新知探索
在实际抽样调查中,由于实际问题的复杂性,除了要考虑获得的样本的代表性
,还要考虑调查实施中人力、物力、时间等因素,因此通常会把多种抽样方法组合
起来使用.例如,在分层抽样中,不同的层内除了用简单随机抽样外,还可以用其他
的抽样方法,有时层内还需要再进行分层,等等.
思考2:如果想要了解某电视节目在你所在的地区(城市、乡镇或村庄)的收视率,
例3.随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层
的样本量为30,样本平均数为8,则该样本的平均数为_____.
答案:6.
20
30
ഥ=
×3+
× 8 = 6.
20 + 30
20 + 30
练习
方法技巧:
进行分层随机抽样的相关计算时,常用到的3个关系
(1)
样本容量
该层抽取的个体数
答案:×,×,×.
)
新知探索
辨析2:某校高三一班有学生54人,二班有学生42人,现在要用分层随机抽样的
方法从两个班抽取16人参加军训表演,则一班和二班分别被抽取的人数是(
A.9,7
答案:A.
B.10,6
C.8,8
D.12,4
).
练习
题型一:分层随机抽样的概念
例1.下列问题中,最适合用分层随机抽样抽取样本的是(
可以计算出男生、女生中分别应抽取的人数为:
326
386
男 =
× 50 ≈ 23,女 =
× 50 ≈ 27.
712
712
我们按上述方法抽取了一个容量为50的样本,其观测数据(单位:)如下:
男生
173.0