活性污泥性能指标的测定
- 格式:ppt
- 大小:107.00 KB
- 文档页数:15
好氧活性污泥性能指标与检测方法1、组成:好氧活性污泥是由多种多样的好氧微生物和兼性厌氧微生物(兼有少量的厌氧微生物)与微生物的代谢产物以及污(废)水中有机和无机固体物质混凝交织在一起,形成的絮状体或称绒粒(floc)。
2、性质:各种活性污泥有各自的颜色,成熟的活性污泥呈茶褐色,稍具泥土味,具有良好的凝聚沉淀性能;含水率一般为99.2%~99.8%;其相对密度为1.002~1.006,混合液和回流污泥略有差异,前者为1.002~1.004,后者为1.004~1.006;具有沉降性能;有生物活性,有吸附、氧化有机物的能力;绒粒大小为0.02~0.2mm;比表面积为20~100cm2/ml;呈弱酸性(pH约为6.7),对进水pH变化有一定的承受能力。
活性污泥中有机物和无机物的组成比例因污水处理的不同而有差异,一般有机成分占75%~85%,无机成分仅占15%~25%。
3、性能指标:3.1污泥沉降比(SV)。
(1)定义:又称30min沉降率(SV30),是曝气池混合液在量筒内静置30min后所形成的沉淀污泥容积占原混合液容积的比例,以%表示。
(2)检测:①仪器及药品:取样桶X 2 ;1000mL量筒X 2。
②检测步骤:用取样桶在东沟和西沟好氧区分别取足够的混合液样品,分别倒1000mL入量筒中,静置30min,读取泥水分离界限的数值,除以1000,即为SV。
这个过程中注意观察东、西沟沉降速度的区别。
(3)数据分析:SV能反映好氧区正常运行时的污泥量和污泥的凝聚、沉降性能,通常,SV越小,污泥的沉降性能越好。
可用于控制剩余污泥的排放量,通过SV的变化可以判断和发现污泥膨胀现象的发生。
SV值跟污泥种类、絮凝性能和污泥浓度有关,不同污水处理的SV值差别很大,因此每座污水处理要根据自己的运行经验数据确定本产厂的最佳SV值,城市污水处理的正常SV值一般在20%~30%。
在丝状菌含量大和污泥过氧化而解絮时的SV值比正常值要高很多。
污泥特性分析方法汇总一、活性污泥中SV 、SVI 、MLSS 、MLVSS 的检测方法为了准确地得出活性污泥的松散程度和沉降性能。
SV 、SVI 、MLSS 、MLVSS 定义如下:SV :污泥沉降比(%)SVI :污泥容积指数,是指1克干污泥形成的湿污泥体积(mL ),单位mL/g MLSS :在曝气池单位容积混合液内所含有的活性污泥固体物的总重量(mg/L) MLVSS :混合液活性污泥中有机性固体物质部分的浓度(mg/L)器材及设备1、1000mL 量筒 4、干燥器2、滤纸 5、电子天平3、烘箱 6、漏斗(1)SV 的测定1、从曝气池中取1L 刚曝气完成的污泥混合液,置于1000mL 清洁的量筒中。
2、取样完成后,将量筒放回实验室指定地点,用玻璃棒将量筒中的污泥混合液搅拌均匀后静置。
3、静置30min 后记录沉淀污泥层与上清液交界处的刻度值V 0(mL )。
%1001000)m ((%)⨯=L V SV 。
(2)MLSS 的测定 1、将准备好的定量滤纸在103℃~105℃的烘箱内烘干2h 至恒重,在干燥器中冷却半小时后称重,记为m 1。
2、将滤纸平铺在抽滤漏斗上,并将测定过沉降比的1L 量筒内的污泥全部倒入烘干的滤纸,过滤(用水冲净量筒,并将水也倒入滤纸)。
(没有抽滤瓶时,也可以取少量曝气池活性污泥,体积记为V 1(mL ),如200ml 或300ml 采用漏斗过滤)3、待完全过滤后将载有污泥的滤纸放在103℃~105℃的烘箱中烘干2h 至恒重,在干燥器中冷却半小时后称重,记为m 2。
单位为mg/L 。
MLSS=(m 2-m 1)/0.1(3)SVI 的测定1、根据MLSS和SV的值得出SVI的值。
公式:g/L))/m()/((MLSSLLSVgmLSVI注:(1)公式中的SV为1L曝气池污泥在1000ml量筒中静置30min后的湿污泥体积,单位为ml。
(2)MLSS单位在此处要换算成g/L。
活性污泥的性能评价方法总结一、活性污泥的组成活性污泥中有细菌、真菌、原生动物和后生动物。
其中好氧细菌是分解有机物的的主体。
1mL曝气池混合液中细菌总数约为1×10^8个。
真菌中主要是丝状的霉菌,在正常的活性污泥中真菌不占优势。
如果丝状菌显著增长,则活性污泥的沉降性能恶化。
原生动物和细菌一起在污水净化中起作用。
在1mL正常的活性污泥混合液中,一般存活着5×10^3~2×10^4个原生动物,其中70%~90%为纤毛虫类。
原生动物促进了细菌的凝聚,提高细菌的沉降效率。
原生动物以细菌为食饵,可以去除游离细菌。
活性污泥中的后生动物通常有轮虫和线虫。
这些后生动物都摄食细菌、原生动物及活性污泥碎片。
二、活性污泥的物质组成Ma:具有代谢功能的微生物群体Me:微生物残留物(主要是细菌内源代谢,自身氧化产物)Mi:由原污水携入的难为细菌降解的惰性有机物Mii:由污水携入的无机物三、活性污泥评价指标1、MLSS混合液悬浮固体浓度指1L曝气池混合液中所含悬浮固体干重,它是衡量反应器中活性污泥数量多少的指标。
它包括微生物菌体(Ma)、微生物自生氧化产物(Me)、吸附在污泥絮体上不能被微生物所降解的有机物(Mi)和无机物(Mii)。
由于MLSS在测定上比较方便,所以工程上往往以它作为估量活性污泥中微生物数量的指标。
在进行工程设计时,希望维持较高的MLSS,以缩小曝气池容积,节省占地和投资,但MLSS浓度也不能过高,否则会导致氧气供应不足。
一般反应器中污泥浓度控制在2000~6000mg/L。
2、MLVSS 混合液挥发性悬浮固体浓度指1L曝气池混合液中所含挥发性悬浮固体含量,它只包括微生物菌体(Ma)、微生物自生氧化产物(Me)、吸附在污泥絮体上不能被微生物所降解的有机物(Mi),不包括无机物(Mii)。
所以MLVSS能比较确切地反映反应器中微生物的数量。
一般情况下处理生活污水的活性污泥的MLVSS/MLSS比值在0.75左右,对于工业污水,则因水质不同而异,MLVSS/MLSS比值差异较大。
活性污泥中SV SV、MLSS的检测方法一、实验目的:为了准确地得出活性污泥的松散程度和沉降性能。
SV:污泥沉降比(%)。
SVI:污泥容积指数,是指1克干污泥形成的湿污泥体积(ml),单位ml/g二、仪器设备1、1000mL 量筒4、干燥器2、滤纸5、电子天平3、烘箱6、漏斗三、实验步骤:1、从曝气池中取1L刚曝气完成的污泥混合液,置于1000mL清洁的量筒中。
2、取样完成后,将量筒放回实验室指定地点,用玻璃棒将量筒中的污泥混合液搅拌均匀后静置3、静置30min 后记录沉淀污泥层与上清液交界处的刻度值V0(ml)。
污泥沉降比SV(%) V(mL)100%。
10004、将准备好的定量滤纸在103C ~105C的烘箱内烘干2h至恒重,在干燥器中冷却半小时后称重,记为m1。
5、将滤纸平铺在抽滤漏斗上,并将测定过沉降比的1L量筒内的污泥全部倒入烘干的滤纸,过滤(用水冲净量筒,并将水也倒入滤纸)。
(没有抽滤瓶时,也可以取少量曝气池活性污泥,体积记为V1( ml),女口200ml或300ml采用漏斗过滤)6、待完全过滤后将载有污泥的滤纸放在103C ~105C的烘箱中烘干2h至恒重,在干燥器中冷却半小时后称重,记为m2。
7、计算其MLSS直,为(m2- m1) /V1的值,单位为mg/L。
8、根据MLSS和SV的值得出SVI的值。
公式:SVI(mL/g) SV(mL/L)MLSS(g/L)注:(1)公式中的SV为1L曝气池污泥在1000ml量筒中静置30min后的湿污泥体积,单位为ml。
(2)MLSS单位在此处要换算成g/L。
污泥中可挥发性固体(VSS的测定VSS:指污泥中在600 摄氏度的燃烧炉中能够被燃烧、并以气体逸出的那部分固体。
它通常用于表示污泥中的有机物的量,常用mg/L 表示。
一、仪器和实验用品1.定量滤纸2.xx3.烘箱4.干燥器,备有以颜色指示的干燥剂5.分析天平,感量0.1mg二、实验步骤(括号内为实际操作)1.定量滤纸在103-105C烘干,干燥期内冷却,称重,反复直至获得恒重或称重损失小于前次称重的4%;重量为m0;(干燥8小时后放入干燥器冷却后称重为最终值或①12.5的滤纸直接以ig计)2.将样品100ml用1中的滤纸过滤,放入103-105C的烘箱中烘干取出在干燥器中冷却至平衡温度称重,反复干燥制恒重或失重小于前次称重的5%或0.5mg(取较小值),重量为m1;SS=(m1- m0)/0.1(干燥8 小时后放入干燥器冷却后称重为最终值)3.将干净的坩埚放入烘箱中干燥一小时,取出放在干燥其中冷却至平衡温度,称重,重量为m2;4.将2 中的滤纸和泥放在3 中的坩埚中,然后放入冷的马弗炉中,加热到600C灼烧60分钟,在干燥器中冷却并称重,m3;(从温度达到600C开始计时)VSS=[( m1+m2- m0)- m3]/0.1。
实验活性污泥性质的测定实验一、实验目的污泥比阻(或称比阻抗)是表示污泥脱水性能的综合性指标。
污泥比阻越大,脱水性能越差,反之脱水性能越好。
污泥比阻是单位过滤面积上,单位干重滤饼所具有的阻力,在数值上等于粘滞度为1时,滤液通过单位的泥饼产生单位滤液流率所需要的压差。
在污泥中加入混凝剂、助滤剂等化学药剂,可使比阻降低,脱水性能改善。
希望通过实验达到下述目的:1、通过实验进一步理解比阻的概念,并掌握测定污泥比阻的实验方法;2、掌握用布氏漏斗实验选择混凝剂;3、掌握确定投加混凝剂数量的方法。
4、通过比阻测定评价污泥脱水性能二、实验装置的工作原理实验装置的组成:1、真空泵1台2、计量筒4个3、抽气接管4套4、布氏漏斗4个5、吸滤筒1个6、真空表1只7、实验台架1套8、连接管道、电源开关等1套整体外形尺寸:1000mm×400mm×1300mm每次测定污泥用量50—100ml,真空压力35.5——70.9 kpa,测定时间20—40min。
吸滤筒尺寸:直径×高度=Φ150mm×250mm污泥比阻测定装置示意图测定污泥比阻的实验装置见所附示意图。
污泥脱水是依靠过滤介质(多孔性物质)两面的压力差作为推动力,使水分强制通过过滤介质,固体颗粒被截留在介质上,达到脱水的目的。
本实验是用抽真空的方法造成压力差,并用调节阀调节压力,使整个实验过程压力差恒定。
过滤开始时滤液只需克服过滤介质的阻力,当滤饼逐步形成后,滤液还需克服滤饼本身的阻力。
滤饼的性质可分为两类,一类为不可压缩性滤饼,如沉砂,初沉池污泥和其它无机污泥;另一类为可压缩性滤饼,如活性污泥,在压力的作用下,污泥会变形。
三、实验步骤1、测定污泥的含水率,求出其固体浓度C02、配制FeCl 3(10g/L )混凝剂或聚丙烯酰胺(0.3%)絮凝剂。
3、调节污泥(每组加一种混凝剂),采用FeCl 3混凝剂时加量分别为干污泥质量的0(不加混凝剂)、2%、4%、6%、8%、10%;采用聚丙烯酰胺时,投加量分别为干污泥质量的0、0.1%、0.2%、0.5%4、 再布氏漏斗上(直径65~80mm )放置滤纸,用水润湿,贴紧周边。
活性污泥中SV、SVI、MLSS的检测方法一、目的:为了准确地得出活性污泥的松散程度和沉降性能。
SV:污泥沉降比(%)。
SVI:污泥容积指数,是指1克干污泥形成的湿污泥体积(ml),单位ml/g二、材料和仪器设备1、1000mL量筒4、干燥器2、滤纸5、电子天平3、烘箱6、漏斗三、实验步骤:1、从曝气池中取1L刚曝气完成的污泥混合液,置于1000mL清洁的量筒中。
2、取样完成后,将量筒放回实验室指定地点,用玻璃棒将量筒中的污泥混合液搅拌均匀后静置3、静置30min后记录沉淀污泥层与上清液交界处的刻度值V0(ml)。
污泥沉降比SV(%)V(mL)1000100%。
4、将准备好的定量滤纸在103℃~105℃的烘箱内烘干2h至恒重,在干燥器中冷却半小时后称重,记为m1。
5、将滤纸平铺在抽滤漏斗上,并将测定过沉降比的1L量筒内的污泥全部倒入烘干的滤纸,过滤(用水冲净量筒,并将水也倒入滤纸)。
(没有抽滤瓶时,也可以取少量曝气池活性污泥,体积记为V1(ml),如200ml或300ml采用漏斗过滤)6、待完全过滤后将载有污泥的滤纸放在103℃~105℃的烘箱中烘干2h至恒重,在干燥器中冷却半小时后称重,记为m2。
7、计算其MLSS值,为(m2- m1)/V1的值,单位为mg/L。
8、根据MLSS和SV的值得出SVI的值。
公式:SVI(mL/g)SV(mL/L)MLSS(g/L)注:(1)公式中的SV为1L曝气池污泥在1000ml量筒中静置30min后的湿污泥体积,单位为ml。
(2)MLSS单位在此处要换算成g/L。
污泥中可挥发性固体(VSS)的测定VSS:指污泥中在600摄氏度的燃烧炉中能够被燃烧、并以气体逸出的那部分固体。
它通常用于表示污泥中的有机物的量,常用mg/L表示。
一、仪器和实验用品1.定量滤纸2.xx3.烘箱4.干燥器,备有以颜色指示的干燥剂5.分析天平,感量0.1mg二、实验步骤(括号内为实际操作)1.定量滤纸在103-105℃烘干,干燥期内冷却,称重,反复直至获得恒重或称重损失小于前次称重的4%;重量为m0;(干燥8小时后放入干燥器冷却后称重为最终值或Φ12.5的滤纸直接以1g计)2.将样品100ml用1中的滤纸过滤,放入103-105℃的烘箱中烘干取出在干燥器中冷却至平衡温度称重,反复干燥制恒重或失重小于前次称重的5%或0.5mg(取较小值),重量为m1;SS=(m1- m0)/0.1(干燥8小时后放入干燥器冷却后称重为最终值)3.将干净的坩埚放入烘箱中干燥一小时,取出放在干燥其中冷却至平衡温度,称重,重量为m2;4.将2中的滤纸和泥放在3中的坩埚中,然后放入冷的马弗炉中,加热到600℃灼烧60分钟,在干燥器中冷却并称重,m3;(从温度达到600℃开始计时)VSS=[( m1+m2- m0)- m3]/0.1。
活性污泥性质的检测活性污泥法处理污水是一种好氧生物处理方法。
活性污泥性质的测定通常有以下几个项目:混合液悬浮固体浓度(MLSS)、污泥沉降比(SV30)、污泥体积指数(SVI)。
1.1、混合液悬浮物浓度和混合液挥发性悬浮物浓度MLSS是指曝气池中单位体积活性污泥混合液中悬浮物的质量,单位为mg/L。
MLVSS是指混合液悬浮物中有机物的质量(是指600℃高温灼烧后减重的那部分物质)。
MLSS是计量曝气池中活性污泥浓度的指标,由于测定简便,往往以它作为粗略计量活性污泥微生物的指标。
有时也以MLVSS表示活性污泥微生物浓度,这样可以避免污泥中惰性物质的影响,更能反映污泥的活性。
采用好氧活性污泥法处理时,曝气池中MLSS一般也维持在一定范围内。
MLSS的浓度过低时,必然是污泥中微生物性能差、污泥絮凝性差;MLSS过高必然导致曝气池搅拌和氧气扩散阻力增加,二沉池负荷过大。
若MLSS或MLVSS不断增高,表明污泥增长过快,排泥量过少。
因此,需维持曝气池混合液MLSS在一定范围内。
在城市污水处理中,MLSS通常保持在1000~3000mg/L。
MLVSS/MLSS的比值比较固定,一般在0.5~0.7左右。
1.2、污泥沉降体积(SV或SV30)污泥沉降体积是指曝气池混合液活性污泥混合液1000mL量筒(亦可采用100mL量筒)中,静置沉降30min后,沉降污泥与所取混合液体积之比。
SV值越小,污泥沉降性能越好。
生活污水处理厂SV 或SV30一般为20%~30%。
1.3、污泥体积指数(SVI )污泥体积指数简称污泥指数,是指曝气池中活性污泥混合液经30min 沉降后,1g 干污泥所占的体积(以mL 计),即:)混合液污泥浓度()后污泥沉降体积(混合液L g L mL SVI //min 30 污泥指数能较好地反映活性污泥的松散程度,是判断污泥沉降性能的常用参数。
污泥指数过低,说明泥粒细小、紧密、无机物多,缺乏活性和吸附能力;污泥指数过高,说明污泥将要膨胀,或已膨胀,污泥不易沉淀,影响污水的处理效果。
污水处理活性污泥的主要性能指标成熟的活性污泥呈茶褐色,稍具泥土味,具有良好的凝聚沉淀性能。
活性污泥由有机物和无机物两部分成,组成比例因处理污水的不同而有差异,一般有机成分占75%~85%,无机成分占15%~25%。
活性污泥中有机成分主要由生长在其中的微生物组成,活性污泥上还吸附着微生物代谢产物及被处理污水中含有的各种有机和无机污染物。
污泥沉降比(SV)污泥沉降比(SV)又称30min沉降比,是曝气池混合液在量筒内静置30min后所形成的沉淀污泥容积占原混合液容积的比例,以“%”表示。
由于SV值的测定简单快速,因评定活性污泥浓度和质量的最常用方法。
SV能反映曝气池正常运行时的污泥量和污泥的凝聚、沉降性能,通常SV值越小,污泥的沉降性能越好。
可用于控制污泥的排放量,通过SV的变化可以判断污泥膨胀现象。
SV值的大小与污泥的种类、絮凝性能和污泥浓度有关,不同污水处理厂的SV值的差别很大。
在丝状菌含量大和污泥过氧化而解絮时的SV值比正常值也要多。
因此,每座污水处理厂都应该根据自己的运行经验数据确定本厂的最佳SV值。
在正常生产运行中,有时为了能及时调整运行状况,可以测定5min的污泥沉降比来判断污泥的性能,此时的体积差异也很大。
SV值的测定不仅可用于监控曝气池混合液的性能,也可以比较和观察初沉池污泥的性能,尤其是将二沉池污泥回流到初沉池加强初沉效果并从初沉池排放剩余污泥时,更需要测定进入初沉池污泥的SV值,以控制回流量和保证沉淀效果。
污泥浓度(MLSS)曝气池混合液污泥浓度(MLSS)又称混合液悬浮固体浓度,它表示的是混合液中的活性污泥浓度,即单位容积混合液内所含有的活性污泥固体物的总质量。
其单位是mg/L或g/L。
MLSS中包含了活性污泥中的所有成分,即由具有代谢功能的微生物群体、微生物代谢氧化的残留物、吸附在微生物上的有机物和无机物等四部分组成。
曝气池混合液挥发性污泥浓度(MLVSS)又称混合液挥发性悬浮固体浓度,表示的是混合液活性污泥中有机性固体物质的浓度,MLVSS扣除了活性污泥中的无机成分,能够比较准确地表示活性污泥中活性成分的数量。
活性污泥的评价指标(1)污泥浓度指单位体积混合液含有的悬浮固体量或挥发性悬浮固体量,单位为mg/L 或g/L。
活性污泥法中适宜的污泥浓度一般为2500~4000mg/L。
(2)污泥沉降比SV污泥沉降比(SV)是指将1000mL 混匀的曝气池活性污泥混合液倒人1000mL 量筒中。
静置沉淀30min。
沉淀污泥所占混合液体积之比为污泥沉降比(%),又称污泥沉降体积(SV30),以"mL/L"表示。
因为污泥沉降30min 后,一般可达到或接近最大密度,所以普遍以此时间作为测定该指标的标准时间。
也可以污泥沉降15min 为准。
污泥沉隆比是一个很重要的指标,通过观察污泥沉降比可以发现污泥性状的很多问题,如上清液是否清澈,是否含有难沉悬浮絮体、絮体粒径大小及紧凑程度等。
(3)污泥体积指数SVI污泥体积指数(Sludge Volume Index,SVI)是表示污泥沉降性能的参数。
污泥指数反映活性污泥的松散程度和凝聚、沉降性能。
污泥指数过低,说明泥粒细小、紧密,无机物多,缺乏活性和吸附能力;指数过高,说明污泥将要膨胀,或已膨胀,污泥不易沉淀,影响对污水的处理效果。
对一般城市污水,在正常情况下,污泥指数一般控制在50~150为宜。
对有机物含量高的废水,污泥指数可能远超过以上数值。
(4)容积负荷每立方米池容积每日负担的有机物量,一般指单位时间负担的五日生化需氧量千克数(曝气池、生物接触氧化池和生物滤池)或挥发性悬浮固体千克数(污泥消化池)。
其计量单位通常以kg/(m3。
d)表示。
用容积负荷来评价生化装置的实际处理负荷及在相同条件下操作管理的优劣是比较简便而直观的。
(5)水力停留时间水力停留时间是指待处理污水在反应器内的平均停留时间,也就是污水与生物反应器内微生物作用的平均反应时间。
因此,如果反应器的有效容积为V(m³),则∶HRT=V/Q(其中V是曝气池池容积,Q 是曝气池进水流量)。
衡量活性污泥数量和性能好坏的指标:主要有以下几项。
(1)活性污泥的浓度(MLSS)指以1L混合液内所含的悬浮固体或挥发性悬浮固体的量。
污泥浓度的大小可间接的反映废水中微生物的浓度。
一般在活性污泥曝气池内常保持MLSS浓度在2~6mg/L之间,多为3~4mg/L。
(2)污泥沉降比(SV%)指一定量的曝气池废水在静置30min后,沉淀污泥与废水的体积比,用%号表示。
它可反映污泥的沉淀和凝聚性能好坏。
污泥沉降比越大,越有利于活性污泥与水的迅速分离,性能良好的污泥,一般沉降比可达15~30%。
(3)污泥容积指数(SVI)又称污泥指数,是指一定量的曝气池废水经30min 沉淀后,1g干污泥所占有沉淀污泥容积的体积,单位ml/g,它实质是反映活性污泥的松散程度,污泥指数越大,则污泥越松散。
这样可有较大表面积,易于吸附和氧化分解有机物,提高废水的处理效果。
但污泥指数太高,污泥过于松散,则污泥的沉淀性差,故一般控制在50~150ml/g之间。
但根据废水性质的不同,这个指标也有差异。
如废水溶解性有机物含量高时,正常的SVI值可能较高;相反,废水中含有无机性悬浮物较多时,正常的SVI值可能较低。
以上三者之间的关系:SVI = SV * 10 / MLSS2.活性污泥的培养与驯化活性污泥是通过一定的方法培养与驯化出来的。
培养的目的是使微生物增殖,达到一定的污泥浓度;驯化则是对混合微生物群进行淘汰和诱导,使具有降解废水活性的微生物成为优势。
1.1 菌种和培养液除了采用纯菌种外,活性污泥菌种大多取自粪便污水、生活污水或性质相近的工业废水处理站二沉池剩余污泥。
培养液一般由上述菌液和诱导比例的营养物如淘米水、尿素或磷酸盐等组成。
1.2 培养与驯化方法1.2.1 有异步法和同步法。
异步法主要适用于工业废水,程序是:将经过粗滤的浓粪便水投入曝气池,用生活污水(或河水)稀释成BOD5~300-500mg/L,加培养液,连续曝气1~2d,池内出现絮状物后,停止曝气,静置沉淀1~1.5h,排除上清液(约池容的50%~70%);再加粪便水和稀释水,重新曝气,待污泥数量增加一定浓度后(约1~2周),开始进工业废水(10%~20%),当处理效果稳定(BOD去除率80%~90%)和污泥性能良好时,再增加工业废水的比例,每次宜增加10%~20%,直至满负荷。
活性污泥评价指标实验一、实验目的在废水生物处理中,活性污泥法是很重要的一种处理方法,也是城市污水处理厂最广泛使用的方法。
活性污泥法是指在人工供氧的条件下,通过悬浮在曝气池中的活性污泥与废水的接触,以去除废水中有机物或某种特定物质的处理方法。
在这里,活性污泥是废水净化的主体。
所谓活性污泥,是指充满了大量微生物及有机物和无机物的絮状泥粒。
它具有很大的表面积和强烈的吸附和氧化能力,沉降性能良好。
活性污泥生长的好坏,与其所处的环境因素有关,而活性污泥性能的好坏,又直接关系到废水中污染物的去除效果。
为此,水质净化厂的工作人员经常要通过观察和测定活性污泥的组成和絮凝、沉降性能,以便及时了解曝气池中活性污泥的工作状况,从而预测处理出水的好坏。
本实验的目的:1、了解评价活性污泥性能的四项指标及其相互关系;2、掌握SV、SVI 、MLSS、MLVSS 的测定和计算方法。
二、实验原理活性污泥的评价指标一般有生物相、混合液悬浮固体浓度(MLSS )、混合液挥发性悬浮固体浓度(MLVSS )污泥沉降比(SV)污泥体积指数(SVI)和污泥龄(EC)等。
混合液悬浮固体浓度(MLSS)又称混合液污泥浓度。
它表示曝气池单位容积混合液内所含活性污泥固体物的总质量,由活性细胞(M a),内源呼吸残留的不可生物降解的有机物(M e)、入流水中生物不可降解的有机物(M i )和入流水中的无机物(M ii)4部分组成。
混合液挥发性悬浮固体浓度(MLVSS)表示混合液活性污泥中有机性固体物质部分的浓度,即由MLSS中的前三项组成。
活性污泥净化废水靠的是活性细胞(M a),当MLSS —定时,Ma越高,表明污泥的活性越好,反之越差。
MLVSS 不包括无机部分(M ii),所以用其来表示活性污泥的活性数量上比MLSS 为好,但它还不真正代表活性污泥微生物(M a)的量。
这两项指标虽然在代表混合液生物量方面不够精确,但测定方法简单易行,也能够在一定程度上表示相对的生物量,因此广泛用于活性污泥处理系统的设计、运行。