北师大版数学七年级下完全平方公式
- 格式:ppt
- 大小:669.50 KB
- 文档页数:11
完全平方公式知识点1 完全平方公式222a b a ab b-=-+,()2()2a b a ab b+=++;222即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.【典例】例1化简:(x﹣2)2+(x+3)(x+1).【方法总结】本题主要考查了完全平方公式,多项式乘多项式,熟记相关公式和运算法则是解题的关键.例2已知a+b=8,ab=15,求下列式子的值:(1)a2+b2;(2)(a﹣b)2.【方法总结】本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.例3下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=(x2+2xy)﹣(x2+2x+1)+2x第一步=x2+2xy﹣x2+2x+1+2x第二步=2xy+4x+1第三步(1)小颖的化简过程从第步开始出现错误,错误的原因是.(2)写出此题正确的化简过程.【方法总结】本题考查完全平方公式,整式的加减以及单项式乘多项式,解答本题的关键是明确整式的混合运算的计算方法.例4已知(x﹣p)2=x2+mx+36,则m=.【方法总结】本题考查了完全平方公式的运用,能熟练地运用公式进行计算是解此题的关键.完全平方公式:(a±b)2=a2±2ab+b2.【随堂练习】1.已知(x+y)2=25,(x﹣y)2=1,求x2+y2与xy的值.2.计算:(2x﹣3)2﹣(x﹣3)(2x+1).3.已知x+y=7,xy=﹣8,求(1)x2+y2的值;(2)(x﹣y)2的值.知识点2 利用完全平方公式进行整式与数的运算利用完全平方公式进行整式与数的运算是完全平方公式的一种实际应用,主要考察对公式222a b a ab b()2-=-+的掌握情况.()2a b a ab b+=++;222【典例】例1计算:2002﹣400×199+1992.【方法总结】本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.例2已知实数m,n满足m+n=3,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m﹣n的值.【方法总结】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.【随堂练习】1.若(a+b)2=17,(a﹣b)2=11,则a2+b2=.2.已知x﹣y=3,x2+y2﹣3xy=4.求下列各式的值:(1)xy;(2)x3y+xy3.知识点3 完全平方式完全平方式的定义:对于一个具有若干个简单变元的整式A,如果存在另一个实系数整式B,使A=B2,则称A是完全平方式.a2±2ab+b2=(a±b)2完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方.另一种是完全平方差公式,就是两个整式的差括号外的平方.算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央.(就是把两项的乘方分别算出来,再算出两项的乘积,再乘以2,然后把这个数放在两数的乘方的中间,这个数以前一个数间的符号随原式中间的符号,完全平方和公式就用+,完全平方差公式就用-,后边的符号都用+)”【典例】1.要使x2+kx+4是完全平方式,那么k的值是()A.k=±4B.k=4C.k=﹣4D.k=±2【方法总结】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.例2已知x2﹣2mx+9是完全平方式,则m的值为()A.±3B.3C.±6D.6【方法总结】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏解.【随堂练习】1.已知y2﹣6y+m是完全平方式,则m=()A.6B.﹣6C.9D.﹣9 2.若二次三项式x2﹣8x+m2是一个完全平方式,则m的值是()A.±4B.4C.±8D.8 3.下列各式是完全平方式的是()A.x2﹣x+14B.1+4x2C.a2+ab+b2D.x2+2x﹣1知识点4 完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)【典例】例1 有一张边长为a的正方形桌面,因实际需要,需将正方形边长增加b,木工师傅设计了如图所示的方案,该方案能验证的等式是()A.(a+b)2=a2+2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2 D.(a+2b)(a﹣b)=a2+ab+b2【方法总结】考查完全平方公式的几何背景,通过不同方法计算面积,通过面积之间的关系得出等式是常用的方法.例2如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.【方法总结】本题考查对完全平方公式几何意义的理解,关键是从整体和部分两方面来理解完全平方公式的几何意义,并能对整式结论变式应用.例3如图1在一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长为.(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,面积分别是S1和S2,设AB=8,两正方形的面积和S1+S2=28,求图中阴影部分面积.【方法总结】本题考查完全平方公式的背景及其应用,将同一个图形的面积用两种方法表示是求解本题的关键.例4如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2),直接写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x和y,若x+y=9,xy=18,求x﹣y的值.【方法总结】本题考查完全平方公式的几何背景,用不同方法表示同一个图形的面积是得出结论的关键.【随堂练习】1.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .(a +b )2=a 2+2ab +b 2B .(a +b )2=a 2+2ab ﹣b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .(a ﹣b )2=a 2﹣2ab ﹣b 22.如图,将长方形ABCD 的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD 的面积为( )A .4B .32C .5D .63.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形. (1)图2中间空白的部分的面积是 ;(2)观察图2,请你写出代数式(a +b )2、(a ﹣b )2、ab 之间的等量关系式 ;(3)根据你得到的关系式解答下列问题:若x +y =﹣4,xy =3,求x ﹣y 的值.4.请认真观察图形,解答下列问题:(1)根据图①中条件,请用两种不同方法表示两个阴影图形的面积的和;(2)在(1)的条件下,如图②,两个正方形边长分别为a,b,如果a+b=ab=9,求阴影部分的面积.综合运用1.若4x2﹣2kx+1是完全平方式,则常数k的值为()A.2B.﹣2C.±2D.±42.已知关于x的多项式16x2+mx+1是一个完全平方式,则常数m的值是.3.计算:(2x﹣3y)(3x+2y)﹣(2x﹣3y)2.4.计算:(a﹣2b﹣1)2.5.已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.6.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?7.如图,正方形ABCD中,点G是边CD上一点(不与端点C,D重合),以CG为边在正方形ABCD外作正方形CEFG,且B、C、E三点在同一直线上,设正方形ABCD和正方形CEFG的边长分别为a和b(a>b).(1)求图1和图2中阴影部分的面积S1、S2(用含a,b的代数式表示);(2)如果a+b=8,ab=6,求S1的值;(3)当S1=S2时,求a与b满足的数量关系.8.1)请写出三个代数式(a+b)2、(a﹣b)2和ab之间数量关系式.(2)应用上一题的关系式,计算:xy=﹣3,x﹣y=4,试求x+y的值.(3)如图:线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.。
北师大版完全平方公式在数学的世界里,公式就像是一把把神奇的钥匙,能够帮助我们解开各种难题的大门。
其中,完全平方公式就是一个非常重要且实用的工具。
完全平方公式包括两个:(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²这两个公式看起来或许有些复杂,但只要我们理解了其中的原理,就会发现它们其实很简单。
咱们先来看看第一个公式(a + b)²= a²+ 2ab + b²。
假设我们有一个边长为(a + b)的正方形。
那么这个正方形的面积就可以用(a + b)²来表示。
我们把这个正方形分成四部分:一个边长为 a 的正方形,一个边长为 b 的正方形,还有两个长为 a、宽为 b 的长方形。
边长为 a 的正方形面积是 a²,边长为 b 的正方形面积是 b²,两个长方形的面积都是 ab,所以加起来就是 a²+ 2ab + b²,这就证明了(a + b)²= a²+ 2ab + b²。
再来看第二个公式(a b)²= a² 2ab + b²。
我们可以把(a b)²看作是(a +(b))²,按照第一个公式展开,就是 a²+ 2a(b) +(b)²,化简之后就得到了 a² 2ab + b²。
完全平方公式在代数运算中有着广泛的应用。
比如说,当我们要计算(3 + 4)²时,就可以直接运用公式,a = 3,b = 4,那么(3 + 4)²= 3²+ 2×3×4 + 4²= 9 + 24 + 16 = 49。
如果是(5 2)²,同样,a = 5,b = 2,(5 2)²= 5² 2×5×2 + 2²= 25 20 + 4 = 9。
2024北师大版数学七年级下册1.6.2《完全平方公式》教案2一. 教材分析《完全平方公式》是北师大版数学七年级下册第1章第6节的内容,本节课主要让学生掌握完全平方公式的概念和运用。
完全平方公式是初中数学中的一个重要概念,也是解决二次方程和二次不等式问题的关键。
通过对完全平方公式的学习,学生可以更好地理解和运用二次方程和二次不等式,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、完全平方数等知识,对于二次方程和二次不等式有一定的了解。
但学生对于完全平方公式的理解和运用还不够熟练,需要通过本节课的学习来进一步掌握。
三. 教学目标1.让学生理解完全平方公式的概念,掌握完全平方公式的运用。
2.培养学生解决二次方程和二次不等式的能力。
3.培养学生合作学习、积极思考的能力。
四. 教学重难点1.完全平方公式的概念和运用。
2.解决二次方程和二次不等式。
五. 教学方法1.采用问题驱动法,引导学生主动探究完全平方公式。
2.采用案例分析法,让学生通过具体案例理解完全平方公式的运用。
3.采用小组合作学习,培养学生合作学习的能力。
六. 教学准备1.PPT课件2.相关案例和练习题3.笔记本和文具七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的完全平方现象,如正方形的面积公式等,引导学生对完全平方公式产生兴趣,激发学生的学习热情。
2.呈现(10分钟)通过PPT课件,呈现完全平方公式的定义和公式,让学生初步了解完全平方公式的概念。
3.操练(10分钟)让学生通过PPT上的练习题,运用完全平方公式进行计算,巩固对完全平方公式的理解和运用。
4.巩固(10分钟)让学生分组讨论,总结完全平方公式的运用方法和注意事项,加深对完全平方公式的理解和运用。
5.拓展(10分钟)通过PPT上的案例分析,让学生运用完全平方公式解决实际问题,提高学生解决二次方程和二次不等式的能力。
6.小结(5分钟)让学生对自己在本节课中学到的知识进行总结,提高学生的自我学习能力。
北师大版数学七年级下册1.6《完全平方公式》说课稿2一. 教材分析《完全平方公式》是北师大版数学七年级下册第1.6节的内容。
这一节主要介绍了完全平方公式的定义和应用。
完全平方公式是初等数学中的一个重要概念,它对于学生理解和掌握二次方程的解法有着重要的作用。
在本节课中,学生将通过探究和发现完全平方公式的规律,培养观察、分析和归纳的能力。
二. 学情分析在七年级下册的学生已经具备了一定的代数基础,例如解一元一次方程、解二元一次方程组等。
他们对代数知识有一定的了解和掌握,但完全平方公式是一个新的概念,需要学生通过探究和发现来理解和掌握。
此外,学生在学习过程中可能存在对完全平方公式的理解不够深入,应用不够灵活的问题,因此需要在教学过程中加以引导和培养。
三. 说教学目标1.知识与技能目标:学生能够理解和掌握完全平方公式的定义和应用。
2.过程与方法目标:学生通过观察、分析和归纳,发现完全平方公式的规律,培养观察、分析和归纳的能力。
3.情感态度与价值观目标:学生能够在解决问题的过程中体验到数学的乐趣,培养对数学的兴趣。
四. 说教学重难点1.教学重点:学生能够理解和掌握完全平方公式的定义和应用。
2.教学难点:学生能够通过观察、分析和归纳,发现完全平方公式的规律。
五. 说教学方法与手段在本节课中,我将采用问题驱动的教学方法,引导学生通过观察、分析和归纳来发现完全平方公式的规律。
同时,我将运用多媒体教学手段,如PPT、动画等,来辅助教学,使学生更加直观地理解和掌握完全平方公式。
六. 说教学过程1.导入:通过一个实际问题,引发学生对完全平方公式的思考,激发学生的学习兴趣。
2.探究:学生分组讨论,观察和分析完全平方公式的规律,归纳出完全平方公式的定义。
3.讲解:教师对完全平方公式的定义和应用进行讲解,引导学生理解和掌握。
4.练习:学生进行练习,巩固对完全平方公式的理解和掌握。
5.总结:教师引导学生总结本节课的主要内容和收获。
北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。