城市生活垃圾的热解处理课件
- 格式:ppt
- 大小:846.00 KB
- 文档页数:17
生活垃圾热解处理的原理及影响因素垃圾热解技术具有较高的能源利用率和较低的二次污染排放,是较为合理的垃圾处理技术,热解过程中垃圾所含的有机物转化为可利用的能源形式,包括可燃性气体、焦油和垃圾碳;热解是在无氧或缺氧的条件下进行的NOX、SOX、HCL 等污染物排放量少,二次污染的排放量低;垃圾中的硫、氯和重金属等有害成分大部分被固定在垃圾碳中,可以实施回收。
垃圾热解法是将垃圾中的有机成分在无氧或缺氧的情况下加热,使之分解为燃气、焦油和半焦的化学过程。
热解技术分为内热式和外热式两种。
内热式热解技术是利用少量的助燃空气,使部分垃圾燃烧氧化,释放的热量加热未反应的垃圾,使其发生分解,产生可燃气体;外热式热解技术利用坚壁结构,使垃圾在无氧的条件下发生热解。
产生热值较高的可燃气体,可燃气体回收燃烧,为垃圾热解提供热源。
垃圾热解过程中废弃物的有机成分转化为能量,具有较好的经济性;热解系统的二次污染小,环境更安全。
热解在无氧或缺氧的条件下进行,减少了二噁英的生成。
热解的固体产物是垃圾碳,腐植性物质少,分拣后分别可作为化工或建材原料使用。
垃圾热裂解产物主要由生物油、不凝气体及垃圾碳组成。
影响垃圾热解过程和产物组成的最重要因素是温度、固态向挥发物滞留时间、颗粒尺寸、垃圾组成及加热条件。
提高温度和固相滞留期有助于挥发物和气态产物的形成。
随着垃圾直径的增大,在一定温度下达到转化率所需的时间也增加。
因此挥发物可和炽热的碳发生二次反应,所以挥发物滞留时间可以影响热解过程。
加热条件的变化可以改变热解的实际过程及反应速率。
温度决定着垃圾热解最终产物中气、油、碳的比例,并随反应温度的高低和加热速度的快慢而变化。
研究表明温度对垃圾热解产物中组成及不凝气体的组成有着显著的影响。
低温、长滞留期的慢速热解主要提高垃圾碳的产量,低于600℃的热解过程,其产物中生物油、不凝气和垃圾碳的产量基本相等,高温快速热解不凝气体可达80%。
垃圾中组成的含量对热解产物比例的影响很大,这种影响相当复杂,与热解温度、压力、升温速度等外部条件共同作用,在不同的程度上影响热解过程。
生活垃圾热解技术本期目录综述• ------------------------------------------------------------------------------------------------------------ 1 政策、标准•国外相关法律法规 ---------------------------------------------------------------------------------- 13 新闻动态• ------------------------------------------------------------------------------------------------------------ 1 院内信息•科技管理 ---------------------------------------------------------------------------------------------- 18•标准管理 ---------------------------------------------------------------------------------------------- 19综述定义热解(Pyrolysis)就是指生活垃圾在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500℃,通过热化学反应将生物质大分子物质(木质素、纤维素与半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。
通式有机固体废物(H2、CH4、CO、CO2等)气体+(有机酸、焦油等)有机液体+碳黑+炉渣产物热解的产物主要有可燃气、生物油与固体黑炭。
可燃气(合成气)可用于民用炊事与取暖,烘干谷物、木材、果品、炒茶,发电,区域供热,工业企业用蒸汽等。
在生物质能开发水平较高的国家,还用气化燃气作化工原料,如合成甲醇、氨等,甚至考虑作燃料电池的燃料。