=(米)360>(米), ∴()120536018002t -+=⨯,解得32t =(分钟), ∴当t 为8,12或32(分钟)时,两人相距360米.13、为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y (单位:千米)与快递车所用时间x (单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME 的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间. (3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【解答】解:(1)设ME 的函数解析式为(0)y kx b k =+≠,由ME 经过(0,50),(3,200)可得:503200b k b =⎧⎨+=⎩,解得5050k b =⎧⎨=⎩,ME ∴的解析式为5050y x =+;(2)设BC 的函数解析式为y mx n =+,由BC 经过(4,0),(6,200)可得:406200m n m n +=⎧⎨+=⎩,解得100400m n =⎧⎨=-⎩, BC ∴的函数解析式为100400y x =-;设FG 的函数解析式为y px q =+,由FG 经过(5,200),(9,0)可得:520090p q p q +=⎧⎨+=⎩,解得50450p q =-⎧⎨=⎩, FG ∴的函数解析式为50450y x =-+,解方程组10040050450y x y x =-⎧⎨=-+⎩得1735003x y ⎧=⎪⎪⎨⎪=⎪⎩,同理可得7x h =,答:货车返回时与快递车图中相遇的时间173h ,7h ;(3)(97)50100()km -⨯=,答:两车最后一次相遇时离武汉的距离为100km .14、某商店代理销售一种水果,六月份的销售利润y (元)与销售量()x kg 之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元? (2)求图象中线段BC 所在直线对应的函数表达式.。
2021年江苏省南通市中考数学真题汇编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角()A.扩大为原来的5倍B.扩大为原来的10倍C.都扩大为原来的25倍D.与原来相等2.多边形的内角中锐角的个数最多有()A.3个B.4个C.0个D.无数个3.如图,已知在△ABC中,AB=BC,BD是角平分线,DE⊥AB于点E,DF⊥BC于点F,则下列四个结论中正确的个数有()①BD上任意一点到点A和点C的距离相等;②BD上任一点到AB和BC的距离相等;③AD=CD,BD⊥AC;④∠ADE=∠CDF.A.1个B.2个C.3个D.4个4.用 9根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是()A. 1个B. 2个C.3个D.4个5.如果61x-表示一个正整数,那么整数x可取的值的个数是()A.2 B.3 C.4 D.56.已知x,y满足等式11xyx-=+,则用x的代数式表示得()A.11xyx-=+B.11xyx-=+C.11xyx+=-D.11xyx+=-7.下列各式中从左到右的变形,是因式分解的是()A.(a+3)(a-3)=a2-9;B.x2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x 1) 8.多项式21a -和2(1)a -的公因式是( )A .1a +B .1a -C .2(1)a -D . 21a -9.下列计算正确的是( )①623x x x ÷=;②54m m m ÷=;③33a a a ÷=;④532()().n n n -÷-=-A .①②B .③④C .②D .④10.平面上有A 、B 、C 三个点,那么以下说法正确的是( )A .经过这三点,必能画一条直线B .经过这三点中的每一个点,必可画三条平行直线C .一定可以画三条直线,使它们两两相交于这三个点D .经过这三点中的每一个点,至多能画二条平行直线11.不改变代数式22a a b c --+的值,下列添括号错误..的是( ) A .2(2)a a b c +--+B .2(2)a a b c -+-C .2(2)a a b c --+D .2(2)()a a b c -+-+二、填空题12.在半径为5dm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为2dm ,那么油面宽度 AB 是 dm .第 15 题13.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为 .14.已知抛物线y =ax 2+x +c 与x 轴交点的横坐标为-1,则a +c=__________.115.某集团公司计划生产化肥 500t ,则每天生产化肥 y(t)与生产天数 x(天)之间的函数 .16.在等腰△ABC 中,BC=8,AB 、AC 的长度是关于x 的方程x 2-10x+m=0的两个根,则m 的值是 .17.在平面直角坐标系中.点A(x-l ,2-x)在第四象限,则实数x 的取值范围是 .18.计算:2)= .19.三角形中,和顶角相邻的外角的平分线和底边的位置关系是 .20. 如图,将长方形纸片 ABCD 沿 EF 折叠,C 、D 两点分别落在 C ′,D ′处. 若∠1 =40°,则∠2= .21.如图,△ABC ≌△DEF ,点B 和点E ,点A 和点D 是对应顶点,则AB= ,CB= ,∠C= ,∠CAB= .22.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE =__________cm .23.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .三、解答题24.如图,小华家(点A 处)和公路(l)之间竖立着一块35m 长且平行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A 的盲区,并将盲区内的那段公路记为BC .一辆以60km/h 匀速行驶的汽车经过公路段BC 的时间是3s ,已知广告牌和公路的距离为40m ,求小华家到公路的距离.(精确到1m )25.在某城市中,体育场在火车站以西4000 m 再往北2000 m 处,华侨宾馆在火车站以西3000 m 再往南2000 m 处,汇源超市在火车站以南3000 m 再往东2000 m 处,请建立适当的平面直角坐标系,分别写出各地的坐标.26.有两个可以自由转动的均匀转盘A 、B ,分别被分成 4等份、3等份,并在每份内均标有数字,如图所示. 小颖和小刚同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A 与B ;②两个转盘停止后,将两个指针所指扇形内的数字相加;③如和为0,小颖获胜;否则小刚获胜.(1)用列表(或树状图)法求小颖获胜的概率;(2)你认为这个游戏对双方公平吗?请说明理由.27.计算:(1)()()()24321223x y x y xy -÷⋅- (2)(15x 3y 5-10x 4y 4-20x 3y 2)÷(-5x 3y 2)28.如图,AB 、CD 相交于点0,∠FOC=90°,∠1=100°,∠2=20°,求∠3、∠4、∠5、∠6的度数.29.如图所示,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE ⊥AG于E,且DE=DC,∠l=∠2,根据上述条件,请在图中找出一对全等三角形,并证明你的结论.30.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(l)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.D4.C5.C6.C7.C8.B9.C10.B11.C二、填空题12.813.814.15.500y x=16. 25或1617.2x >18.119.平行20.70°21.DE, FE,∠F, ∠FDE22.2.423.亿两;3,3;千,三;2,6,5三、解答题24.画射线AD ,AE ,分别交l 于点B ,C . 过点A 作AF ⊥BC ,垂足为点F ,AF 交DE 于点H .∵DE ∥BC ,∴∠ADE=∠ABC ,∠DAE=∠BAC,∴△ADE ∽△ABC . 根据相似三角形对应高的比等于相似比的性质,可得BC DE AF AH =. 由题意,得 DE= 35,HF= 40,BC=503600 3000 160=⨯⨯. 设x AF =,则40-=x AH ,所以503540=-x x ,解得1333400≈=x ,即AF ≈133. 所以小华家到公路的距离约为133 m .25.略26.(1)列表略,求得小颖获胜概率为 P=14;(2)这个游戏不公平,因为小颖获胜的概率为 P=14,而小刚获胜的概率为P=34,二者不相等,所以不公平 27.(1)9xy 2 ,-3y 3+2xy 2+428.∠3=∠6=60°,∠4=30°,∠5=90°29.略30.(1):(2)P (甲)=31;P (乙)=32.。
中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2014•南通)﹣4的相反数()A.4B.﹣4 C.D.﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°考点:平行线的性质.专题:计算题.分析:先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.解答:解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.4.(3分)(2014•南通)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2x﹣1>0,解得x>.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.(3分)(2014•南通)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵点P(2,﹣5)关于x轴对称,∴对称点的坐标为:(2,5).故选:B.点评:此题主要考查了关于x轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.6.(3分)(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.7.(3分)(2014•南通)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限考点:一次函数图象与系数的关系.分析:根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.解答:解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.点评:本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.8.(3分)(2014•南通)若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1B.a>1 C.a≤﹣1 D.a<﹣1考点:解一元一次不等式组.分析:将不等式组解出来,根据不等式组无解,求出a的取值范围.解答:解:解得,,∵无解,∴a≥1.故选A.点评:本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.9.(3分)(2014•南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12﹣6 D.6﹣6考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质分析:首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG ∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AB,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.(3分)(2014•南通)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014•南通)因式分解a3b﹣ab=ab(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差继续分解.解答:解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).故答案是:ab(a+1)(a﹣1).点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.(3分)(2014•南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.考点:根的判别式.分析:因为一元二次方程有两个相等的实数根,所以△=b2﹣4ac=0,根据判别式列出方程求解即可.解答:解:∵关于x的方程x2﹣6x+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即(﹣6)2﹣4×1×m=0,解得m=9点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.(3分)(2014•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1.考点:抛物线与x轴的交点.分析:因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式x=求解即可.解答:解:∵抛物线与x轴的交点为(﹣1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==﹣1,即x=﹣1.故答案是:x=﹣1.点评:本题考查了抛物线与x轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式来求解,也可以用公式x=求解,即抛物线y=ax2+bx+c与x轴的交点是(x1,0),(x2,0),则抛物线的对称轴为直线x=.15.(3分)(2014•南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=8cm.考点:勾股定理;直角梯形.分析:首先过点D作DE⊥AB于点E,易得四边形BCDE是矩形,则可由勾股定理求得AE的长,易得△ACD是等腰三角形,则可求得CD与BE的长,继而求得答案.解答:解:过点D作DE⊥AB于点E,∵在梯形ABCD中,AB∥CD,∴四边形BCDE是矩形,∴CD=BE,DE=BC=4cm,∠DEA=90°,∴AE==3(cm),∵AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DAC=∠DCA,∴CD=AD=5cm,∴BE=5cm,∴AB=AE+BE=8(cm).故答案为:8.点评:此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).考点:几何概率.分析:根据哪个区域的面积大落在那个区域的可能性就大解答即可.解答:解:由题意得:SA>SB>SC,故落在A区域的可能性大,故答案为:A.点评:本题考查了几何概率,解题的关键是了解那个区域的面积大落在那个区域的可能性就大.17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=60°.考点:圆周角定理;平行四边形的性质.专题:压轴题.分析:由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60°.点评:此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.18.(3分)(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12.考点:配方法的应用;非负数的性质:偶次方.专题:计算题.分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.解答:解:∵m﹣n2=1,即n2=m﹣1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12≥﹣12,则代数式m2+2n2+4m﹣1的最小值等于﹣12,故答案为:﹣12.点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.三、解答题(本大题共10小题,共96分)19.(10分)(2014•南通)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.考点:整式的混合运算;零指数幂;负整数指数幂.分析:(1)先求出每一部分的值,再代入求出即可;(2)先算括号内的乘法,再合并同类项,最后算除法即可.解答:解:(1)原式=4+1﹣2﹣2=1;(2)原式=[x2y(xy﹣1)﹣x2y(1﹣xy)]÷x2y=[x2y(2xy﹣2)]÷x2y=2xy﹣2.点评:本题考查了零指数幂,负整数指数幂,二次根式的性质,有理数的混合运算,整式的混合运算的应用,主要考查学生的计算和化简能力.20.(8分)(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先把A(m,2)代入y=﹣2x可计算出m,得到A点坐标为(﹣1,2),再把A点坐标代入y=可计算出k的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;(2)观察函数图象得到当x<﹣1或0<x<1时,一次函数图象都在反比例函数图象上方.解答:解:(1)把A(m,2)代入y=﹣2x得﹣2m=2,解得m=﹣1,所以A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,所以反比例函数解析式为y=﹣,点A与点B关于原点对称,所以B点坐标为(1,﹣2);(2)当x<﹣1或0<x<1时,﹣2x>.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.(8分)(2014•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?考点:解直角三角形的应用-方向角问题.分析:易证△AB P是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.解答:解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.点评:本题主要考查了方向角含义,正确作出高线,转化为直角三角形的计算是解决本题的关键.22.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是C;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.考点:频数(率)分布直方图;扇形统计图;中位数.专题:图表型.分析:(1)可根据中位数的概念求值;(2)根据(1)的计算结果补全统计图即可;(3)根据中位数的意义判断.解答:解:(1)C组的人数是:50×40%=20(人),B组的人数是:50﹣3﹣20﹣9﹣1=7(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤x<2范围内,则中位数落在C组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)(2014•南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=2,y=3;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?考点:列表法与树状图法;概率公式.分析:(1)根据题意得:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:,解得:;故答案为:2,3;(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P(小林胜)==.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD 恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;25.(9分)(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为14cm,匀速注水的水流速度为5cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.考点:一次函数的应用.专题:应用题.分析:(1)根据图象,分三个部分:满过“几何体”下方圆柱需18s,满过“几何体”上方圆柱需24s﹣18s=6s,注满“几何体”上面的空圆柱形容器需42s﹣24s=18s,再设匀速注水的水流速度为xcm3/s,根据圆柱的体积公式列方程,再解方程;(2)根据圆柱的体积公式得a•(30﹣15)=18•5,解得a=6,于是得到“几何体”上方圆柱的高为5cm,设“几何体”上方圆柱的底面积为Scm2,根据圆柱的体积公式得5•(30﹣S)=5•(24﹣18),再解方程即可.解答:解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从满过由两个实心圆柱组成的“几何体”到注满用了42s﹣24s=18s,设匀速注水的水流速度为xcm3/s,则18•x=30•3,解得x=5,即匀速注水的水流速度为5cm3/s;故答案为14,5;(2)“几何体”下方圆柱的高为a,则a•(30﹣15)=18•5,解得a=6,所以“几何体”上方圆柱的高为11cm﹣6cm=5cm,设“几何体”上方圆柱的底面积为Scm2,根据题意得5•(30﹣S)=5•(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.点评:本题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.26.(10分)(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.考点:相似多边形的性质;全等三角形的判定与性质;勾股定理;菱形的性质.分析:(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BP AB=1,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DA B=60°,∴∠PAB=30°,∴BP AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.点评:本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.27.(13分)(2014•南通)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M 为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.考点:四边形综合题.分析:(1)利用△MAE≌△MDF,求出EM=FM,再由MG⊥EM,得出EG=FG,所以△EFG 是等腰三角形;(2)利用勾股定理EM2=AE2+AM2,EC2=BE2+BC2,得出CM2=EC2﹣EM2,利用线段关系求出CM.(3)作MN⊥BC,交BC于点N,先求出EM,再利用△MAE∽△MDF求出FM,得到EF的值,再由△MNG∽△MAE得出MG的长度,然后用含a的代数式表示△EFG的面积S,指出S的最小整数值.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠MDF=90°,∵M为边AD中点,∴MA=MD在△MAE和△MDF中,∴△MAE≌△MDF(ASA),∴EM=FM,又∵MG⊥EM,∴EG=FG,∴△EFG是等腰三角形;(2)解:如图1,∵AB=3,AD=4,AE=1,AM=a∴BE=AB﹣AE=3﹣1=2,BC=AD=4,∴EM2=AE2+AM2,EC2=BE2+BC2,∴EM2=1+a2,EC2=4+16=20,∵CM2=EC2﹣EM2,∴CM2=20﹣1﹣a2=19﹣a2,∴CM=.(3)解:如图2,作MN⊥BC,交BC于点N,∵AB=3,AD=4,AE=1,AM=a∴EM==,MD=AD﹣AM=4﹣a,∵∠A=∠MDF=90°,∠AME=∠DMF,∴△MAE∽△MDF∴=,∴=,∴FM=,∴EF=EM+FM=+=,∵AD∥BC,∴∠MGN=∠DMG,∵∠AME+∠AEM=90°,∠AME+∠DMG=90°,∴∠AME=∠DMG,∴∠MGN=∠AME,∵∠MNG=∠MAE=90°,∴△MNG∽△MAE∴=,∴=,∴MG=,∴S=EF•MG=××=+6,即S=+6,当a=时,S 有最小整数值,S=1+6=7.点评:本题主要考查了四边形的综合题,解题的关键是利用三角形相似求出线段的长度.28.(14分)(2014•南通)如图,抛物线y=﹣x2+2x+3与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,抛物线的对称轴DF 与BC 相交于点E ,与x 轴相交于点F .(1)求线段DE 的长;(2)设过E 的直线与抛物线相交于M (x1,y1),N (x2,y2),试判断当|x1﹣x2|的值最小时,直线MN 与x 轴的位置关系,并说明理由;(3)设P 为x 轴上的一点,∠DAO+∠DPO=∠α,当tan ∠α=4时,求点P 的坐标.考点:二次函数综合题.分析: (1)根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC 的解析式,把对称轴代入直线BC 的解析式即可求得.(2)设直线MN 的解析式为y=kx+b ,依据E (1,2)的坐标即可表示出直线MN 的解析式y=(2﹣b )x+b ,根据直线MN 的解析式和抛物线的解析式即可求得x2﹣bx+b ﹣3=0,所以x1+x2=b ,x1 x2=b ﹣3;根据完全平方公式即可求得∵|x1﹣x2|====,所以当b=2时,|x1﹣x2|最小值=2,因为b=2时,y=(2﹣b )x+b=2,所以直线MN ∥x 轴.(3)由D (1,4),则tan ∠DOF=4,得出∠DOF=∠α,然后根据三角形外角的性质即可求得∠DPO=∠ADO ,进而求得△ADP ∽△AO D ,得出AD2=AO•AP ,从而求得OP 的长,进而求得P 点坐标.解答: 解:由抛物线y=﹣x2+2x+3可知,C (0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A (﹣1,0),B (3,0);∴顶点x=1,y=4,即D (1,4);∴DF=4设直线BC 的解析式为y=kx+b ,代入B (3,0),C (0,3)得; ,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,∴P1(19,0),P2(﹣17,0).点评: 本题考查了待定系数法求解析式,二次函数的交点、顶点坐标、对称轴,以及相似三角形的判定及性质,求得三角形相似是本题的关键.。
2021年江苏省南通市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,三个半径相等的圆,两两外切,且与△ABC 的三边相切,设AB= a,那么圆的半径r等于()A.314a+B.314a-C.33a D.14a2.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.253.当锐角∠A>300 时,cosA的值()A.小于12B.大于12C.小于32D.大于324.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D. 100°5.如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任意一点,∠APB的平分线交⊙O 于点C,弦EF过AC、BC的中点M、N,则EF的长是()A.43B.23C.6 D.256.如图,AB为⊙O的直径,CD 是弦,AB 与 CD 交于点 E,若要得到 CE =DE,还需要添加的条件是(不要添加其它辅助线)()A.AB⊥CD B.⌒AC =⌒BC C.CD 平分OB D.以上答案都不对7.下列说法中,正确的有()(1)面积相等的两个圆是等圆;(2)若点到圆心的距离小于半径,则点在圆内;(3)圆既是中心对称图形,又是轴对称图形;(4)大于半圆的弧是优弧A.1 个B.2 个C.3 个D.4 个8.如图所示,直线a,b被直线c所截,现给出下面四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判定a∥b的条件的序号是()A.①②B.①③C.①④D.③④9.下列推理正确的是()A.∵a>0,b>0,∴a>bB.∵a>0,b>a,∴b>0C.∵a>0,a>6,∴b>0D.∵a>0,a>b,∴ab>O10.下列各组图形,可经过平移变换由一个图形得到另一个图形的是()11.下列选项中,正确的是()A. 27的立方根是3±B164±C. 9的算术平方根是3 D.带根号的数都是无理数二、填空题12.在一间黑屋子里,用一盏白炽灯如图方式分别照射一个球,一个圆锥和一个空心圆柱,它们在地面上的影子形状分别是 、 、 .13.如图,△ABC 中,AD 是 BC 上中线,M 是AD 的中点,BM 延长线交AC 于 N ,则AN NC= .14.已知抛物线y =ax 2+x +c 与x 轴交点的横坐标为-1,则a +c=__________.115.一批款式、型号均相同的胆装单价在 100元/件至 150 元/件之间,小李拿了 900 元钱去买,可买 件这样的服装.16.如图,Rt △ABC 中,∠BAC=90°,E ,D ,F 分别是三边中点,则AD EF(填“=”或“>”或“<”).17.在一块试验田里抽取l000个麦穗,考察它的长度(单位:cm).对数据适当分组后看到落在5.75~6.05 cm 的频率是0.36,可以估计出在这块田里,长度为5.75~6.05 cm 之间的麦穗约占 .18.不等式111326x x x +---≥的解是 . 19.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 .20.为了解一批节能灯的使用寿命,宜采用 的方式进行调查.(填:“全面调查”或“抽样调查”)21.生活中有很多直棱柱的形象,请举例两个直四棱柱的事物 .22.要使式子13x -与式子32x -的值相等,则x = . 三、解答题23.如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率;(2)直接写出点(),x y 落在函数1y x=-图象上的概率.24.为了解某城镇中学学做家务的时间,一综合实践活动小组对该班50•名学生进行了调查,根据调查所得的数据制成如图的频数分布直方图.(1)补全该图,并写出相应的频数;(2)求第1组的频率;(3)求该班学生每周做家务时间的平均数;(4)你的做家务时间在哪一组内?请用一句话谈谈你的感受.25.“所谓按行排序就是根据一行或几行中的数据值对数据清单进行排序,排序时Excel 将按指定行的值和指定的“升序”或“降序”排序次序重新设定列.”这段话是对什么名称进行定义?26.如图是一个正三角形的路标,若它的边长为22,试求出这个路标的面积.2327.已知一次函数y kx bx=-时,y=4;当x=2时,y=l.=+,当1(1)求一次函数的解析式;(2)若点P(1-a,7)在此函数的图象上,求a的值.28.已知y-2与x+1成正比,且当x=l时,y=-6.(1)求y与x之间的函数解析式;(2)求当x=-l时,y的值.29.如图,C表示灯塔,轮船从A处出发以每小时21海里的速度向正北(AN方向)航行,在A 处测得么∠NAC=30°,3小时后,船到达B处,在B处测得么∠NBC=60°,求此时B到灯塔C的距离.30.如图,已知 AB=DC,AD=BC,说出下列判断成立的理由:(1)△ABC≌△ACD; (2)∠B=∠D.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.C4.D5.A6.A7.D8.A9.B10.A11.C二、填空题12.圆,圆,圆环13. 1214. 15.6~916.=17.36%18.3x ≤19.3y x = 20. 抽样调查21.如火柴盒,电视机盒22.16三、解答题23.解:由题意,画树状图:由上图可知,点P (x,y )的坐标共有12种等可能的结果,其中点(x,y )落在第二象限的共有2种,∴点P (点(x,y )落在第二象限)=61. (2)点P (点(x,y )落在xy 1-=图象上)=41123=.24.(1)图略,频数为14,(2)频率为0.52,(3)1.24,(4)略25.按行排序26..(1)y=-x+3;(2)528.(1)y=-4x-2;(2)229.63海里30.略。
2021年江苏省南通市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)设⊙O的半径为r,证明r2=1
2AD•OE;
(3)若DE=4,sin C=3
5,求AD之长.
2.如图,⊙O 的直径AB =26,P 是AB 上(不与点A 、B 重合)的任一点,点C 、D 为⊙O
上的两点,若∠APD =∠BPC ,则称∠CPD 为直径AB 的“回旋角”.
(1)若∠BPC =∠DPC =60°,则∠CPD 是直径AB 的“回旋角”吗?并说明理由;
(2)若CD ̂的长为134π,求“回旋角”∠CPD 的度数;
(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+13√3,直接写出AP 的长.。