【习练·破】 已知两点P(1,0,1)与Q(4,3,-1),则P,Q之间的距离为_______.
【解析】因为P(1,0,1),Q(4,3,-1), 所以 OP=(1,0,1)=i+k, OQ=(4,3,-1)=4i+3j-k, 所以 PQ=(4i+3j-k)-(i+k)=3i+3j-2k,
PQ 3i2 3j2 (-2k)2 22,
2
【类题·通】 1.空间对称问题的特点 空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化 规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余 坐标相反”这个结论.
2.利用向量法求空间两点距离的方法 (1)建系,确定两点坐标. (2)求出以向量 OA,OB 的坐标. (3)求 AB 的坐标. (4)根据公式求出 AB 的模,即AB的距离.
2
M是A1C1的三分之一分点且靠近A1点, 所以M(1,1,2).
所以AM=(1,1,2)=i+j+2k,
AN (3i+,33,1)j+k,
2
所以 MN (3 i -3(ji+ kj+) 2k)
2
= 1 i+2j-k,
2
所以 | MN | (1 i)2 2j2 (-k)2 21,
2
2
即|MN|= 21 .
【思考】 什么是右手直角坐标系? 提示:右手直角坐标系是指的让右手的拇指指向x轴正方向,食指指向y轴正方向, 中指指向z轴正方向所建立的坐标系;高中阶段所用的空间直角坐标系都是右手 直角坐标系.
2.空间向量的坐标表示 (1)点的坐标 在空间直角坐标系Oxyz中,i,j,k为坐标向量,对空间任意一点A,存在唯一有序实 数组(x,y,z),使OA=xi+yj+zk,则 OA 对应的有序实数组(x,y,z)叫做点A在空间坐 标系中的坐标. (2)向量的坐标 给定向量a,若OA =a,则a=xi+yj+zk, 有序实数组(x,y,z)叫做a在空间直角坐标系Oxyz中的坐标,记作a=(x,y,z).