扬州市中考数学试题及答案
- 格式:docx
- 大小:1.95 MB
- 文档页数:14
2023年江苏省扬州市中考数学试卷试卷考试总分:144 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1. 绝对值为的实数共有( )A.个B.个C.个D.个2. 计算的结果是( )A.B.C.D.3. 某班有人,其中三好学生人,优秀学生干部人,在统计图上表示,能清楚地看出各部分与总数之间的百分比关系的是( )A.条形统计图B.扇形统计图C.折线统计图D.以上均可以4. 下列各图是正方体展开图的是( ) A. B. C.101243⋅(−)a 3a 23a 5−3a 53a 6−3a 650105D.5. 在,,,这四个数中,最小的数是( )A.B.C.D.6. 若,则函数与在同一直角坐标系中的图象可能是A.B.C.D.7. 已知三角形的两边长分别为和,且第三边长为整数,则第三边长为( )A.B.C.D.8. 若抛物线的顶点在第一象限,则的取值范围为A.B.C.D.二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )−2012–√−212–√ab >0y =ax+b y =bx ()143456y =(x−m +(m+1))2m ()m>1m>0m>−1−1<m<09. 年全国普通高考参加考试人数为人,将用科学记数法表示为________.10. 分解因式:=________.11. 如图,,,,是五边形的外角,且====,则=________.12. 如图,这是一幅长为,宽为的长方形世界杯宣传画.为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数附近,由此可估计宣传画上世界杯图案的面积约为________.13. 若一元二次方程有两个不相同的实数根,则实数m 的取值范围是________.14. 如图,点为正六边形的中心,点为中点,以点为圆心,以的长为半径画弧得到扇形,点在上;以点为圆心,以的长为半径画弧得到扇形.把扇形的两条半径,重合,围成圆锥,将此圆锥的底面半径记为;将扇形以同样方法围成的圆锥的底面半径记为,则________.15. 某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,且当时,,当气球内的气压大于时,气球将爆炸,为确保气球不爆炸,气球的体积最小应为________.16. 年月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形 的面积是,小正方形的面积是,直角三角形的短直角边为,较长直角边为,下列说法:①;②;③;④.其中正确结论序号是________.17. 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.20201071000010710000−4+4m m 3m 2∠1∠2∠3∠4ABCDE ∠1∠2∠3∠470∘∠CDE 3m 2m 0.4m 2−2x+m=0x 2O ABCDEF M AF O OM MON N BC E DE DEF MON OM ON r 1DEF r 2:=r 1r 2P(Pa)V()m 3V =1.5m 3P =16000Pa 40000Pa m 320028131a b +=13a 2b 2=1b 2−=12a 2b 2ab =6△ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC18. 如图,抛物线的顶点在轴的负半轴上,正方形的两个顶点A ,在该抛物线上,则的值是________.三、 解答题 (本题共计 10 小题 ,每题 9 分 ,共计90分 )19.用配方法解方程:.计算:.20. 解不等式组: 并把不等式组的解集在数轴上表示出来. 21. 为了参加“中小学生诗词大会”,某校八年级的两班学生进行了预选,其中班上前名学生的成绩(百分制)分别为:八班:,八班:,通过数据分析,列表如下:班级平均分中位数众数方差八班八班求表中,,,的值;根据以上数据分析,你认为哪个班前名同学的成绩较好?请说明理由.22. 第一盒中有个白球、个黄球,第二盒中有个白球、个黄球,这些球除颜色外无其他差别.若从第一盒中随机取出个球,则取出的球是白球的概率是________.若分别从每个盒中随机取出个球,请用列表或画树状图的方法求取出的两个球中恰好个白球、个黄球的概率.23. 甲、乙两个工程队承担了今年的老旧小区改造工作中的一个项目,若乙队单独工作天后,再由两队合作天就可以完成这个项目,已知乙队单独完成这个项目所需天数是甲队单独完成这个项目所需天数的倍.求甲,乙两个工程队单独完成这个项目各需多少天;甲工程队一天的费用是万元,乙工程队一天的费用是万元,若甲乙合作天后剩余工作由乙队单独完成,求这个项目总共要支出的工程费用.(单位:万元)24. 如图,在平行四边形中,、分别在、边上,且=.求证:四边形是平行四边形.y =+c 12x 2B y OABC C c (1)2−4x =1x 2(2)4sin ⋅tan −660∘30∘cos 245∘ 2x+5≤3(x+2),①2x−<1,②3x+125(1)85,86,82,91,86(2)80,85,85,92,88(1)86b 86d (2)a 85c 15.6(1)a b c d (2)52111(1)1(2)111372(1)(2)735ABCD E F AD BC AE CF BFDE25. 如图,已知,以为直径的交于点,连接,的平分线交于点,交于点,且.判断所在直线与的位置关系,并说明理由;若,,求的半径. 26. 有,两个发电厂,每焚烧一吨垃圾,发电厂比发电厂多发度电,焚烧吨垃圾比焚烧吨垃圾少度电.求焚烧吨垃圾,和各发电多少度?,两个发电厂共焚烧吨的垃圾,焚烧的垃圾不多于焚烧的垃圾两倍,求厂和厂总发电量的最大值. 27. 如图①,在中, ,点从点 出发沿射线方向,在射线上运动.在点运动的过程中,连接,并以为边在射线上方作等边,连接(1)当________ 时,;(2)请添加一个条件:________,使得为等边三角形,并解决以下问题:①如图①,当点在线段上时,求证:;②如图②,当点运动到线段的延长线上时,①中结论是否仍成立?请说明理由. 28. 如图,在平面直角坐标系中,抛物线,经过点、,过点作轴的平行线交抛物线于另一点.(1)求抛物线的表达式及其顶点坐标;(2)如图,点是第一象限中上方抛物线上的一个动点,过点作于点,作轴于点,交于点,在点运动的过程中,的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图,连接,在轴上取一点,使和相似,请求出符合要求的点坐标.△ABC AB ⊙O AC D BD ∠CBD ⊙O E AC F AF =AB (1)BC ⊙O (2)tan ∠FBC =13DF =2⊙O A B A B 40A 20B 301800(1)1A B (2)A B 90A B A B △ABC ∠B =60∘M B BC BC M AM AM BC △AMN CN.∠BAM =∘AB =2BM △ABC M BC BM =CN M BC BM =CN y =−+bx+c 12x 2A(1,3)B(0,1)A x C 1M BC MH ⊥BC H ME ⊥x E BC F M △MFH 2AB y P △ABP △ABC P参考答案与试题解析2023年江苏省扬州市中考数学试卷试卷一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.【答案】C【考点】绝对值实数的性质【解析】本题主要考查了实数的性质以及绝对值.【解答】解:绝对值为的实数共有:,,共个,故选.2.【答案】B【考点】单项式乘单项式【解析】根据单项式乘以单项式,即可解答.【解答】.3.【答案】B【考点】统计图的选择【解析】根据题意的要求,结合统计图的特点,易得答案.【解答】解:根据题意,要求能清楚地看出各部分与总数之间的百分比关系,结合统计图的特点,易得应选用扇形统计图,故选.4.11−12C 3⋅(−)=−3a 3a 2a 5B【答案】B【考点】几何体的展开图【解析】正方体的展开图有型,型、型三种类型,其中可以左右移动.注意“一”、“”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:,“田”字型,不是正方体的展开图,故选项错误;,是正方体的展开图,故选项正确;,不是正方体的展开图,故选项错误;,不是正方体的展开图,故选项错误.故选.5.【答案】A【考点】实数大小比较算术平方根【解析】根据正数大于,大于负数,可得答案.【解答】,6.【答案】A【考点】反比例函数的图象【解析】此题暂无解析【解答】解:因为,所以分两种情况:① 当,时,一次函数数的图象过第一、二、三象限,反比例函数图象在第一、三象限,选项符合;②当时,一次函数的图象过第二、三、四象限,反比例函数图象在第二、四象限,无符合选项.故选.7.【答案】1+4+12+3+13+317A B C D B 00−2<1<0<<2–√ab >0a >0b >0y =ax+b A a <0,b <0AB【考点】三角形三边关系【解析】根据三角形的三边关系“任意两边之和第三边,任意两边之差第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】根据三角形的三边关系,得第三边长,即第三边长,又第三条边长为整数,则第三边长为.8.【答案】B【考点】二次函数的性质【解析】由抛物线解析式可求得其顶点坐标,由顶点坐标所在的象限可得到关于的不等式组,可求得的取值范围.【解答】解:∵,∴抛物线顶点坐标为,∵顶点坐标在第一象限,∴解得.故选.二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )9.【答案】【考点】科学记数法--表示较大的数【解析】科学记数法的一般形式为:,在本题中应为,的指数为.【解答】解:科学记数法的一般形式为:,故.故答案为:.10.【答案】><4−1<<4+13<<54m m y =(x−m +(m+1))2(m,m+1){m>0,m+1>0,m>0B 1.071×107a ×10n a 1.071108−1=7a ×10n 10710000=1.071×1071.071×107m(m−2)2【考点】提公因式法与公式法的综合运用【解析】先提取公因式,再对余下的多项式利用完全平方公式继续分解.【解答】解:.故答案为:.11.【答案】【考点】多边形内角与外角【解析】根据多边形的外角和定理即可求得与相邻的外角,从而求解.【解答】根据多边形外角和定理得到:=,∴==,∴===.12.【答案】【考点】利用频率估计概率【解析】本题考查的是利用频率估计概率.【解答】解:长方形的面积,∵骰子落在世界杯图案中的频率稳定在常数附近,∴世界杯图案占长方形世界杯宣传画的,∴世界杯图案的面积约为:,故答案为:.13.【答案】【考点】根的判别式m −4+4m m 3m 2=m(−4m+4)m 2=m(m−2)2m(m−2)2100∘∠CDE ∠1+∠2+∠3+∠4+∠5360∘∠5−4×360∘70∘80∘∠CDE −∠5180∘−180∘80∘100∘2.4=3×2=6()m 20.440%6×40%=2.4()m 22.4m<1根据判别式的意义得到,然后解不等式即可.【解答】解:根据题意得,解得.故答案为:.14.【答案】【考点】展开图折叠成几何体圆锥的计算【解析】根据题意正六边形中心角为且其内角为.求出两个扇形圆心角,表示出扇形半径即可.【解答】解:连由已知,为中点,则∵六边形为正六边形∴设∴,∵正六边形中心角为∴∴扇形的弧长为:则同理:扇形的弧长为:则,故答案为.15.【答案】【考点】反比例函数的应用【解析】设函数解析式为,把代入求,再根据题意可得,解不等式可得.△=−4m>022Δ=−4m>022m<1m<1:23–√120∘120∘OAM AF OM ⊥AFABCDEF ∠AOM =30∘AM =aAB =AO =2a OM =a3–√60∘∠MON =120∘MON =πa120∗π∗a 3–√18023–√3=a r 13–√3DEF =πa 120∗π∗2a 18043=a r 223:=:2r 1r 23–√:23–√0.6P =k v y =1.5,p =16000k 24000【解答】解:设函数解析式为,当时, ,,.气球内的气压大于时,气球将爆炸,∴,解得:.即气球的体积应不小于.故答案为:.16.【答案】①④【考点】勾股定理的证明【解析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积,即四个直角三角形的面积和,从而判断.【解答】解:直角三角形的斜边长是,则,大正方形的面积是,即,①正确;∵小正方形的面积是,∴,则,即,∴,故④正确;根据图形可以得到,,而不一定成立,故②错误,进而得到③错误.故答案是:①④17.【答案】【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.P =k V ∵V =1.5m 3P =16000Pa ∴k =VP =24000∴P =24000V ∵40000Pa ≤4000024000V V ≥0.60.6m 30.6132ab c =+c 2a 2b 213=+=13c 2a 2b 21b −a =1(b −a =1)2+−2ab =1a 2b 2ab =6+=13a 2b 2b −a =1b =165∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘18.【答案】【考点】正方形的性质二次函数图象上点的坐标特征【解析】连接交于点,根据正方形的性质得出点坐标为,代入解析式即可求得的值.【解答】解:如图,连接交于点,则,,,,则点的坐标为,代入抛物线得:,解得:(舍)或.故答案为:.三、 解答题 (本题共计 10 小题 ,每题 9 分 ,共计90分 )19.【答案】解:方程两边同除以得,配方得,即,开方得,解得,.原式.【考点】解一元二次方程-配方法特殊角的三角函数值实数的运算【解析】无−4AC OB D A (,)c 2c 2c AC OB D B(0,c)∠ADO =90∘OD =AD D(0,)c 2A (,)c 2c 2y=+c 12x 2+c =c 28c 2c =0c =−4−4(1)2−2x =x 212−2x+1=+1x 212=(x−1)232x−1=±6–√2=1+x 16–√2=1−x 26–√2(2)=4××−6×3–√23–√3()2–√22=2−3=−1解:方程两边同除以得,配方得,即,开方得,解得,.原式.20.【答案】解:由①得,由②得,∴不等式组的解集为 ,在数轴上表示为:【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】此题暂无解析【解答】解:由①得,由②得,∴不等式组的解集为 ,在数轴上表示为:21.【答案】解:八班的平均分.将八班的前名学生的成绩按从小到大的顺序排列为:,,,,,则中位数.八班的前名学生的成绩中,出现了次,次数最多,所以众数.八班的方差:.八班中位数分高于八班中位数分,说明八班成绩更好;八班众数分高于八班众数分,说明八班成绩更好;八班方差分低于八班方差分,说明八班成绩更稳定;两个班平均分都是分,成绩一样.综上得知,八班前名同学成绩较好.【考点】方差算术平均数中位数(1)2−2x =x 212−2x+1=+1x 212=(x−1)232x−1=±6–√2=1+x 16–√2=1−x 26–√2(2)=4××−6×3–√23–√3()2–√22=2−3=−1x ≥−1x <3−1≤x <3x ≥−1x <3−1≤x <3(1)(2)a =(80+85+85+92+88)÷5=86(1)58285868691b =86(2)5852c =85(1)d ==8.41+0+16+25+05(2)(1)86(2)85(1)(1)86(2)85(1)(1)8.4(2)15.6(1)86(1)5()根据平均数、中位数、众数的概念及方差公式计算解答即可;()根据它们的平均数,中位数,众数,方差比较分析,从而可以解答本题.【解答】解:八班的平均分.将八班的前名学生的成绩按从小到大的顺序排列为:,,,,,则中位数.八班的前名学生的成绩中,出现了次,次数最多,所以众数.八班的方差:.八班中位数分高于八班中位数分,说明八班成绩更好;八班众数分高于八班众数分,说明八班成绩更好;八班方差分低于八班方差分,说明八班成绩更稳定;两个班平均分都是分,成绩一样.综上得知,八班前名同学成绩较好.22.【答案】画树状图为:,共有种等可能的结果数,取出的两个球中恰好个白球、个黄球的有种结果,所以取出的两个球中恰好个白球、个黄球的概率为.【考点】列表法与树状图法概率公式【解析】(1)直接利用概率公式计算可得;(2)先画出树状图展示所有种等可能的结果数,再找出恰好个白球、个黄球的结果数,然后根据概率公式求解;【解答】解:若从第一盒中随机取出个球,则取出的球是白球的概率是,故答案为:;画树状图为:,共有种等可能的结果数,取出的两个球中恰好个白球、个黄球的有种结果,所以取出的两个球中恰好个白球、个黄球的概率为.23.【答案】解:设甲工程队单独完成这个项目需要天,则乙工程队单独完成这个项目需要天,12(1)(2)a =(80+85+85+92+88)÷5=86(1)58285868691b =86(2)5852c =85(1)d ==8.41+0+16+25+05(2)(1)86(2)85(1)(1)86(2)85(1)(1)8.4(2)15.6(1)86(1)523(2)61131112611(1)12323(2)61131112(1)x 2x解得:,经检验,是原方程的解,且符合题意,∴.答:甲工程队单独完成这个项目需要天,乙工程队单独完成这个项目需要天.设甲乙两队合作天后乙队还要再单独工作天,依题意得:,解得:,∴(万元).答:这个项目总共要支出的工程费用为万元.【考点】分式方程的应用【解析】无无【解答】解:设甲工程队单独完成这个项目需要天,则乙工程队单独完成这个项目需要天,依题意得:,解得:,经检验,是原方程的解,且符合题意,∴.答:甲工程队单独完成这个项目需要天,乙工程队单独完成这个项目需要天.设甲乙两队合作天后乙队还要再单独工作天,依题意得:,解得:,∴(万元).答:这个项目总共要支出的工程费用为万元.24.【答案】证明:∵四边形是平行四边形,∴,=,∵=,∴=,即=,∴四边形是平行四边形.【考点】平行四边形的性质与判定【解析】欲证明四边形是平行四边形,只要证明=,即可.【解答】证明:∵四边形是平行四边形,∴,=,∵=,∴=,即=,∴四边形是平行四边形.25.x =12x =122x =241224(2)5y +=15125+y 24y =97×5+3×(5+9)=7777(1)x 2x +=17x 3+72x x =12x =122x =241224(2)5y +=15125+y 24y =97×5+3×(5+9)=7777ABCD AD//BC AD BC AE CF AD−AE BC −CF DE BF BFDE BFDE DE BF DE//BFABCD AD//BC AD BC AE CF AD−AE BC −CF DE BF BFDE解:所在直线与相切;理由:∵为的直径,∴,∵,∴,∵平分,∴,∴,∴,∵,∴,∴,∴,∴是的切线.∵平分,∴,∴,∵,∴,设,∴,∵,∴,解得:,∴,∴的半径为.【考点】切线的判定解直角三角形直线与圆的位置关系【解析】【解答】解:所在直线与相切;理由:∵为的直径,∴,∵,∴,∵平分,∴,∴,∴,∵,∴,∴,∴,∴是的切线.∵平分,∴,∴,∵,∴,设,∴,∵,(1)BC ⊙O AB ⊙O ∠ADB=90∘AB=AF ∠ABF=∠AFB BF ∠DBC ∠DBF =∠CBF ∠ABD+∠DBF =∠CBF +∠C ∠ABD=∠C ∠A+∠ABD=90∘∠A+∠C =90∘∠ABC=90∘AB ⊥BC BC ⊙O (2)BF ∠DBC ∠DBF =∠CBF tan ∠FBC =tan ∠DBF ==DF BD 13DF =2BD =6AB=AF =x AD=x−2AB 2=A +B D 2D 2x 2=(x−2+)262x=10AB=10⊙O 5(1)BC ⊙O AB ⊙O ∠ADB=90∘AB=AF ∠ABF=∠AFB BF ∠DBC ∠DBF =∠CBF ∠ABD+∠DBF =∠CBF +∠C ∠ABD=∠C ∠A+∠ABD=90∘∠A+∠C =90∘∠ABC=90∘AB ⊥BC BC ⊙O (2)BF ∠DBC ∠DBF =∠CBF tan ∠FBC =tan ∠DBF ==DF BD 13DF =2BD =6AB=AF =x AD=x−2AB 2=A +B D 2D 2解得:,∴,∴的半径为.26.【答案】解:设焚烧吨垃圾,发电厂发电度,发电厂发电度,根据题意得:解得答:焚烧吨垃圾,发电厂发电度,发电厂发电度;设发电厂焚烧吨垃圾,则发电厂焚烧吨垃圾,总发电量为度,则,∵,∴,∵随的增大而增大,∴当时,有最大值为:(元).答:厂和厂总发电量的最大是度.【考点】一次函数的应用由实际问题抽象出二元一次方程组【解析】(1)设焚烧吨垃圾,发电厂发电度,发电厂发电度,根据“每焚烧一吨垃圾,发电厂比发电厂多发度电,焚烧吨垃圾比焚烧吨垃圾少度电”列方程组解答即可;(2)设发电厂焚烧吨垃圾,则发电厂焚烧吨垃圾,总发电量为度,得出与之间的函数关系式以及的取值范围,再根据一次函数的性质解答即可.【解答】解:设焚烧吨垃圾,发电厂发电度,发电厂发电度,根据题意得:解得答:焚烧吨垃圾,发电厂发电度,发电厂发电度;设发电厂焚烧吨垃圾,则发电厂焚烧吨垃圾,总发电量为度,则,∵,∴,∵随的增大而增大,∴当时,有最大值为:(元).答:厂和厂总发电量的最大是度.27.【答案】(1)解:(2)(答案不唯一);①∵与都是等边三角形,,,,即,∵在与中,x=10AB=10⊙O 5(1)1A a B b { a −b =40,30b −20a =1800,{ a =300,b =260,1A 300B 260(2)A x B (90−x)y y =300x+260(90−x)=40x+23400x ≤2(90−x)x ≤60y x x =60y 40×60+23400=25800A B 258001A x B y A B 40A 20B 301800A x B (90−x)y y x x (1)1A a B b {a −b =40,30b −20a =1800,{ a =300,b =260,1A 300B 260(2)A x B (90−x)y y =300x+260(90−x)=40x+23400x ≤2(90−x)x ≤60y x x =60y 40×60+23400=25800A B 2580030AB =AC △ABC △AMN ∴AB =AC ,AM =AN ∠BAC =∠MAN =60∘∴∠BAC −∠MAC =∠MAN −∠MAC ∠BAM =∠CAN △BAM △CAN AB =AC,;②成立.理由:∵与都是等边三角形,, ,,即,∵在与中,,.【考点】三角形综合题【解析】此题暂无解析【解答】解:(1)当时,,.故答案为:.(2)故答案为:(答案不唯一);①∵与都是等边三角形,,,,即,∵在与中,,;②成立.理由:∵与都是等边三角形,, ,,即,∵在与中,,.28.【答案】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴△BAM ≅△CAN (SAS)∴BM =CN △ABC △AMN ∴AB =AC ,AM =AN ∠BAC =∠MAN =60∘∴∠BAC +∠MAC =∠MAN +∠MAC ∠BAM =∠CAN △BAM △CAN AB =AC∠BAM =∠CAN ,AM =AN∴△BAM ≅△CAN (SAS)∴BM =CN ∠BAM =30∘∴∠AMB =−−=180∘60∘30∘90∘∴AB =2BM 30AB =AC △ABC △AMN ∴AB =AC ,AM =AN ∠BAC =∠MAN =60∘∴∠BAC −∠MAC =∠MAN −∠MAC ∠BAM =∠CAN △BAM △CAN AB =AC∠BAM =∠CAN ,AM =AN∴△BAM ≅△CAN (SAS)∴BM =CN △ABC △AMN ∴AB =AC ,AM =AN ∠BAC =∠MAN =60∘∴∠BAC +∠MAC =∠MAN +∠MAC ∠BAM =∠CAN △BAM △CAN AB =AC∠BAM =∠CAN ,AM =AN∴△BAM ≅△CAN (SAS)∴BM =CN A(1,3)B(0,1)y =−+bx+c 12x 2 −+b +c =312c =1b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1k =12m=11设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,∴,∴,∴,综上所述满足条件的点有,.【考点】二次函数综合题【解析】(1)将,,代入抛物线,即可得出答案;(2)延长交轴于点,由点可求得,由=,设,求得,则,由勾股定理得,,所以的周长可用表示,最后利用二次函数的性质解决问题;(3)由,为公共角,可得.从而=.分当=时,当M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√5a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC =PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133A(1,3)B(0,1)y =−+bx+c12x 2CA y D C(4,3)=BD CD 12tan ∠C tan ∠M ==FH MH 12M(a,−+a +1)12a 252F(a,a +1)12MF =−+2a 12a 2FH =MF,MH =MF 5–√525–√5△MFH MF ==AD BD BD CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC 2∘【解答】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴直线的解析式为,设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,∴,∴,∴,综上所述满足条件的点有,.A(1,3)B(0,1)y =−+bx+c12x 2 −+b +c =312c =1 b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1 k =12m=1BC y =x+112M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√5a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC =PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133。
2022年江苏省扬州市中考数学真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为若太阳光与地面成40°角,一棵树的影长为10㎝,则树高 h 所满足的范围是( )A .h>15B . 10<h<15C . 5<h<10D . 3<h<5 2.圆的半径为13cm ,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( )A .7cmB .17cmC .12cmD .7cm 或17cm 3.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m 、n 的值是( ) A .4,13B .-4,19C .-4,13D .4,19 4.在对50个数进行整理的频数分布表中,各组的频数之和与频率之和分别等于 ( ) A .50,1B . 50,50C .1,50D .1,1 5.如图,a ∥b ,若∠1=120°,则∠2 的度数是( ) A .l20° B .70° C .60° D . 506. 如图,下列条件中不能判断直线1l ∥2l 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°7.下列长度的三条线段,能组成三角形的是( )A . 1,2,3B .1,3,5C . 2,2,4D .2,3,48.如果22(3)9x x kx -=++,那么k 的值等于( ) A .3 B .-3 C .6 D .-69.已知甲数的3倍等于乙数的4倍,且甲数比乙数大8,则甲数等于( )A .16B .24C .32D .44 10.某商店一次同时卖出两套童装,每件都以135元售出,其中一套盈利25%,另一套亏本25%,则在这次买卖中,该商店( )A .不赚不赔B .赚9元C .赔18元D .赚 18元11.下列各式能用加法运算律简化的是( )A .113(5)23+-B .214253++C .(-7)+(-8.2)+(-3)+(+-6. 2)D .13114()(2)(7)3725+-+-+- 二、填空题12.如图,正方形ABCD 内切圆的面积为π81,则正方形的周长为 .13.如图,一束光线照在坡度为1:3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是 度.14.反比例函数xm y 12--=(m 为常数)的图像如图所示,则m 的取值范围是________. 15.在中国地理地图册上,连结上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.飞机从台湾直飞上海的距离约为1286千米,那么飞机从台湾绕道香港再到上海的飞行距离约为 千米.16.某班有48位同学。
2022年江苏省扬州市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.从左面观察如图所示的两个物体,看到的是()A. B. C.D.2.如图,两圆有多种位置关系,图中不存在...的位置关系是()A.相交B.相切C.外离D.内含3.其市气象局预报称:明天本市的降水概率为70%,这句话指的是()A.明天本市70%的时间下雨,30%的时间不下雨B.明天本市70%的地区下雨,30%的地区不下雨C.明天本市一定下雨D.明天本市下雨的可能性是70%4.观察重庆市统计局公布的“十五”时期重庆市农村居民人均收入每年相对于上一年的增长率的统计图,下列说法正确的是()A.2003年农村居民人均收入低于2002年B.农村居民人均收入相对于上年增长率低于9%的有2年C.农村居民人均收入最多是2004年D.农村居民人均收入每年相对于上一年的增长率有大有小,但农村居民人均收入在持续增加5.一个画家有l4个边长为1 cm的正方体,他在地上摆成如图所示的形状,然后把露出的表面都染上颜色,那么被染上颜色的面积有()A.21m2 B.24 m2 C.33 m2 D.37m26.从1到20的20个自然数中,任取一个,既是2的倍数,又是3的倍数的概率是( ) A .120B .320C .12D .3107.一个锐角的补角与这个角的余角的差是( ) A .锐角B .直角C .钝角D .平角二、填空题8.如图,1l ⊥2l , 3l ⊥2l ,则1l 3l ,理由是 .9.计算1699= , 24()5= ,364-= . 10.若代数式23x y +的值是4,则369x y --的值是 . 11.已知2|24|(36)0x x -++=,则341x y -+的值是 .12.某校七(1)班学生为“希望工程”捐款,每人平均2元还多35元,共捐得131元.设这个班的学生有n 人,根据题意,可列方程为 .13.小明站在一个路口观察过往车辆,统计了半小时内各种车辆通过的数量,并制成了统计图,请你写出从图中获得的两条信息:(1) ;(2) .14. 绝对值不大于3的整数有 个,它们是 . 解答题15.小明去姑姑家做客,姑姑拿出一盒糖果(糖果形状完全相同,并且在果盒外面无法看到任何糖果),其中有20块巧克力糖、15块芝麻酥糖、4块夹心软糖,小明任意取出一块糖是 糖的可能性最大.16.如图,在△ABC 中,EF ∥BC ,AE=2BE ,则△AEF 与梯形BCFE 的面积比为___________. 17.不等式组52110x x -≥-⎧⎨->⎩的整数解是 .18.等腰三角形的周长为 16,则腰长y 关于底边x 的函数解析式是: .19.平行四边形在日常生活和生产实际中有许多应用,如衣帽架,可伸缩的遮阳篷等都是根据平行四边形的 制作的.20.如图,l 是四边形ABCD 的对角线,如果AD ∥BC ,OB=OD 有下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④A0=C0.其中正确的结论是 (把序号填上).21.放大镜下的“5”和原来的“5”是 ,下列各组图形中,属于相似形的是 .(填序号).①两个三角形;②两个长方形;③两个平行四边形;④两个正方形;⑤两个圆 22.如图,DE 是△ABC 的中位线,S △ADE =2,则S △ABC =_______.23.数轴上的点A 、B 分别表示数-2和1,点C 是AB 的中点,则点C 所表示的数是 ..三、解答题24.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)第n 个图形铺设地面所用瓷砖的总块数为 (用含n 的代数式表示); (2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n 的值; (3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.n=1n=2n=325.物体自由下落时,下落距离 h(m)可用公式25h t 来估计,其中 t(s)表示物体下落所经过的时间,一个物体从 120 m 的塔顶自由下落,落到地面需多长时间 (精确到0.1 s)?26.如图,1l 反映了某个体服装老板的销售收入与销售量之间的关系,2l 反映了该老板的销售成本与销售量的关系,根据图象回答下列问题:(1)分别求出1l 、2l 对应的函数解析式(不要求写出自变量的取值范围); (2)当销售量为30件时,销售收入为 元,销售成本为 元; (3)当销售量为60件时,销售收入为 元,销售成本为 元; (4)当销售量为 件时,销售收入等于销售成本;(5)当销售量 件时,该老板赢利.当销售量 件时.该老板亏本.27.如图,在长方形ABCD 中,已知AB=6,AD=4,等腰△ABE 的腰长为5,建立适当的平面直角坐标系,写出各个顶点的坐标.28.一只不透明的袋子中装有6个小球,分别标有l 、2、3、4、5、6这6个号码,这些球除号码外都相同.(1)直接写出事件“从袋中任意摸出一个球,号码为3的整数倍”的概率P 1;(2)用画树状图或列表格等方法,求事件“从袋中同时摸出两个球,号码之和为6”的慨率P 2.29.如图,AD 平分∠BAC ,AB =AC ,则BD =CD ,试说明理由.30.某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广.A 35%B 20%C 20%D各型号种子数的百分比图1图2A B C D 型号800 600400 200630 370 470发芽数/粒【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.D5.C6.B7.B二、填空题8.∥;∠l=∠2=90°,同位角相等,两直线平行9.13 3,45,-410.1511.1512.2n+35=13113.例如:(1)经过的小汽车最少 (2)经过的自行车最多14.7;-3,-2,-1,0,1,2,315.巧克力16.4:517.2,318.182y x =-+(08)x <<19.不稳定性20.①②④21.相似形, ④、⑤22.823.-0.5三、解答题 24.解:(1)652++n n ;(2)256506n n ++=,解得1220,25n n ==-(舍)(3)不存在.由2(1)(56)(1)n n n n n n +=++-+,解得32n ±= 因为n 不为正整数,所以不存在黑白瓷砖数相等的情形.25.4.9s26.(1)1l :100t x =,2l :751000t x =+; (2)3000,3250; (3)6000,5500; (4)40;(5)大于40,小于4027.略28.(1)率P 1=31;(2)画树状图或列表格略,P 2=152.29.△ABD ≌△ACD (SAS ),则BD=CD .30.解:(1)500; (2)如图; (3)A 型号发芽率为90%,B 型号发芽率为92.5%,D 型号发芽率为94%,C 型号发芽率为95%.∴应选C 型号的种子进行推广.。
江苏省扬州市2021年中考数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上........) 1. 实数100的倒数是( )A. 100B. 100-C. 1100D. 1100- 【答案】C【解析】【分析】直接根据倒数的定义求解.【详解】解:100的倒数为1100, 故选C .【点睛】本题考查了倒数的定义:a (a ≠0)的倒数为1a . 2. 把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是( )A. 五棱锥B. 五棱柱C. 六棱锥D. 六棱柱【答案】A【解析】 【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A .【点睛】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.3. 下列生活中的事件,属于不可能事件的是( )A. 3天内将下雨B. 打开电视,正在播新闻C. 买一张电影票,座位号是偶数号D. 没有水分,种子发芽【答案】D【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:A 、3天内将下雨,是随机事件;B 、打开电视,正在播新闻,是随机事件;C 、买一张电影票,座位号是偶数号,是随机事件;D 、没有水分,种子不可能发芽,故是不可能事件;故选D .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4. 不论x 取何值,下列代数式的值不可能为0的是( )A. 1x +B. 21x -C. 11x +D. ()21x + 【答案】C【解析】【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意;C 、分子是1,而1≠0,则11x +≠0,故符合题意; D 、当x =-1时,()210x +=,故不合题意;故选C .【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5. 如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A. 220︒B. 240︒C. 260︒D. 280︒【解析】【分析】连接BD,根据三角形内角和求出∠CBD+∠CDB,再利用四边形内角和减去∠CBD和∠CDB的和,即可得到结果.【详解】解:连接BD,∵∠BCD=100°,∴∠CBD+∠CDB=180°-100°=80°,∴∠A+∠ABC+∠E+∠CDE=360°-∠CBD-∠CDB=360°-80°=280°,故选D.【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形. 的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得ABC是6. 如图,在44等腰直角....三角形,满足条件的格点C的个数是()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC 其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有3个.故共有3个点,【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.=+的图像与x轴、y轴分别交于点A、B,把直线AB绕点B顺时针旋转30交7. 如图,一次函数y xx轴于点C,则线段AC长为()+ B. C. 2++【答案】A【解析】【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.=的图像与x轴、y轴分别交于点A、B,【详解】解:∵一次函数y x令x=0,则y,令y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴AB,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC x ,∵旋转,∴∠ABC =30°,∴BC =2CD =2x ,∴BD ,又BD =AB +AD =2+x ,∴2+x x ,解得:x +1,∴AC +1)故选A .【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.8. 如图,点P 是函数()110,0k y k x x =>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCD k k S -=;③()21212DCP k k S k -=,其中正确的是( )A. ①②B. ①③C. ②③D. ① 【答案】B【解析】【分析】设P (m ,1k m ),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB 和PC PA 的关系,可判断①;利用三角形面积公式计算,可得△PDC 的面积,可判断③;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算△OCD 的面积,可判断②.【详解】解:∵PB ⊥y 轴,P A ⊥x 轴,点P 在1k y x =上,点C ,D 在2k y x =上, 设P (m ,1k m), 则C (m ,2k m ),A (m ,0),B (0,1k m),令12k k m x =, 则21k m x k =,即D (21k m k ,1k m), ∴PC =12k k m m-=12k k m -,PD =21k m m k -=()121m k k k -, ∵()121121m k k k k k PD PB m k --==,121211k k k k PC m k PA k m--==,即PD PC PB PA =, 又∠DPC =∠BP A ,∴△PDC ∽△PBA ,∴∠PDC =∠PBC ,∴CD ∥AB ,故①正确;△PDC 的面积=12PD PC ⨯⨯=()1212112m k k k k k m --⨯⨯=()21212k k k -,故③正确; OCD OAPB OBD OCA DPC S S S S S =---△△△△ =()112221222112k k k k k k ---- =()2121122k k k k k --- =()()21121112222k k k k k k k ---=()22112211222k k k k k k --- =221212k k k -,故②错误; 故选B .【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度. 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为______.【答案】3.02×106 【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将3020000用科学记数法表示为3.02×106. 故答案为:3.02×106. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10. 计算:2220212020-=__________.【答案】4041【解析】【分析】利用平方差公式进行简便运算即可.【详解】解:2220212020-=()()2021202020212020+⨯-=40411⨯=4041故答案为:4041.【点睛】本题考查了平方差公式的应用,解题时注意运算顺序.11. 在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.【答案】2【解析】【分析】根据第二象限的点的横坐标小于0,纵坐标大于0列出不等式组,然后求解即可.【详解】解:由题意得:10 520mm-<⎧⎨->⎩,解得:512m<<,∴整数m的值为2,故答案为:2.【点睛】本题考查了点的坐标及解一元一次不等式组,记住各象限内点的坐标的符号是解决的关键.12. 已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是__________.【答案】5【解析】【分析】根据平均数的定义先算出a的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵这组数据的平均数为5,则456755a++++=,解得:a=3,将这组数据从小到大重新排列为:3,4,5,6,7,观察数据可知最中间的数是5,则中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.13. 扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.【答案】20【解析】【分析】设良马行x日追上驽马,根据路程=速度×时间结合两马的路程相等,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设快马行x 天追上慢马,则此时慢马行了(x +12)日,依题意,得:240x =150(x +12),解得:x =20,∴快马20天追上慢马,故答案为:20.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14. 如图是某圆柱体果罐,它的主视图是边长为10cm 的正方形,该果罐侧面积为_____2cm .【答案】100π【解析】【分析】根据圆柱体的主视图为边长为10cm 的正方形,得到圆柱的底面直径和高,从而计算侧面积.【详解】解:∵果罐的主视图是边长为10cm 的正方形,为圆柱体,∴圆柱体的底面直径和高为10cm ,∴侧面积1010π⨯=100π,故答案为:100π.【点睛】本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.15. 如图,在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,过点D 作DE BC ⊥,垂足为点E ,连接CD ,若5CD =,8BC =,则DE =________.【答案】3【解析】【分析】根据直角三角形的性质得到AB =10,利用勾股定理求出AC ,再说明DE ∥AC ,得到为12DE BD AC AB ==,即可求出DE . 【详解】解:∵∠ACB =90°,点D 为AB 中点,∴AB =2CD =10,∵BC =8,∴AC =6,∵DE ⊥BC ,AC ⊥BC ,∴DE ∥AC , ∴12DE BD AC AB ==,即162DE BD AB ==, ∴DE =3,故答案为:3.【点睛】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.16. 如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.【答案】50【解析】【分析】过点E 作EF ⊥BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到∠BCE =∠BEC ,可得BE =BC =10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E 作EF ⊥BC ,垂足为F ,∵∠EBC =30°,BE =10,∴EF =12BE =5, ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DEC =∠BCE ,又EC 平分∠BED ,即∠BEC =∠DEC ,∴∠BCE =∠BEC ,∴BE =BC =10,∴四边形ABCD 的面积=BC EF ⨯=105⨯=50,故答案为:50.【点睛】本题考查了平行四边形的性质,30度的直角三角形的性质,角平分线的定义,等角对等边,知识点较多,但难度不大,图形特征比较明显,作出辅助线构造直角三角形求出EF 的长是解题的关键.17. 如图,在ABC 中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为________.【答案】125【解析】 【分析】根据矩形的性质得到GF ∥AB ,证明△CGF ∽△CAB ,可得72x AB =,证明△ADG ≌△BEF ,得到AD =BE =34x ,在△BEF 中,利用勾股定理求出x 值即可. 【详解】解:∵DE =2EF ,设EF =x ,则DE =2x ,∵四边形DEFG 是矩形,∴GF ∥AB ,∴△CGF ∽△CAB , ∴44437GF CF AB CB ===+,即247x AB =, ∴72x AB =,∴AD +BE =AB -DE =722x x -=32x , ∵AC =BC , ∴∠A =∠B ,又DG =EF ,∠ADG =∠BEF =90°,∴△ADG ≌△BEF (AAS ),∴AD =BE =1322x ⨯=34x , 在△BEF 中,222BE EF BF +=, 即222334x x ⎛⎫+= ⎪⎝⎭, 解得:x =125或125-(舍), ∴EF =125, 故答案为:125. 【点睛】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,全等三角形的判定和性质,等边对等角,解题的关键是根据相似三角形的性质得到AB 的长.18. 将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【解析】【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1, 第②个图形中的黑色圆点的个数为:()1222+⨯=3, 第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10, ...第n 个图形中的黑色圆点的个数为()12n n +, 则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275, 故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律. 三、解答题(本大题共有10小题,共96分,请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19. 计算或化简:(1)01|3|tan 603⎛⎫-+-+︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭. 【答案】(1)4;(2)ab【解析】【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【详解】解:(1)013|tan 603⎛⎫-+-+︒ ⎪⎝⎭=13+-=4;(2)()11a b a b ⎛⎫+÷+⎪⎝⎭ =()a b a b ab++÷ =()ab a b a b+⨯+ =ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.20. 已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值. 【答案】12a =【解析】【分析】求出方程组的解得到x 与y 的值,代入方程计算即可求出a 的值.【详解】解:方程组271x y x y +=⎧⎨=-⎩①②, 把②代入①得:()217y y -+=,解得:3y =,代入①中,解得:2x =,把2x =,3y =代入方程4ax y +=得,234a +=, 解得:12a =. 【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程成立的未知数的值.21. 为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表: 抽样调查各类喜欢程度人数分布扇形统计图A .非常喜欢B .比较喜欢C .无所谓D .不喜欢抽样调查各类喜欢程度人数统计表根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).【答案】(1)200;(2)90,94;(3)1440名【解析】【分析】(1)用D程度人数除以对应百分比即可;(2)用A程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B等级对应百分比,乘以样本容量可得m值;(3)用样本中A、B程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.22. 一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.(1)甲坐在①号座位的概率是_________;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.【答案】(1)13;(2)23【解析】【分析】(1)直接根据概率公式计算即可;(2)画树状图,共有6种等可能的结果,甲与乙相邻而坐的结果有4种,再由概率公式求解即可.【详解】解:(1)∵丙坐了一张座位,∴甲坐在①号座位的概率是13;(2)画树状图如图:共有6种等可能的结果,甲与乙两同学恰好相邻而坐的结果有4种,∴甲与乙相邻而坐的概率为46=23.【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23. 为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?【答案】40万【解析】【分析】设原先每天生产x万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可.【详解】解:设原先每天生产x万剂疫苗,由题意可得:()2402200.5120%xx +=+, 解得:x =40,经检验:x =40是原方程的解,∴原先每天生产40万剂疫苗.【点睛】此题主要考查了分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性. 24. 如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =,求四边形AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【解析】【分析】(1)根据DE ∥AB ,DF ∥AC 判定四边形AFDE 是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA =∠EAD ,可得AE =DE ,即可证明;(2)根据∠BAC =90°得到菱形AFDE 是正方形,根据对角线AD 求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE 是菱形,理由是:∵DE ∥AB ,DF ∥AC ,∴四边形AFDE 是平行四边形,∵AD 平分∠BAC ,∴∠F AD =∠EAD ,∵DE ∥AB ,∴∠EDA =∠F AD ,∴∠EDA =∠EAD ,∴AE =DE ,∴平行四边形AFDE 是菱形;(2)∵∠BAC =90°,∴四边形AFDE 是正方形,∵AD =∴AF =DF =DE =AE ,∴四边形AFDE 的面积为2×2=4. 【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.25. 如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【解析】【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF =BA ,即可证明CD 与圆B 相切; (2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD =30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB =∠CBD ,∵CB =CD ,∴∠CBD =∠CDB ,∴∠ADB =∠CDB ,又BD =BD ,∠BAD =∠BFD =90°,∴△ABD ≌△FBD (AAS ),∴BF =BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD =60°,CB =CD ,∴△BCD 是等边三角形,∴∠CBD =60°∵BF ⊥CD ,∴∠ABD =∠DBF =∠CBF =30°,∴∠ABF =60°,∵AB =BF =∴AD =DF =tan 30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=122⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.26. 如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于点.()1,0A -、()3,0B ,与y 轴交于点C .(1)b =________,c =________;(2)若点D 在该二次函数的图像上,且2ABD ABC S S =,求点D 的坐标;(3)若点P 是该二次函数图像上位于x 轴上方的一点,且APC APB S S =,直接写出点P 的坐标.【答案】(1)-2,-3;(2)(1,6)或(1,6);(3)(4,5)【解析】【分析】(1)利用待定系数法求解即可;(2)先求出△ABC 的面积,设点D (m ,223m m --),再根据2ABD ABC SS =,得到方程求出m 值,即可求出点D 的坐标;(3)分点P 在点A 左侧和点P 在点A 右侧,结合平行线之间的距离,分别求解.【详解】解:(1)∵点A 和点B 在二次函数2y x bx c =++图像上, 则01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩, 故答案为:-2,-3;(2)连接BC ,由题意可得:A (-1,0),B (3,0),C (0,-3),223y x x =--,∴S △ABC =1432⨯⨯=6, ∵S △ABD =2S △ABC ,设点D (m ,223m m --), ∴1262D AB y ⨯⨯=⨯,即21423262m m ⨯⨯--=⨯,解得:x =1+或1,代入223y x x =--,可得:y 值都为6,∴D(1,6)或(1,6);(3)设P (n ,223n n --),∵点P 在抛物线位于x 轴上方的部分,∴n <-1或n >3,当点P 在点A 左侧时,即n <-1,可知点C 到AP 的距离小于点B 到AP 的距离,∴APC APB S S <△△,不成立;当点P 点B 右侧时,即n >3,∵△APC 和△APB 都以AP 为底,若要面积相等,则点B 和点C 到AP 的距离相等,即BC ∥AP ,设直线BC 的解析式为y =kx +p ,则033k p p =+⎧⎨-=⎩,解得:13k p =⎧⎨=-⎩, 则设直线AP 的解析式为y =x +q ,将点A (-1,0)代入,则-1+q =0,解得:q =1,则直线AP 的解析式为y =x +1,将P (n ,223n n --)代入,即2231n n n --=+,解得:n =4或n =-1(舍),2235n n --=,∴点P 的坐标为(4,5).在【点睛】本题考查了二次函数综合,涉及到待定系数法求函数解析式,三角形面积,平行线之间的距离,一次函数,解题的难点在于将同底的三角形面积转化为点到直线的距离.27. 在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为___________;②ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒; (3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ①线段PB 长的最小值为_______;②若23PCD PAD S S =,则线段PD 长为________.【答案】(1)①22;(2)见解析;(3 【解析】【分析】(1)①设O 为圆心,连接BO ,CO ,根据圆周角定理得到∠BOC =60°,证明△OBC 是等边三角形,可得半径;②过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,△ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)①根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′;②根据AD ,CD 和23PCD PAD S S =推出点P 在∠ADC 的平分线上,从而找到点P 的位置,过点C 作CF ⊥PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)①设O 为圆心,连接BO ,CO ,∵∠BAC =30°,∴∠BOC =60°,又OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =2,即半径为2;②∵△ABC 以BC 为底边,BC =2,∴当点A 到BC 的距离最大时,△ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,∴BE =CE =1,DO =BO =2,∴OE∴DE 2+,∴△ABC 的最大面积为)1222⨯⨯+2;(2)如图,延长BA′,交圆于点D,连接CD,∵点D在圆上,∴∠BDC=∠BAC,∵∠BA′C=∠BDC+∠A′CD,∴∠BA′C>∠BDC,∴∠BA′C>∠BAC,即∠BA′C>30°;(3)①如图,当点P在BC上,且PC=32时,∵∠PCD=90°,AB=CD=2,AD=BC=3,∴tan∠DPC=CDPC=43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,∴当点P在优弧CPD上时,tan∠DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊥BE,垂足为E,∵点Q是PD中点,∴点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,∴BE =BC -CE =3-34=94, ∴BQ, ∵PD=52, ∴圆Q 的半径为155224⨯=, ∴BP ′=BQ -P ′QBP;②∵AD =3,CD =2,23PCD PAD S S =, 则23CD AD =, ∴△P AD 中AD 边上的高=△PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在∠ADC 的平分线上,如图,过点C 作CF ⊥PD ,垂足F , ∵PD 平分∠ADC ,∴∠ADP =∠CDP =45°,∴△CDF 为等腰直角三角形,又CD =2,∴CF=DF, ∵tan ∠DPC =CF PF =43, ∴PF , ∴PD =DF+PF. 的为【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P 的轨迹.28. 甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..; ②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元()0a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.【答案】(1)48000,37;(2)33150元;(3)50150a <<【解析】【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,同(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据二次函数的性质,结合x 的范围求出最值,再比较即可;(3)根据题意得到利润差为()25018001850y x a x =-+-+,得到对称轴,再根据两公司租出的汽车均为17辆,结合x 为整数可得关于a 的不等式180016.517.5100a -<<,即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出汽车为x 辆,由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦,解得:x =37或x =-1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦,y 乙=35001850x -,当甲公司的利润大于乙公司时,0<x <37,y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦=25018001850x x -++,当x =1800502--⨯=18时,利润差最大,且为18050元; 当乙公司的利润大于甲公司时,37<x ≤50,y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦=25018001850x x --,∵对称轴为直线x =1800502--⨯=18, 当x =50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+,对称轴为直线x =1800100a -, ∵x 只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大, ∴180016.517.5100a -<<, 的解得:50150a <<.【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x 为整数得到a 的不等式.。
2022年江苏省扬州市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列函数中,属于二次函数的是( )A .y=π2x +1B .y =2-x 2+(x -1)2C .y =-x -2D .y =x 2-12 2.使代数式912x -+的值不小于代数式113x +-的值的x 应为( ) A .17x > B .17x ≥ C .17x < D .29x ≥3.如图所示的几何体的主视图是( )A .B .C .D . 4.如图,AB ∥CD ,如果∠2=2∠1,那么∠2 为( ) A .105° B .120° C .135° D .150°5.当25x >时,分式|25|52x x --的值是( ) A .-1 B .0 C .1 D .23二、填空题6.△ABC 中,CD ⊥AB ,垂足为 D ,以 CD 为直径画圆,与这个圆相切的直线是 .7.如图,在这三张扑克牌中任意抽取一张,抽到“黑红桃7”的概率是 .8.某三角形三边长分别为cm cm cm 5,4,3,则此三角形外接圆的半径为 cm .9.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请 个球队参加比赛.10.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标: .11.已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,则a 的取值范围是 .F D E A B C A D C B D C B A E M 12.一个六棱柱的底面边长都是3 cm ,一条侧棱的长为5 cm ,那么它的所有棱长度之和为 cm ,侧面积为 cm 2.13. 和 对应相等的两个直角三角形全等,简写成“斜边直角边”或“ ”.14. 如图,∠1=∠2,∠3 =50°,∠4= .15. 将方程527x y -=变形成用y 的代数式表示x ,则x = .16.有下列再句:①作射线DC=4cm ;②延长线段AB 到点 C ,使AC =12BC ;③反向延长射线 OP 到点 M ,使OM=OP ;④如果∠1 与∠2互为余角,∠2与∠B 互为余角,那么∠1=∠B ;⑤由两个直角组成的图形叫做平角;⑥几个角的和为90°,则这几个角互余.其中正确的有(填序号).17.如图是七年级(1)班数学期中考试成绩统计图,从如中可以看出,这次考试的优秀率为 ,及格率为 .(精确到 0.1%).18.-27 81的平方根之和为 .19.给出依次排列的一组数:1,-3,5,-7,9,…请按规律写出第 6 个数 ,第 2000个数 .三、解答题20.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?21.如图,在梯形ABCD 中,AD//BC ,∠A=90°,AB=7,AD=2,BC=3,试在边AB 上确定点P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.22.如图,有长为 24m 的篱笆,一面靠墙 (墙长为lOm),围成中间隔有一道篱笆的长方形花圃,设花圃宽 AB 为x(m),面积为 S(m2).(1)求S与x 的函数关系式;(2)如果要围成面积为 45m2的花圃,AB 的长是多少?(3)能围出比 45 m2更大的花圃吗?若能,求出最大的面积,并说明围法;若不能,说明理由.23.某校为了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示).(1)这50名学生在这一天课外阅读所用时间的众数是多少?(2)这50名学生在这一天平均每人的课外阅读所用时间是多少?(3)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0 h以上(含1.0 h)的有多少人?24.某市自来水公司为限制单位用水,每月只给某单位计划内用水2500m3,计划内用水每立方米收费0.9元,超计划部分每立方米按1.5元收费.(1)写出该单位水费y(元)与每月用水量x(m3)之间的函数解析式;①用水量x ≤2500时,y= ;②用水量x>2500时,y= ;(2)某月该单位用水2000 m 3,应付水费 元;若用水3000m 3,应付水费 元;(3)若某月该单位付水费3300元,则该单位用水多少?25.若y 是x 的一次函数,当x=2时,y=2,当x=一6时,y=6.(1)求这个一次函数的关系式;(2)当x=8时,函数y 的值;(3)当函数y 的值为零时,x 的值;(4)当1≤y<4时,自变量x 的取值范围.26.(1)计算:2(2)()()(32)x y x y x y y y x +-+--+(2)因式分解2231212mp mpq mq ++27.解方程组2345y x x y =⎧⎨-=⎩和124223x y x y ⎧-=⎪⎨⎪+=⎩各用什么方法解比较简便?求出它们的解.28.某县教育局专门对该县2004年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图,根据图中信息回答:(1)已知上非达标高中的毕业生有2328人,求该县2004年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的百分率,你对该县教育发展有何积极建议?请写出一条建议.29.去括号,并合并同类项:(1) -(5m+n)-7(m-3n)(2)2222(3)[2(5)2]xy y y xy x xy ----++30.计算:(1)|3|π-;(2) |9||5|--+(3) |5|7-+-(4)21 |||1| 39 -÷-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.B5.C二、填空题6.AB7.31 8. 2.59.710.(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可.11.32a -<-≤ 12.66,9013.斜边,直角边,HL14.130°15.527y +16. ③,④17.55.6%,96.3%18.0或-619.-11,-3999三、解答题20.(1)()P 偶数23= (2)能组成的两位数为:86,76,87,67,68,78 恰好为“68”的概率为16. 21.514,1,6. 22.(1) 2(243)324S x x x x =⋅-=-+(2)由已知得(243)45x x ⋅-=,整理得28150x x -+=,13x =,25x =, ∵墙长 10 m ,∴x=3不合题意 ,舍去.∴x=5.即AB=5 (m).(3) ∵2324S x x =-+,即23(4)48S x =--+ ∴x=4 时,S 最大值=48.又∵墙长为 lOm ,当 x=4 时,BC=12,∴x=4,不合题意舍去.∵ 24-3x ≤10,∴143x ≥,∴1483x ≤<,∴当143AB =,BC = 10 时,围成的面积比45 m 2 大,为1403m 2 23. (1)1.0 h ;(2)1.05 h ;(3)1400人24.(1)①y=0.9x ;②y=2250+1.5(x-2500);(2)1800,3000;(3)3200 m 325. (1)132y x =-+;(2)-1;(3)6;(4)-2<x ≤4 26.(1)222xy y + (2)23(2)m p q + 27.对于方程组2345y x x y =⎧⎨-=⎩,用代入法解得12x y =-⎧⎨=-⎩;对于方程组124223x y x y ⎧-=⎪⎨⎪+=⎩,用加减法解得5412x y ⎧=⎪⎪⎨⎪=⎪⎩28.(1)7760人 (2)1017人;923人 (3)如“赋闲在家的学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生.”又如“普通高中之中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中.”29.(1)1220m n -+ (2)224y x xy ++30.(1)3π- (2)4 (3)12 (4)35。
江苏省扬州市2021年中考数学试卷一、单选题(共8题;共16分)1.实数100的倒数是( )A. 100B. −100C. 1100D. −1100 2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是( )A. 五棱锥B. 五棱柱C. 六棱锥D. 六棱柱3.下列生活中的事件,属于不可能事件的是( )A. 3天内将下雨B. 打开电视,正在播新闻C. 买一张电影票,座位号是偶数号D. 没有水分,种子发芽4.不论x 取何值,下列代数式的值不可能为0的是( )A. x +1B. x 2−1C. 1x+1 D. (x +1)25.如图,点A 、B 、C 、D 、E 在同一平面内,连接 AB 、 BC 、 CD 、 DE 、 EA ,若 ∠BCD =100° ,则 ∠A +∠B +∠D +∠E = ( )A. 220°B. 240°C. 260°D. 280°6.如图,在 4×4 的正方形网格中有两个格点A 、B ,连接 AB ,在网格中再找一个格点C ,使得 △ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A. 2B. 3C. 4D. 57.如图,一次函数y=x+√2的图像与x轴、y轴分别交于点A、B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A. √6+√2B. 3√2C. 2+√3D. √3+√28.如图,点P是函数y=k1x(k1>0,x>0)的图像上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=k2x(k2>0,x>0)的图像于点C、D,连接OC、OD、CD、AB,其中k1>k2,下列结论:① CD//AB;② S△OCD=k1−k22;③ S△DCP=(k1−k2)22k1,其中正确的是()A. ①②B. ①③C. ②③D. ①二、填空题(共11题;共19分)9. 2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为________.10.计算:20212−20202=________.11.在平面直角坐标系中,若点P(1−m,5−2m)在第二象限,则整数m的值为________.12.已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是________.13.扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马________天追上慢马.14.如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为________ cm2.15.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE=________.16.如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则▱ABCD的面积为________.17.如图,在△ABC中,AC=BC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC 上,若CF=4,BF=3,且DE=2EF,则EF的长为________.18.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为________.19.在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以 BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为________;② △ABC 面积的最大值为________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 A ′ ,请你利用图1证明 ∠BA ′C >30° ;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 ABCD 的边长 AB =2 , BC =3 ,点P 在直线 CD 的左侧,且 tan ∠DPC =43 .①线段 PB 长的最小值为________;②若 S △PCD =23S △PAD ,则线段 PD 长为________. 三、解答题(共9题;共78分)20.计算或化简:(1)(−13)0+|√3−3|+tan60° ;(2)(a +b)÷(1a +1b ) .21.已知方程组 {2x +y =7x =y −1 的解也是关于x 、y 的方程 ax +y =4 的一个解,求a 的值. 22.为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表: 抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表根据以上信息,回答下列问题:(1)本次调查的样本容量是________;(2)扇形统计图中表示A程度的扇形圆心角为________ °,统计表中m=________;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).23.一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.(1)甲坐在①号座位的概率是________;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.24.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?25.如图,在△ABC中,∠BAC的角平分线交BC于点D,DE//AB,DF//AC.(1)试判断四边形AFDE的形状,并说明理由;(2)若∠BAC=90°,且AD=2√2,求四边形AFDE的面积.26.如图,四边形ABCD中,AD//BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2√3,∠BCD=60°,求图中阴影部分的面积.27.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于点. A(−1,0)、B(3,0),与y轴交于点C.(1)b=________,c=________;(2)若点D在该二次函数的图像上,且S△ABD=2S△ABC,求点D的坐标;(3)若点P是该二次函数图像上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标. 28.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是________元;当每个公司租出的汽车为________辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.答案解析部分一、单选题1.【答案】C【考点】有理数的倒数【解析】【解答】解:100的倒数为1,100故答案为:C.【分析】乘积是1的两个数叫做互为倒数,据此判断即可.2.【答案】A【考点】几何体的展开图【解析】【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故答案为:A.【分析】根据平面图形的折叠及立体图形的表面展开图的特点解答即可.3.【答案】D【考点】事件发生的可能性【解析】【解答】解:A、3天内将下雨,是随机事件;B、打开电视,正在播新闻,是随机事件;C、买一张电影票,座位号是偶数号,是随机事件;D、没有水分,种子不可能发芽,故是不可能事件;故答案为:D.【分析】随机事件是在一定条件下,可能发生也可能不发生的事件;必然事件是在一定条件下,一定发生的事件;不可能事件是在一定条件下,一定不发生的事件;据此判断即可.4.【答案】C【考点】分式的值为零的条件【解析】【解答】解:A、当x=-1时,x+1=0,故不合题意;B、当x=±1时,x2-1=0,故不合题意;C、分子是1,而1≠0,则1≠0,故符合题意;x+1D、当x=-1时,(x+1)2=0,故不合题意;故答案为:C.【分析】分别求出各式值为0时的x值,然后判断即可.5.【答案】D【考点】三角形内角和定理,多边形内角与外角【解析】【解答】解:连接BD,∵∠BCD=100°,∴∠CBD+∠CDB=180°-100°=80°,∴∠A+∠ABC+∠E+∠CDE=360°-∠CBD-∠CDB=360°-80°=280°,故答案为:D.【分析】连接BD,利用三角形的内角和求出∠CBD+∠CDB=180°-∠BCD=80°,根据四边形内角和为360°,可得∠A+∠ABC+∠E+∠CDE=360°-∠CBD-∠CDB,据此计算即可.6.【答案】B【考点】等腰三角形的性质【解析】【解答】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有3个.故共有3个点,故答案为:B.【分析】分两种情况:①AB为等腰直角△ABC底边时,②AB为等腰直角△ABC其中的一条腰时,据此分别求解即可.7.【答案】A【考点】含30°角的直角三角形,勾股定理,一次函数图象与坐标轴交点问题,等腰直角三角形【解析】【解答】解:∵一次函数y=x+√2的图像与x轴、y轴分别交于点A、B,令x=0,则y= √2,令y=0,则x= −√2,则A(−√2,0),B(0,√2),则△OAB为等腰直角三角形,∠ABO=45°,∴AB= √(√2)2+(√2)2=2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC= √AD2+CD2= √2x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x,∴BD= √BC2−CD2= √3x,又BD=AB+AD=2+x,∴2+x= √3x,解得:x= √3+1,∴AC= √2x= √2(√3+1)= √6+√2,故答案为:A.【分析】由一次函数y=x+√2求出A(−√2,0),B(0,√2),可得△OAB为等腰直角三角形,由勾股定理求出AB=2,过点C作CD⊥AB,垂足为D,可得△ACD为等腰直角三角形,设CD=AD=x,可得AC=√2x,利用直角三角形的性质得出BC=2CD=2x,BD=√3x,根据BD=AB+AD=2+x,建立方程求出x值即可.8.【答案】B【考点】反比例函数系数k的几何意义,三角形的面积,相似三角形的判定与性质,反比例函数图象上点的坐标特征【解析】【解答】解:∵PB⊥y轴,PA⊥x轴,点P在y=k1x 上,点C,D在y=k2x上,设P(m,k1m),则C(m,k2m ),A(m,0),B(0,k1m),令k1m=k2x,则x=k2mk1,即D(k2mk1,k1m),∴PC= k1m −k2m= k1−k2m,PD= m−k2mk1= m(k1−k2)k1,∵PDPB =m(k1−k2)k1m=k1−k2k1,PCPA=k1−k2mk1m=k1−k2k1,即PDPB=PCPA,又∠DPC=∠BPA,∴△PDC∽△PBA,∴∠PDC=∠PBC,∴CD∥AB,故①正确;△PDC的面积= 12×PD×PC= 12×m(k1−k2)k1×k1−k2m= (k1−k2)22k1,故③正确;S△OCD=S OAPB−S△OBD−S△OCA−S△DPC= k1−12k2−12k2−(k1−k2)22k1= k1−k2−(k1−k2)22k1= 2k1(k1−k2)2k1−(k1−k2)22k1= 2k12−2k1k2−(k1−k2)22k1= k12−k222k1,故②错误;故答案为:B.【分析】设P(m,k1m ),则C(m,k2m),A(m,0),B(0,k1m),令k1m=k2x,可求出D(k2mk1,k1 m ),从而求出PD、PC,继而求出PDPB=PCPA,由∠DPC=∠BPA可证△PDC∽△PBA,可得∠PDC=∠PBC,可证CD∥AB,据此判断①;由△PDC的面积= 12×PD×PC求出结论,据此判断③;由S△OCD=S OAPB−S△OBD−S△OCA−S△DPC,可求出结果,据此判断②即可.二、填空题9.【答案】3.02×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将3020000用科学记数法表示为3.02×106.故答案为:3.02×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,据此解答即可.10.【答案】4041【考点】平方差公式及应用【解析】【解答】解:20212−20202= (2021+2020)×(2021−2020)= 4041×1=4041故答案为:4041.【分析】利用平方差公式将原式变形为(2021+2020)×(2021−2020),然后计算即可.11.【答案】2【考点】解一元一次不等式组,点的坐标与象限的关系【解析】【解答】解:由题意得:{1−m<05−2m>0,解得:1<m<52,∴整数m的值为2,故答案为:2.【分析】根据第二象限点的坐标符号为负正,据此列出不等式组,求出解集即可.12.【答案】5【考点】平均数及其计算,中位数【解析】【解答】解:∵这组数据的平均数为5,则a+4+5+6+75=5,解得:a=3,将这组数据从小到大重新排列为:3,4,5,6,7,观察数据可知最中间的数是5,则中位数是5.故答案为:5.【分析】先利用平均数求出a值,再根据中位数的定义求解即可.13.【答案】20【考点】一元一次方程的实际应用-古代数学问题【解析】【解答】解:设快马行x天追上慢马,则此时慢马行了(x+12)日,依题意,得:240x=150(x+12),解得:x=20,∴快马20天追上慢马,故答案为:20.【分析】设快马行x天追上慢马,则此时慢马行了(x+12)日,利用快马走x天的路程=慢马(x+12)天所走的路程,列出方程求解即可.14.【答案】100π【考点】圆柱的计算【解析】【解答】解:∵果罐的主视图是边长为10cm的正方形,为圆柱体,∴圆柱体的底面直径和高为10cm,∴侧面积为10π×10= 100π,故答案为:100π.【分析】由圆柱的侧面积=底面周长×高,据此计算即可.15.【答案】3【考点】勾股定理,平行线分线段成比例,直角三角形斜边上的中线【解析】【解答】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC= √AB2−BC2=6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴DEAC =BDAB=12,即DE6=BDAB=12,∴DE=3,故答案为:3.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得AB=2CD=10,利用勾股定理求出AC=6,由DE⊥BC,AC⊥BC,可得DE∥AC,利用平行线分线段成比例即得DEAC =BDAB=12,据此即可求出结论.16.【答案】50【考点】等腰三角形的性质,含30°角的直角三角形,平行四边形的性质,角平分线的定义【解析】【解答】解:过点E作EF⊥BC,垂足为F,∵∠EBC=30°,BE=10,∴EF= 12BE=5,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DEC=∠BCE,又EC平分∠BED,即∠BEC=∠DEC,∴∠BCE=∠BEC,∴BE=BC=10,∴四边形ABCD的面积= BC×EF= 10×5=50,故答案为:50.【分析】过点E作EF⊥BC,垂足为F,由含30°角的直角三角形的性质得出EF= 12BE=5,根据平行四边形的性质及角平分线的定义得出∠BCE=∠BEC,从而可得BE=BC=10,由平行四边形ABCD的面积= BC×EF,据此计算即可.17.【答案】125【考点】勾股定理,矩形的性质,相似三角形的判定与性质,三角形全等的判定(AAS)【解析】【解答】解:∵DE=2EF,设EF=x,则DE=2x,∵四边形DEFG是矩形,∴GF∥AB,∴△CGF∽△CAB,∴GFAB =CFCB=44+3=47,即2xAB=47,∴AB=7x2,∴AD+BE=AB-DE= 7x2−2x= 32x,∵AC=BC,∴∠A=∠B,又DG=EF,∠ADG=∠BEF=90°,∴△ADG≌△BEF(AAS),∴AD=BE= 12×32x= 34x,在△BEF中,BE2+EF2=BF2,即(34x)2+x2=32,解得:x= 125或−125(舍),∴EF= 125,故答案为:125.【分析】设EF=x,则DE=2x,证明△CGF∽△CAB,利用相似三角形的性质求出AB=7x2,从而求出AD+BE=AB-DE= 32x,证明△ADG≌△BEF(AAS),可得AD=BE= 34x,在△BEF中,BE2+EF2=BF2,可得(34x)2+x2=32,求出x值即可.18.【答案】1275【考点】探索数与式的规律【解析】【解答】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:(1+2)×22=3,第③个图形中的黑色圆点的个数为:(1+3)×32=6,第④个图形中的黑色圆点的个数为:(1+4)×42=10,...第n个图形中的黑色圆点的个数为n(n+1)2,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50×512=1275,故答案为:1275.【分析】先分别求出第①、第②、第③、第④个图形中的黑色圆点的个数,据此寻找规律,可得第n 个图形中的黑色圆点的个数为n(n+1)2,再判断出其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,然后代入计算即可. 19.【答案】 (1)2;√3+2(2)证明:如图,延长BA′,交圆于点D ,连接CD ,∵点D 在圆上, ∴∠BDC=∠BAC , ∵∠BA′C=∠BDC+∠A′CD , ∴∠BA′C >∠BDC ,∴∠BA′C >∠BAC ,即∠BA′C >30° (3)√97−54;7√24【考点】三角形的面积,等边三角形的判定与性质,勾股定理,圆周角定理,圆的综合题 【解析】【解答】解:(1)①设O 为圆心,连接BO ,CO ,∵∠BAC=30°,∴∠BOC=60°,又OB=OC , ∴△OBC 是等边三角形, ∴OB=OC=BC=2,即半径为2;②∵△ABC以BC为底边,BC=2,∴当点A到BC的距离最大时,△ABC的面积最大,如图,过点O作BC的垂线,垂足为E,延长EO,交圆于D,∴BE=CE=1,DO=BO=2,∴OE= √BO2−BE2= √3,∴DE= √3+2,∴△ABC的最大面积为12×2×(√3+2)= √3+2;(3)①如图,当点P在BC上,且PC= 32时,∵∠PCD=90°,AB=CD=2,AD=BC=3,∴tan∠DPC= CDPC = 43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,∴当点P在优弧CPD上时,tan∠DPC= 43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊥BE,垂足为E,∵点Q是PD中点,∴点E为PC中点,即QE= 12CD=1,PE=CE= 12PC= 34,∴BE=BC-CE=3- 34= 94,∴BQ= √BE2+QE2= √974,∵PD= √CD2+PC2= 52,∴圆Q的半径为12×52=54,∴BP′=BQ-P′Q= √97−54,即BP的最小值为√97−54;②∵AD=3,CD=2,S△PCD=23S△PAD,则CDAD =23,∴△PAD中AD边上的高=△PCD中CD边上的高,即点P到AD的距离和点P到CD的距离相等,则点P到AD和CD的距离相等,即点P在∠ADC的平分线上,如图,过点C作CF⊥PD,垂足为F,∵PD平分∠ADC,∴∠ADP=∠CDP=45°,∴△CDF为等腰直角三角形,又CD=2,∴CF=DF=√2= √2,∵tan∠DPC= CFPF = 43,∴PF= 3√24,∴PD=DF+PF= √2+3√24= 7√24.【分析】(1)①设O为圆心,连接BO,CO,根据圆周角定理求出∠BOC=60°,可证△OBC是等边三角形,可得OB=OC=BC=2,据此即得结论;②过点O作BC的垂线,垂足为E,延长EO,交圆于D,以BC为底边,当点A到BC的距离最大时(即点A与D重合时),△ABC的面积最大,求出OE的长,利用三角形面积公式计算即可;(2)延长BA′,交圆于点D,连接CD,利用三角形外角的性质和圆周角定理进行证明即可;(3)①连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,可得当点P在优弧CPD上时,tan∠DPC= 43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊥BE,垂足为E,求出BQ与圆Q的半径,相减即得结论;②先推出点P在∠ADC的平分线上,如图,过点C作CF⊥PD,垂足为F,可得△CDF为等腰直角三角形,可得CF=DF的长,利用tan∠DPC= CFPF求出PF,根据PD=DF+PF计算即得结论.三、解答题20.【答案】(1)解:(−13)0+|√3−3|+tan60°= 1+3−√3+√3= 4(2)解: (a +b)÷(1a +1b ) = (a +b)÷a+b ab= (a +b)×aba+b = ab【考点】实数的运算,分式的混合运算,特殊角的三角函数值【解析】【分析】(1)利用零指数幂的性质、绝对值的性质、特殊角三角函数值进行计算即可; (2)将括号内通分并利用同分母分式加法法则计算,再将除法转化为乘法,进行约分即可化简.21.【答案】 解:方程组 {2x +y =7①x =y −1② ,把②代入①得: 2(y −1)+y =7 , 解得: y =3 ,代入①中, 解得: x =2 ,把 x =2 , y =3 代入方程 ax +y =4 得, 2a +3=4 , 解得: a =12【考点】二元一次方程的解,解二元一次方程组【解析】【分析】先求出方程组的解,再将其代入方程 ax +y =4 中,即可求出a 值. 22.【答案】 (1)200 (2)90;94 (3)解:50+94200×2000 =1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动 【考点】用样本估计总体,统计表,扇形统计图 【解析】【解答】解:(1)16÷8%=200,则样本容量是200; (2) 50200 ×360°=90°,则表示A 程度的扇形圆心角为90°; 200×(1-8%-20%- 50200 ×100%)=94, 则m=94;【分析】(1)利用D类的人数除以其百分比,即得样本容量;(2)利用A类百分比乘以360°,即得结论;先求出B类百分比,再乘以200即可求出m值;(3)利用样本中非常喜欢和比较喜欢人数的百分比之和乘以2000,即得结论.23.【答案】(1)13(2)解:画树状图如图:共有6种等可能的结果,甲与乙两同学恰好相邻而坐的结果有4种,∴甲与乙相邻而坐的概率为46= 23【考点】列表法与树状图法,概率公式【解析】【解答】解:(1)∵丙坐了一张座位,∴甲坐在①号座位的概率是13;【分析】(1)直接利用概率公式计算即可;(2)利用树状图列举出共有6种等可能的结果,其中甲与乙两同学恰好相邻而坐的结果有4种,然后利用概率公式计算即可.24.【答案】解:设原先每天生产x万剂疫苗,由题意可得:240(1+20%)x+0.5=220x,解得:x=40,经检验:x=40是原方程的解,∴原先每天生产40万剂疫苗【考点】分式方程的实际应用【解析】【分析】设原先每天生产x万剂疫苗,根据“ 现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天”列出方程,解之并检验即可.25.【答案】(1)解:四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形(2)解:∵∠BAC=90°,∴四边形AFDE是正方形,∵AD= 2√2,∴AF=DF=DE=AE= √2=2,√2∴四边形AFDE的面积为2×2=4【考点】平行四边形的判定与性质,菱形的判定,正方形的判定与性质【解析】【分析】(1)四边形AFDE是菱形,理由:由DE∥AB,DF∥AC,可证四边形AFDE是平行四边形,根据平行线的性质及角平分线的定义可得∠EDA=∠EAD,由等角对等边可得AE=DE,即可证明;(2)由∠BAC=90°,可证菱形AFDE是正方形,由对角线的长可求出边长,然后求出正方形的面积即可.26.【答案】(1)解:过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切(2)解:∵∠BCD=60°,CB=CD,∴△BCD是等边三角形,∴∠CBD=60°∵BF⊥CD,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF= 2√3,∴AD=DF= AB⋅tan30°=2,∴阴影部分的面积=S△ABD-S扇形ABE= 12×2√3×2−30×π×(2√3)2360= 2√3−π【考点】平行线的性质,等边三角形的判定与性质,切线的判定,扇形面积的计算,三角形全等的判定(AAS)【解析】【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD(AAS),可得BF=BA,根据切线的判定定理即证;(2)求得△BCD是等边三角形,可得∠CBD=60°,由BF⊥CD,可得∠ABD=∠DBF=∠CBF=30°,从而求出AD=DF=AB⋅tan30°=2,根据阴影部分的面积=S△ABD-S扇形ABE,进行即可.27.【答案】(1)-2;-3(2)解:连接BC,由题意可得:A(-1,0),B(3,0),C(0,-3),y=x2−2x−3,∴S△ABC= 12×4×3=6,∵S△ABD=2S△ABC,设点D(m,m2−2m−3),∴12×AB×|y D|=2×6,即12×4×|m2−2m−3|=2×6,解得:x= 1+√10或1−√10,代入y=x2−2x−3,可得:y值都为6,∴D(1+√10,6)或(1−√10,6)(3)解:设P(n,n2−2n−3),∵点P在抛物线位于x轴上方的部分,∴n<-1或n>3,当点P 在点A 左侧时,即n <-1,可知点C 到AP 的距离小于点B 到AP 的距离,∴ S △APC <S △APB ,不成立;当点P 在点B 右侧时,即n >3,∵△APC 和△APB 都以AP 为底,若要面积相等,则点B 和点C 到AP 的距离相等,即BC ∥AP ,设直线BC 的解析式为y=kx+p ,则 {0=3k +p −3=p,解得: {k =1p =−3 , 则设直线AP 的解析式为y=x+q ,将点A (-1,0)代入,则-1+q=0,解得:q=1,则直线AP 的解析式为y=x+1,将P (n , n 2−2n −3 )代入,即 n 2−2n −3=n +1 ,解得:n=4或n=-1(舍),n 2−2n −3=5 ,∴点P 的坐标为(4,5).【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,平行线之间的距离,三角形的面积,二次函数图象上点的坐标特征【解析】【解答】解:(1)∵点A 和点B 在二次函数 y =x 2+bx +c 图像上,则 {0=1−b +c 0=9+3b +c ,解得: {b =−2c =−3, 故答案为:-2,-3;【分析】(1)将A 、B 的坐标代入抛物线解析式中,求出b 、c 的值即可;(2) 连接BC , 先求出△ABC 的面积, 设点D (m , m 2−2m −3 ), 由 S △ABD =2S △ABC ,可得12×4×|m 2−2m −3|=2×6 , 据此求出m 的值即得结论;(3)设P (n , n 2−2n −3 ), 由于点P 在抛物线位于x 轴上方的部分,可得n <-1或n >3,所以分两种情况: ① 当点P 在点A 左侧时,②当点P 在点B 右侧时,据此分别解答即可.28.【答案】(1)48000;37(2)解:设两公司的月利润分别为y甲,y乙,月利润差为y,则y甲= [(50−x)×50+3000]x−200x,y乙= 3500x−1850,当甲公司的利润大于乙公司时,0<x<37,y=y甲-y乙= [(50−x)×50+3000]x−200x−(3500x−1850)= −50x2+1800x+1850,=18时,利润差最大,且为18050元;当x= −1800−50×2当乙公司的利润大于甲公司时,37<x≤50,y=y乙-y甲= 3500x−1850−[(50−x)×50+3000]x+200x= 50x2−1800x−1850,∵对称轴为直线x= −−1800=18,50×2当x=50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元(3)解:∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为y=−50x2+1800x+1850−ax= −50x2+(1800−a)x+1850,,对称轴为直线x= 1800−a100∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,∴16.5<1800−a<17.5,100解得:50<a<150【考点】二次函数的其他应用【解析】【解答】解:(1)[(50−10)×50+3000]×10−200×10=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x辆,由题意可得:[(50−x)×50+3000]x−200x=3500x−1850,解得:x=37或x=-1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x辆,月利润相等得到方程,求解即可;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,同(1)求出y甲,y乙的表达式,再分二种情况:①当甲公司的利润大于乙公司时,由y=y甲-y乙求出关系式;② 当乙公司的利润大于甲公司时,由y=y乙-y甲=求出关系式,根据二次函数的性质分别求出最大值,再比较即可;(3)根据题意可得利润差为y=−50x2+(1800−a)x+1850,可得对称轴为直线x=1800−a,由于x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,可得100∴16.5<1800−a<17.5,据此求出a的范围即可.100。
2022年江苏省扬州市中考数学试卷和答案解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.(3分)实数﹣2的相反数是()A.2B.﹣C.﹣2D.2.(3分)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x只,兔有y只,那么可列方程组为()A.B.C.D.4.(3分)下列成语所描述的事件属于不可能事件的是()A.水落石出B.水涨船高C.水滴石穿D.水中捞月5.(3分)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥6.(3分)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC7.(3分)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③8.(3分)某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁二、填空题(本大题共有10小题,每小题3分,共30分.不需写出参考答案过程,请把答案直接填写在答题卡相应位置上)9.(3分)扬州某日的最高气温为6℃,最低气温为﹣2℃,则该日的日温差是℃.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)分解因式:3m2﹣3=.12.(3分)请填写一个常数,使得关于x的方程x2﹣2x+=0有两个不相等的实数根.13.(3分)如图,函数y=kx+b(k<0)的图象经过点P,则关于x 的不等式kx+b>3的解集为.14.(3分)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E与震级n的关系为E=k×101.5n(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的倍.15.(3分)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2S乙2.(填“>”“<”或“=”)16.(3分)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND=°.17.(3分)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B′处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB′于点P.若BC=12,则MP+MN=.18.(3分)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sinA的值为.三、参考答案题(本大题共有10小题,共96分.请在答题卡指定区域内作答,参考答案时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(1)2cos45°+(π﹣)0﹣;(2)(+1)÷.20.(8分)解不等式组并求出它的所有整数解的和.21.(8分)某校初一年级有600名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中(填“A”或“B”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:23457131415成绩/个人数/11185121人这组测试成绩的平均数为个,中位数为个;(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.22.(8分)某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果;(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.23.(10分)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?24.(10分)如图,在▱ABCD中,BE、DG分别平分∠ABC、∠ADC,交AC于点E、G.(1)求证:BE∥DG,BE=DG;(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF =6,求△ABC的面积.25.(10分)如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若sinA=,OA=8,求CB的长.26.(10分)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)27.(12分)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.28.(12分)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D 作DE⊥AD,交射线AB于点E.(1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;①点E在线段AB的延长线上且BE=BD;②点E在线段AB上且EB=ED.(2)若AB=6.①当=时,求AE的长;②直接写出运动过程中线段AE长度的最小值.参考答案解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.【点拨】直接利用相反数的定义得出答案.【参考答案】解:实数﹣2的相反数是2.故选:A.2.【点拨】根据平方数非负数判断出点P的纵坐标是正数,再根据各象限内点的坐标特征参考答案.【参考答案】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.3.【点拨】关系式为:鸡的只数+兔的只数=35;2×鸡的只数+4×兔的只数=94,把相关数值代入即可求解.【参考答案】解:设鸡有x只,兔有y只,可列方程组为:.故选:D.4.【点拨】根据事件发生的可能性大小判断.【参考答案】解:A、水落石出,是必然事件,不符合题意;B、水涨船高,是必然事件,不符合题意;C、水滴石穿,是必然事件,不符合题意;D、水中捞月,是不可能事件,符合题意;故选:D.5.【点拨】根据三视图即可判断该几何体.【参考答案】解:由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥,故选:B.6.【点拨】直接利用全等三角形的判定方法点拨得出答案.【参考答案】解:A.利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,∠B,无法确定三角形的形状,故此选项符合题意;D.根据∠A,∠B,BC,三角形形状确定,故此选项不合题意;故选:C.7.【点拨】由旋转的性质得出∠BAC=∠DAE,∠B=∠ADE,AB =AD,∠E=∠C,进而得出∠B=∠ADB,得出∠ADE=∠ADB,得出DA平分∠BDE,可判断结论②符合题意;由∠AFE=∠DFC,∠E=∠C,得出△AFE∽△DFC,可判断结论①符合题意;由∠BAC=∠DAE,得出∠BAD=∠FAE,由相似三角形的性质得出∠FAE=∠CDF,进而得出∠BAD=∠CDF,可判断结论③符合题意;即可得出答案.【参考答案】解:∵将△ABC以点A为中心逆时针旋转得到△ADE,∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,∴∠B=∠ADB,∴∠ADE=∠ADB,∴DA平分∠BDE,∴②符合题意;∵∠AFE=∠DFC,∠E=∠C,∴△AFE∽△DFC,∴①符合题意;∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠FAE,∵△AFE∽△DFC,∴∠FAE=∠CDF,∴∠BAD=∠CDF,∴③符合题意;故选:D.8.【点拨】根据题意可知xy的值即为该校的优秀人数,再根据图象即可确定丙校的优秀人数最多.【参考答案】解:根据题意,可知xy的值即为该校的优秀人数,∵描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,∴乙、丁两所学校的优秀人数相同,∵点丙在反比例函数图象上面,∴丙校的xy的值最大,即优秀人数最多,故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出参考答案过程,请把答案直接填写在答题卡相应位置上)9.【点拨】由最高气温减去最低气温确定出该日的日温差即可.【参考答案】解:根据题意得:6﹣(﹣2)=6+2=8(℃),则该日的日温差是8℃.故答案为:8.10.【点拨】直接利用二次根式有意义的条件进而得出答案.【参考答案】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.11.【点拨】原式提取公因式,再利用平方差公式分解即可.【参考答案】解:原式=3(m2﹣1)=3(m+1)(m﹣1).故答案为:3(m+1)(m﹣1).12.【点拨】根据方程的系数结合根的判别式Δ=b2﹣4ac>0,即可得出关于c的不等式,解之即可求出c的值.【参考答案】解:a=1,b=﹣2.∵Δ=b2﹣4ac=(﹣2)2﹣4×1×c>0,∴c<1.故答案为:0(答案不唯一).13.【点拨】根据函数图象中的数据和一次函数的性质,可以写出等式kx+b>3的解集.【参考答案】解:由图象可得,当x=﹣1时,y=3,该函数y随x的增大而减小,∴不等式kx+b>3的解集为x<﹣1,故答案为:x<﹣1.14.【点拨】由题意列出算式:,进行计算即可得出答案.【参考答案】解:由题意得:==1000,故答案为:1000.15.【点拨】直接根据图表数据的波动大小进行判断即可.【参考答案】解:图表数据可知,甲数据偏离平均数数据较大,乙数据偏离平均数数据较小,即甲的波动性较大,即方差大,故答案为:>.16.【点拨】由直角三角形的性质得出∠F=30°,∠B=45°,由平行线的性质得出∠NDB=∠F=30°,再由三角形内角和定理即可求出∠BND的度数.【参考答案】解:∵∠E=60°,∠C=45°,∴∠F=30°,∠B=45°,∵EF∥BC,∴∠NDB=∠F=30°,∴∠BND=180°﹣∠B﹣∠NDB=180°﹣45°﹣30°=105°,故答案为:105.17.【点拨】先把图补全,由折叠得:AM=MD,MN⊥AD,AD⊥BC,证明GN是△ABC的中位线,得GN=6,可得答案.【参考答案】解:如图2,由折叠得:AM=MD,MN⊥AD,AD ⊥BC,∴GN∥BC,∴AG=BG,∴GN是△ABC的中位线,∴GN=BC=×12=6,∵PM=GM,∴MP+MN=GM+MN=GN=6.故答案为:6.18.【点拨】根据勾股定理和锐角三角函数的定义参考答案即可.【参考答案】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sinA==.故答案为:.三、参考答案题(本大题共有10小题,共96分.请在答题卡指定区域内作答,参考答案时应写出必要的文字说明、证明过程或演算步骤)19.【点拨】(1)根据特殊角的三角函数值、零指数幂、二次根式的性质计算即可;(2)根据分式的混合运算法则计算.【参考答案】解:(1)原式=2×+1﹣2=+1﹣2=1﹣;(2)原式=(+)•=•=.20.【点拨】先解出每个不等式的解集,即可得到不等式组的解集,然后即可求得该不等式组所有整数解的和.【参考答案】解:,解不等式①,得:x≥﹣2,解不等式②,得:x<4,∴原不等式组的解集是﹣2≤x<4,∴该不等式组的整数解是﹣2,﹣1,0,1,2,3,∵﹣2+(﹣1)+0+1+2+3=3,∴该不等式组所有整数解的和是3.21.【点拨】(1)根据抽样调查的特点参考答案即可;(2)根据平均数,中位数计算公式参考答案即可;(3)用样本估计总体的思想参考答案即可.【参考答案】解:(1)从初一所有男生中随机抽取20名男生进行引体向上测试,收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况,故答案为:B;(2)这组测试成绩的平均数为:(2×1+3×1+4×1+5×8+7×5+13×1+14×2+15×1)=7(个),中位数为:5(个),故答案为:7,5;(3)600×=90(人),答:校初一有90名男生不能达到合格标准.22.【点拨】(1)画出树状图即可;(2)由树状图可知,摸出颜色不同的两球的结果有4种,摸出颜色相同的两球的结果有2种,再由概率公式去摸出颜色不同的两球的概率和摸出颜色相同的两球的概率,进而得出结论.【参考答案】解:(1)画树状图如下:共有6种等可能出现的结果;(2)摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球对应的奖次为一等奖,理由如下:由树状图可知,摸出颜色不同的两球的结果有4种,摸出颜色相同的两球的结果有2种,∴摸出颜色不同的两球的概率为=,摸出颜色相同的两球的概率为=,∵一等奖的获奖率低于二等奖,<,∴摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球对应的奖次为一等奖.23.【点拨】设每个小组有学生x名,由题意得:,解分式方程并检验后即可得出答案.【参考答案】解:设每个小组有学生x名,由题意得:,解得:x=10,当x=10时,12x≠0,∴x=10是分式方程的根,答:每个小组有学生10名.24.【点拨】(1)根据平行四边形的性质可得∠DAC=∠BCA,AD =BC,AB=CD,由角平分线的定义及三角形外角的性质可得∠DGE=∠BEG,进而可证明BE∥DG;利用ASA证明△ADG≌△CBE可得BE=DG;(2)过E点作EH⊥BC于H,由角平分线的性质可求解EH=EF =6,根据平行四边形的性质可求解AB+BC=28,再利用三角形的面积公式计算可求解.【参考答案】(1)证明:在▱ABCD中,AD∥BC,∠ABC=∠ADC,∴∠DAC=∠BCA,AD=BC,AB=CD,∵BE、DG分别平分∠ABC、∠ADC,∴∠ADG=∠CBE,∵∠DGE=∠DAC+∠ADG,∠BEG=∠BCA+∠CBE,∴∠DGE=∠BEG,∴BE∥DG;在△ADG和△CBE中,,∴△ADG≌△CBE(ASA),∴BE=DG;(2)解:过E点作EH⊥BC于H,∵BE平分∠ABC,EF⊥AB,∴EH=EF=6,∵▱ABCD的周长为56,∴AB+BC=28,∴S△ABC====84.25.【点拨】(1)连接OB,由等腰三角形的性质得出∠A=∠OBA,∠CPB=∠CBP,结合对顶角的性质得出∠APO=∠CBP,由垂直的性质得出∠A+∠APO=90°,进而得出∠OBA+∠CBP=90°,即可得出直线BC与⊙O相切;(2)由sinA=,设OP=x,则AP=5x,由勾股定理得出方程,解方程求出x的值,进而得出OP=×=4,再利用勾股定理得出BC2+82=(BC+4)2,即可求出CB的长.【参考答案】解:(1)直线BC与⊙O相切,理由:如图,连接OB,∵OA=OB,∴∠A=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠A+∠APO=90°,∴∠OBA+∠CBP=90°,∴∠OBC=90°,∵OB为半径,∴直线BC与⊙O相切;(2)在Rt△AOP中,sinA=,∵sinA=,∴设OP=x,则AP=5x,∵OP2+OA2=AP2,∴,解得:x=或﹣(不符合题意,舍去),∴OP=×=4,∵∠OBC=90°,∴BC2+OB2=OC2,∵CP=CB,OB=OA=8,∴BC2+82=(BC+4)2,解得:BC=6,∴CB的长为6.26.【点拨】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,弧CD即为所求.【参考答案】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.27.【点拨】(1)先根据题意求出抛物线的解析式,当正方形的两个顶点在抛物线上时正方形面积最大,先根据GH=2OG计算H的横坐标,再求出此时正方形的面积即可;(2)由(1)知:设H(t,﹣t2+8)(t>0),表示矩形EFGH的周长,再根据二次函数的性质求出最值即可;(3)设半径为3dm的圆与AB相切,并与抛物线相交,设交点为N,求出点N的坐标,并计算点N是圆M与抛物线在y轴右侧的切点即可.【参考答案】解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C(0,8),设抛物线的解析式为:y=ax2+8,把B(4,0)代入得:0=16a+8,∴a=﹣,∴抛物线的解析式为:y=﹣x2+8,∵四边形EFGH是正方形,∴GH=FG=2OG,设H(t,﹣t2+8)(t>0),∴﹣t2+8=2t,解得:t1=﹣2+2,t2=﹣2﹣2(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;(2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,∵﹣1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,则MN=OM=3,NQ⊥MN,设N(m,﹣m2+8),由勾股定理得:PM2+PN2=MN2,∴m2+(﹣m2+8﹣3)2=32,解得:m1=2,m2=﹣2(舍),∴N(2,4),∴PM=4﹣1=3,∵cos∠NMP===,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴,∴,∴QN的解析式为:y=﹣2x+12,﹣x2+8=﹣2x+12,x2﹣2x+4=0,Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆.28.【点拨】(1)①由DE⊥AD,BE=BD,∠EAD=∠BDA,有AB =BD,即可得BE=BD=AB,AE=2BE;②由∠BAC=90°,∠C=60°,EB=ED,可得∠EDB=∠B=30°,即得∠AED=∠EDB+∠B=60°,根据DE⊥AD,可得AE =2ED,故AE=2EB;(2)①过D作DF⊥AB于F,证明△AFD∽△ADE,由=,可得=,设DF=m,则AF=2m,在Rt△BDF中,BF=DF=3m,而AB=6,可得m=,有AF=,DF=,AD ==,又=,即可得AE=;②作AE的中点G,连接DG,根据∠ADE=90°,DG是斜边上的中线,得AE=2DG,即知当AE最小时,DG最小,此时DG ⊥BC,可证AG=EG=BE,从而得线段AE长度的最小值为4.【参考答案】解:(1)①AE=2BE,理由如下:∵DE⊥AD,∴∠AED+∠EAD=90°=∠ADE=∠BDE+∠BDA,∵BE=BD,∴∠AED=∠BDE,∴∠EAD=∠BDA,∴AB=BD,∴BE=BD=AB,∴AE=2BE;②AE=2EB,理由如下:如图:∵∠BAC=90°,∠C=60°,∴∠B=30°,∵EB=ED,∴∠EDB=∠B=30°,∴∠AED=∠EDB+∠B=60°,∵DE⊥AD,∴∠EDA=90°,∠EAD=30°,∴AE=2ED,∴AE=2EB;(2)①过D作DF⊥AB于F,如图:∵∠FAD=∠DAE,∠AFD=90°=∠ADE,∴△AFD∽△ADE,∴=,即=,∵=,∴=,设DF=m,则AF=2m,在Rt△BDF中,BF=DF=3m,∵AB=6,∴BF+AF=6,即3m+2m=6,∴m=,∴AF=,DF=,∴AD==,∵△AFD∽△ADE,∴=,即=,∴AE=;②作AE的中点G,连接DG,如图:∵∠ADE=90°,DG是斜边上的中线,∴AE=2DG,DG=AG=EG,当AE最小时,DG最小,此时DG⊥BC,∵∠B=30°,∴BG=2DG,∴AE=2DG=BG,∴BE=AG,∴AG=EG=BE,∴此时AE=AB=4,答:线段AE长度的最小值为4,法2:过A做AG⊥BC于G,过E做EH⊥BC于H,如图:∵∠ADE=90°,∴∠EDH=90°﹣∠ADG=∠DAG,∵∠EHD=∠AGD=90°,∴=,∴AG•EH=DH•DG,∵∠BAC=90°,∠C=60°,∴∠B=30°,∴AG=AB=3,EH=BE=(6﹣AE),∴DH•DG=3EH,∴AE2=AD2+DE2=AG2+DG2+DH2+EH2=9+DG2+DH2+EH2,∵DG2+DH2≥2DH•DG,∴AE2≥9+2DH•DG+EH2,即AE2≥9+6EH+EH2,∴AE2≥(3+EH)2,∵AE>0,EH>0,∴AE≥3+EH,∵EH=(6﹣AE),∴AE≥3+(6﹣AE),∴AE≥4.答:线段AE长度的最小值为4,。
扬州市2022年初中毕业、升学统一考试数学试题一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2的相反数是()A. 2B. -2C. ±2D. -12【答案】A【解析】【分析】根据相反数的定义直接解答即可.【详解】解:-2的相反数是2.故选:A.【点睛】本题考查相反数,相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2. 在平面直角坐标系中,点P(﹣3,a2+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵a2⩾0,∴a2+1⩾1,∴点P(−3,a2+1)所在的象限是第二象限.故选B.3. 《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有x只,兔有y只,那么可列方程组为()A.354494x yx y+=ìí+=îB.354294x yx y+=ìí+=îC.944435x yx y+=ìí+=îD.352494x yx y+=ìí+=î【答案】D【解析】【分析】一只鸡1个头2个足,一只兔1个头4个足,利用共35头,94足,列方程组即可【详解】一只鸡1个头2个足,一只兔1个头4个足设鸡有x只,兔有y只由35头,94足,得:352494x y x y +=ìí+=î故选:D【点睛】本题考查方程组的实际应用,注意结合实际情况,即一只鸡1个头2个足,一只兔1个头4个足,去列方程4. 下列成语所描述的事件属于不可能事件的是( )A. 水落石出B. 水涨船高C. 水滴石穿D. 水中捞月【答案】D【解析】【分析】根据不可能事件的定义:在一定条件下一定不会发生的事件是不可能事件,进行逐一判断即可【详解】解:A 、水落石出是必然事件,不符合题意;B 、水涨船高是必然事件,不符合题意;C 、水滴石穿是必然事件,不符合题意;D 、水中捞月是不可能事件,符合题意;故选D【点睛】本题主要考查了不可能事件,熟知不可能事件的定义是解题的关键.5. 如图是某一几何体的主视图、左视图、俯视图,该几何体是( )A. 四棱柱B. 四棱锥C. 三棱柱D. 三棱锥【答案】B【解析】【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∴该几何体是四棱锥,故选B .【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.6. 如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC D ,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A. ,,AB BC CAB. ,,AB BC B ÐC. ,,AB AC B ÐD. ,,ÐÐA B BC【答案】C【解析】【分析】根据SSS ,SAS ,ASA 逐一判定,其中SSA 不一定符合要求.【详解】A. ,,AB BC CA .根据SSS 一定符合要求;B. ,,AB BC B Ð.根据SAS 一定符合要求;C. ,,AB AC B Ð.不一定符合要求;D. ,,ÐÐA B BC .根据ASA 一定符合要求.故选:C .【点睛】本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS ,SAS ,ASA 三个判定定理.7. 如图,在ABC D 中,AB AC <,将ABC V 以点A 为中心逆时针旋转得到ADE V ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE Ð;③CDF BAD Ð=Ð,其中所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∵将ABC V 以点A 为中心逆时针旋转得到ADE V ,∴ADE ABC V V ≌,E C \Ð=Ð,AFE DFC Ð=ÐQ ,\AFE DFC △△,故①正确;Q ADE ABC V V ≌,AB AD \=,ABD ADB \Ð=Ð,ADE ABC Ð=ÐQ ,ADB ADE \Ð=Ð,\DA 平分BDE Ð,故②正确;Q ADE ABC V V ≌,BAC DAE \Ð=Ð,BAD CAE \Ð=Ð,Q AFE DFC △△,CAE CDF \Ð=Ð,CDF BAD Ð=Ð\,故③正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8. 某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y 与该校参加竞赛人数x 的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】根据反比例函数图像与性质求解即可得到结论.【详解】解:描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,设反比例函数表达式为k y x=,则令甲()11,x y 、乙()22,x y 、丙()33,x y 、丁()44,x y ,过甲点作y 轴平行线交反比例函数于()11,x y ¢,过丙点作y 轴平行线交反比例函数于()33,x y ¢,如图所示:由图可知1133,y y y y ¢¢><,\()11,x y ¢、乙()22,x y 、()33,x y ¢、丁()44,x y 在反比例函数k y x=图像上,根据题意可知xy =优秀人数,则①2244x y k x y ==,即乙、丁两所学校优秀人数相同;②1111x y x y k ¢<=,即甲学校优秀人数比乙、丁两所学校优秀人数少;③3333x y x y k ¢>=,即丙学校优秀人数比乙、丁两所学校优秀人数多;综上所述:甲学校优秀人数<乙学校优秀人数=丁学校优秀人数<丙学校优秀人数,\在这次党史知识竞赛中成绩优秀人数最多的是丙学校,故选:C .【点睛】本题考查反比例函数图像与性质的实际应用题,读懂题意,并熟练掌握反比例函数的图像与性质是解决问题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需要写解答过程,请把答案直接写在答题卡相应位置上)9. 扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是__.【答案】8℃.【解析】【详解】用最高温度减去最低温度即可得当天日温差:6-(-2)=6+2=8℃.10.在实数范围内有意义,则x 的取值范围是_______.【答案】1³x 【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解:在实数范围内有意义,∴x -1≥0,解得x ≥1.故答案为:x ≥1.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.11. 分解因式233m -=_____.【答案】3(x-1)(x+1)【解析】【分析】注意将提取公因式与乘法公式综合应用,将整式提取公因式后再次利用公式分解.【详解】解:3m 2-3=3(m 2-1)=3(m -1)(m +1)故答案:3(m -1)(m +1).【点睛】本题考查的是提公因式法与公式法分解因式的综合运用.分解因式时,有公因式的,先提公因式,再考虑运用何种公式法来分解.12. 请填写一个常数,使得关于x 方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一)【解析】【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a ,∵要使原方程有两个不同的实数根,的为的∴()2=240a D -->,∴1a <,∴满足题意的常数可以为0,故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键.13. 如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.【答案】1x <-【解析】【分析】观察一次函数图像,可知当y >3时,x 的取值范围是1x <-,则3kx b +>的解集亦同.【详解】由一次函数图像得,当y >3时,1x <-,则y =kx+b >3的解集是1x <-.【点睛】本题考查了一次函数与不等式结合,深入理解函数与不等式的关系是解题的关键.14. 掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E 与震级n 的关系为1.510n E k =´(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【解析】【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量E 与震级n 的关系为 1.510n E k =´(其中k 为大于0的常数)可得到,当震级为8级的地震所释放的能量为: 1.58121010k k ´´=´,当震级为6级的地震所释放的能量为: 1.5691010k k ´´=´,12391010100010k k ´==´Q ,\震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.15. 某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为22S S 乙甲、,则2S 甲________2S 乙.(填“>”“<”或“=”)【答案】>【解析】【分析】分别求出平均数,再利用方差的计算公式计算甲、乙的方差,进行比较即可.【详解】根据折线统计图中数据,()51093857x =++++¸=甲,()8686757x =++++¸=乙,∴()()()()()222222157107973787 6.85s éù=´-+-+-+-+-=ëû甲,()()()()()222222187678767770.85s éù=´-+-+-+-+-=ëû乙,∴22s s >乙甲,故答案为:>.【点睛】本题主要考查平均数和方差的计算,掌握方差的计算公式是解答本题的关键.16. 将一副直角三角板如图放置,已知60E Ð=°,45C Ð=°,EF BC ∥,则BND Ð=________°.【答案】105【解析】【分析】根据平行线的性质可得45FAN B Ð=Ð=°,根据三角形内角和定理以及对顶角相等即可求解.【详解】45B C аÐ==Q ,EF BC ∥,\45FAN B Ð=Ð=°,∵∠E =60°,∴∠F =30°,180105BND ANF F BAF \Ð=Ð=°-Ð-Ð=°故答案为:105【点睛】本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.17. “做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC ,第1次折叠使点B 落在BC 边上的点B ¢处,折痕AD 交BC 于点D ;第2次折叠使点A 落在点D 处,折痕MN 交AB ¢于点P .若12BC =,则MP MN +=_____________.【答案】6【解析】【分析】根据第一次折叠的性质求得12BD DB BB ¢¢==和AD BC ^,由第二次折叠得到AM DM =,MN AD ^,进而得到MN BC P ,易得MN 是ADC V 的中位线,最后由三角形的中位线求解.【详解】解:∵已知三角形纸片ABC ,第1次折叠使点B 落在BC 边上的点B ¢处,折痕AD 交BC 于点D ,∴12BD DB BB ¢¢==,AD BC ^.∵第2次折叠使点A 落在点D 处,折痕MN 交AB ¢于点P ,∴AM DM =,AN ND =,∴MN AD ^,∴MN BC P .∵AM DM =,∴MN 是ADC V 的中位线,∴12MP DB ¢=,12MN DC =.∵12BC =,2BD DC CB BD BC +=+¢=,∴()111162222MP MN DB DC DB DB B C BC +=+=+=¢+¢¢=¢.故答案为:6.【点睛】本题主要考查了折叠的性质和三角形中位线的性质,理解折叠的性质,三角形的中位线性质是解答关键.18. 在ABC D 中,90C Ð=°,a b c 、、分别为A B C ÐÐÐ、、的对边,若2b ac =,则sin A 的值为__________.【解析】【详解】解:如图所示:在Rt ABC V 中,由勾股定理可知:222+=a b c ,2ac b =Q ,22a ac c \+=,0a >Q , 0b >,0c >,2222a ac c c c +\=,即:21a a c cæö+=ç÷èø,求出a c =或a c =,\在Rt ABC V 中:in s a c A ==,【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt ABC V 中,sin A A Ð=的对边斜边 ,cos A A Ð=的邻边斜边,tan A A A Ð=Ð的对边的邻边.三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19. 计算:(1)(02cos 45p °+-(2)22221121m m m m +æö+¸ç÷--+èø【答案】(1)1(2)12m -【解析】【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可;(2)先合并括号里的分式,再对分子和分母分别因式分解即可化简;【小问1详解】解:原式=21+-=1-.【小问2详解】解:原式=()()21211121m m m m m --æö+×ç÷--+èø=()()211121m m m m -+×-+=12m -.【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.20. 解不等式组221213x x x x -£ìï+í-<ïî,并求出它的所有整数解的和.【答案】3【解析】【分析】先解每个不等式,求得不等式组的解集,然后找出所有整数解求和即可.【详解】解:221213x x x x -£ìïí+-<ïî①②解不等式①,得2x ³-,解不等式②,得4x <,∴不等式组的解集为24x -£<,∴不等式组的所有整数解为:2- ,1- ,0 ,1 ,2 ,3∴所有整数解的和为:()2101233-+-++++=.【点睛】本题考查了求不等式组的解集,正确地解每一个不等式是解题的关键.21. 某校初一年级有600名男生 ,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)A 调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B 调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中_________(填“A ”或“B ”),调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:成绩/个23457131415人数/人11185121这组测试成绩的平均数为_________个,中位数为__________个;(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.【答案】(1)B (2)7;5(3)90名【解析】【分析】(1)根据随机调查要具有代表性考虑即可求解;(2)利用加权平均数公式计算,再根据中位数的概念确定这组测试成绩的中位数即可;(3)根据中位数确定样本中不合格的百分比,再乘以该校初一男生的总人数即可求解.【小问1详解】解:∵随机调查要具有代表性,∴从初一所有男生中随机抽取20名男生进行引体向上测试,能较好地反映该校初一男生引体向上的水平状况,故答案为:B;【小问2详解】解:23458751314215=720+++´+´++´+;这组数据排序后,中位数应该是第10,11两个人成绩的平均数,而第10,11两人的成绩都是5,∴这组测试成绩的中位数为55=5 2+,故答案为:7;5【小问3详解】解:以(2)中测试成绩的中位数5作为该校初一男生引体向上的合格标准,则这组测试成绩不合格的人数有3人,∴不合格率为3100%=15% 20´,∴该校初一男生不能达到合格标准的人数为60015%=90´(名).【点睛】本题考查了随机调查,中位数,众数以及利用样本估计总体,读懂题意,理解概念是解题关键.22. 某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果;的(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.【答案】(1)见解析(2)见解析【解析】【分析】(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果;(2)根据树状图找出颜色不同的两球和摸出颜色相同的两球的情况,即可得解.【小问1详解】解:画树状图如下:由树状图知共有6种情况;【小问2详解】解:由(1)知抽到颜色相同的两球共有2种情况,抽到颜色不同的两球共有4种情况,所以抽到颜色相同的两球对应一等奖,抽到颜色不同的两球对应二等奖.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23. 某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【解析】【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,根据题意,得3603603 34-=x x,解这个方程,得x=10,经检验,x=10是原方程的根,∴每个小组有学生10名.【点睛】此题考查了分式方程的应用,弄清题意是解本题的关键.24. 如图,在ABCD Y 中,BE 、D G 分别平分ABC ADC ÐÐ、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ^,垂足为F .若ABCD Y 的周长为56,6EF =,求ABC D 的面积.【答案】(1)见详解(2)84【解析】【分析】(1)由平行四边形的性质证()ABE CDG ASA D @D 即可求证;(2)作EQ BC ^,由ΔΔΔABC ABE EBC S S S =+即可求解;【小问1详解】证明:在ABCD Y 中,∵//AB CD ,∴BAE DCG Ð=Ð,∵BE 、D G 分别平分ABC ADC ÐÐ、,ABC ADC Ð=Ð,∴ABE CDG Ð=Ð,在ABE D 和CDG D 中,∵BAE DCG AB CDABE CDG Ð=Ðìï=íïÐ=Ðî∴()ABE CDG ASA D @D ,∴BE DG AEB CGD =Ð=Ð,,∴BE DG ∥.【小问2详解】如图,作EQ BC ^,∵ABCD Y 的周长为56,∴28AB BC +=,∵BE 平分ABC Ð,∴6EQ EF ==,∴()1138422ABC ABE EBC S S S EF AB EQ BC AB BC D D D =+=×+×=+=.【点睛】本题主要考查平行四边形的性质、三角形的全等、角平分线的性质,掌握相关知识并灵活应用是解题的关键.25. 如图,AB 为O e 的弦,OC OA ^交AB 于点P ,交过点B 的直线于点C ,且CB CP =.(1)试判断直线BC 与O e 的位置关系,并说明理由;(2)若sin 8A OA ==,求CB 的长.【答案】(1)相切,证明见详解(2)6【解析】【分析】(1)连接OB ,根据等腰三角形的性质得出A OBA Ð=Ð,CPB CBP Ð=Ð,从而求出90AOC OBC Ð=Ð=°,再根据切线的判定得出结论;(2)分别作OM AB ^交AB 于点M ,CN AB ^交AB 于N ,根据sin 8A OA ==求出OP ,AP 的长,利用垂径定理求出AB 的长,进而求出BP 的长,然后在等腰三角形CPB 中求解CB 即可.【小问1详解】证明:连接OB ,如图所示:CP CB OA OB ==Q ,,\A OBA Ð=Ð,CPB CBP Ð=Ð,APO CPB Ð=ÐQ ,APO CBP \Ð=Ð,OC OA ^Q ,即90AOP °=∠,90A APO OBA CBP OBC \Ð+Ð=°=Ð+Ð=Ð,OB BC \^,OB Q 为半径,经过点O ,\直线BC 与O e 的位置关系是相切.【小问2详解】分别作OM AB ^交AB 于点M ,CN AB ^交AB 于N ,如图所示:AM BM \=,CP CB AO CO =^Q ,,A APO PCN CPN \Ð+Ð=Ð+Ð,PN BN =,PCN BCNÐ=ÐA BCN\Ð==Ðsin A =Q ,8OA =,sin OM OP A OA AP \===4OM AM OP AP \====,2AB AM \==111()222PN BN PB AB AP \===-=´-=sin sin BN A BCN CB \=Ð==6CB \===.【点睛】本题考查了切线的证明,垂径定理的性质,等腰三角形,勾股定理,三角函数等知识点,熟练掌握相关知识并灵活应用是解决此题的关键,抓住直角三角形边的关系求解线段长度是解题的主线思路.26. 【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB ,请你用圆规和无刻度的直尺过圆心O 作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN ,请你用圆规和无刻度的直尺作一个以MN 为斜边的等腰直角三角形MNP ;【问题再解】如图3,已知扇形OAB ,请你用圆规和无刻度的直尺作一条以点O 为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【答案】见解析【解析】【分析】【初步尝试】如图1,作∠AOB的角平分线所在直线即为所求;【问题联想】如图2,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图3先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形OAB所交的圆弧即为所求.【详解】【初步尝试】如图所示,作∠AOB的角平分线所在直线OP即为所求;【问题联想】如图,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图,先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形OAB所交的圆弧CD即为所求.【点睛】本题考查了尺规作图,角平分线的性质,线段垂直平分线的性质,扇形的面积等知识,解决此类题目的关键是熟悉基本几何图形的性质,掌握基本作图方法.27. 如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且8AB =dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度8OC =dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 圆,请说明理由.【答案】(1)(296dm - ;(2)20dm ;(3)能切得半径为3dm 的圆.【解析】【分析】(1)先把二次函数解析式求出来,设正方形的边长为2m ,表示在二次函数上点的坐标,代入即可得到关于m 的方程进行求解;(2)如详解2中图所示,设矩形落在AB 上的边DE =2n ,利用函数解析式求解F点坐标,进而表示出矩的形的周长求最大值即可;(3)设半径为3dm 的圆与AB 相切,并与抛物线小脚,设交点为N ,求出交点N 的坐标,并计算点N 是M e 与抛物线在y 轴右侧的切点即可.【小问1详解】由题目可知A (-4,0),B (4,0),C (0,8)设二次函数解析式为y=ax ²+bx+c ,∵对称轴为y 轴,∴b =0,将A 、C 代入得,a =12-,c =8则二次函数解析式为2182y x =-+,如下图所示,正方形MNPQ 即为符合题意得正方形,设其边长为2m ,则P 点坐标可以表示为(m ,2m )代入二次函数解析式得,21822m m -+=,解得122,2m m =-=-(舍去),∴2m =4-,()()222496m ==-则正方形的面积为(296dm -;【小问2详解】如下如所示矩形DEFG ,设DE =2n ,则E (n ,0)将x =n 代入二次函数解析式,得2182y n =-+,则EF =2182n -+,矩形DEFG 的周长为:2(DE +EF )=2(2n +2182n -+)=22416(2)20n n n -++=--+,当n =2时,矩形的周长最大,最大周长为20dm ;【小问3详解】若能切成圆,能切得半径为3dm 的圆,理由如下:如图,N 为M e 上一点,也是抛物线上一点,过点N 作M e 的切线交y 轴于点Q ,连接MN ,过点N 作NP ⊥y 轴于P ,设21,82N m m æö-+ç÷èø,由勾股定理得:222PM PN MN +=,∴222218332m m æö+-+-=ç÷èø解得:1m =,2m =-(舍去),∴()4N ,∴431PM =-=∵1cos 3PM MN NMP MN QM Ð===∴39QM MN ==∴()0,12Q 设QN 的解析式为:y kx b=+∴124b =ìïí+=ïî∴12k b ì=-ïí=ïî∴QN的解析式为:12y =-+与抛物线联立为:218122x -+=-+21402x -+=(214402D =--´´=所以此时N 为M e 与抛物线在y 轴右侧的唯一公共点,所以若切割成圆,能够切成半径为3dm 的圆.【点睛】本题考查了二次函数与几何结合,熟练掌握各图形的性质,能灵活运用坐标与线段长度之间的转换是解题的关键.28. 如图1,在ABC D 中,90,60BAC C Ð=°Ð=°,点D 在BC 边上由点C 向点B 运动(不与点B C 、重合),过点D 作DE AD ^,交射线AB 于点E .(1)分别探索以下两种特殊情形时线段AE 与BE 的数量关系,并说明理由;①点E 在线段AB 的延长线上且BE BD =;②点E 在线段AB 上且EB ED =.(2)若6AB =.①当DE AD =AE 的长;②直接写出运动过程中线段AE 长度的最小值.【答案】(1)①2AE BE =②2AE BE =(2)①215②4【解析】【分析】(1)①算出ABD △各个内角,发现其是等腰三角形即可推出;②算出ADE V 各内角发现其是30°的直角三角形即可推出;(2)①分别过点A ,E 作BC 的垂线,得到一线三垂直的相似,即EGD DHA ∽△△,设DE =,2AD a =,利用30°直角三角形的三边关系,分别表示出ED ,AD ,EG ,DH ,列式求解a 即可;②分别过点A ,E 作BC 的垂线,相交于点G ,H ,证明EHD DGA △△∽可得AG DG DH EH =,然后利用完全平方公式变形得出AE ≥3+E H ,求出AE 的取值范围即可.【小问1详解】①∵在ABC D 中,90BAC Ð=°,60C Ð=°∴30ABC Ð=°∵BE BD=∴1152BDE ABC Ð=Ð=°,90901575BDA BDE Ð=°-Ð=°-°=°在ABD △中,180180307575BAD ABD BDA Ð=°-Ð-Ð=°-°-°=°∴75BAD BDA Ð=Ð=°∴AB BD BE==∴2AE BE =;②如图:∵BE DE =∴30EBD EDB Ð=Ð=°,60AED Ð=°∴在Rt ADE △中,30EAD =∠°∴2AE ED=∴2AE BE =;【小问2详解】①分别过点A ,E 作BC 的垂线,相交于点H ,G ,则∠EGD =∠DHA =90°,∴∠GED +∠GDE =90°,∵∠HDA +∠GDE =90°,∴∠GED =∠HDA ,∴EGD DHA ∽△△,设DE =,2AD a =,则AE ==,6BE =,在Rt ABC V 中,30ABC Ð=°,AB =6则AC ==,2BC AC ==在Rt BEG △中,30EBG Ð=°,6BE =则32BE EG ==-在Rt AHC V 中,60C Ð=°,AC =∴3AH ==∴DH ==由EGD DHA ∽△△得ED EG AD DH =,=解得:1a=2a=-(舍)故215AE==;②分别过点A,E作BC的垂线,相交于点G,H,则∠EHD=∠AGD=90°,∵∠ADE=90°,∴∠EDH=90°-∠ADG=∠DAG,∵∠EHD=∠AGD=90°,∴EHD DGA△△∽,∴AG DGDH EH=,∴AG EH DH DG=g g,∵∠BAC=90°,∠C=60°,∴∠B=30°,∴111=36-)222AG AB BE AE==,E H=(,∴3DH DG EH=g,∴2222222AE AD DE AG DG DH EH=+=+++=2229DG DH EH+++,∵22DG DH+g≥2D GD H∴2292AE DG DH EH++g≥,∴22296AE EH EH++≥≥(3+E H),∵0,0AE DH>>,∴AE≥3+E H,∵16-)2AE=E H(,∴1(6)2AE AE-≥3+,∴4AE≥,故AE的最小值为4.【点睛】本题考查了直角三角形的性质,三角形相似的判定和性质,等腰三角形的性质,一线三垂直相似模型,垂线段最短,熟练掌握直角三角形的性质,一线三垂直模型,垂线段最短原理是解题的关键.。
绝密★启用前2024年江苏省扬州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.实数2的倒数是( )A. −2B. 2C. −12D. 122.“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识.其中的轴对称图形是( )A. B.C. D.3.下列运算中正确的是( )A. (a−b)2=a2−b2B. 5a−2a=3aC. (a3)2=a5D. 3a2⋅2a3=6a64.第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班51名同学视力检查数据如下表:这45名同学视力检查数据的众数是().A. 4.6B. 4.7C. 4.8D. 4.95.在平面直角坐标系中,点P(1,2)关于原点的对称点P′的坐标是( )A. (1,2)B. (−1,2)C. (1,−2)D. (−1,−2)6.如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A. 三棱锥B. 圆锥C. 三棱柱D. 长方体的图像与坐标轴的交点个数是( )7.在平面直角坐标系中,函数y=4x+2A. 0B. 1C. 2D. 48.1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )A. 676B. 674C. 1348D. 1350第II卷(非选择题)二、填空题:本题共10小题,每小题3分,共30分。
2022年中考必做真题:江苏省扬州市中考数学试卷(含答案)一、挑选题(本大题共有8小题,每小题3分,共24分. 在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣52.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB 于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt △ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分. 不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0. 00077cm,数据0. 00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2=.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2021的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分. 请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第十九届运动会将于2021年9月在扬州举行开幕式,某校为了了解学生“最喜欢的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须挑选且只能挑选一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜欢的省运会项目的人数调查统计表最喜欢的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b.(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜欢的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.加入从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是几?(精确到0. 1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)加入规定每天漆器笔筒的销售量不低于240件,当销售单价为几元时,每天获取的利润最大,最大利润是几?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC 相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos ∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C 的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B 运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.2021年江苏省扬州市中考数学试卷参考答案与试题解析一、挑选题(本大题共有8小题,每小题3分,共24分. 在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【解答】解:﹣5的倒数﹣.故选:A.2.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.3.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.4.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是 2. 5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.5.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.6.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.7.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.8.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.二、填空题(本大题共有10小题,每小题3分,共30分. 不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【解答】解:0. 00077=7. 7×10﹣4,故答案为:7. 7×10﹣4.10.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)11.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.12.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2021=2021故答案为:202113.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.14.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.15.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.16.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.17.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,=OD•DE=OE•DF,∵S△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.三、解答题(本大题共有10小题,共96分. 请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+1820.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.21.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜欢的省运会项目是篮球的学生人数为:1200×=480(人).22.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.23.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121. 8.答:货车的速度约是121. 8千米/小时.24.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S=•AB•DE=•3=15.菱形AEBD25.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.26.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,=﹣10(46﹣50)2+4000=3840,∴x=46时,w大答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.27.【解答】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.28.【解答】解:(1)如图1,∵点A的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴线段PQ的中点坐标为:(,),即(,2);故答案为:(,2);(2)如图1,∵当点P与点A重合时运动停止,且△PAQ可以构成三角形,∴0<t<3,∵四边形OABC是矩形,∴∠B=∠PAQ=90°∴当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,∴,4t2﹣15t+9=0,(t﹣3)(t﹣)=0,t1=3(舍),t2=,②当△PAQ∽△CBQ时,,∴,t2﹣9t+9=0,t=,∵>7,∴x=不符合题意,舍去,综上所述,当△CBQ与△PAQ相似时,t的值是或;(3)当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线:y=x2﹣3x+2=(x﹣)2﹣,∴顶点k(,﹣),∵Q(3,2),M(0,2),∴MQ∥x轴,作抛物线对称轴,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,∵∠HMQ=∠QEK=90°,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式为:y=﹣x+4,则,x2﹣3x+2=﹣x+4,解得:x1=3(舍),x2=﹣,∴D(﹣,);同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,由对称性得:H(0,0),易得OQ的解析式:y=x,则,x2﹣3x+2=x,解得:x1=3(舍),x2=,∴D(,);综上所述,点D的坐标为:D(﹣,)或(,).。
2023年江苏省扬州市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知二次函数223y ax x =-+的图象如图所示,则一次函数3y x =+的图象不经过( )A .第一象限B . 第二象限C .第三象限D .第四象限 2.用反证法证明“△ABC 中,若∠A>∠B>∠C ,则∠A>60°”,第一步应假设( )A .∠A=60°B .∠A<60°C .∠A ≠60°D .∠A ≤60° 3.已知O 为□ABCD 对角线的交点,且△AOB 的周长比△BOC 的周长多23,则CD-AD•的值为( )A .23B .32C .2D .34.如果3x y =,那么分式222xy x y +的值为( ) A . 35 B .53 C .6 D . 不能确定5.一根绳子弯曲成如图2(1)所示的形状. 当用剪刀像图 2(2)那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图2(3)那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为 9段. 若用剪刀在虚线a 、b 之间把绳子再剪(1n -)次(剪刀的方向与a 平行),这时绳子的段数是( )A .41n +B . 42n +C .43n +D .45n +6.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为( )A .0.3 元B .l6.2 元C .16.8 元D .18 元二、填空题7.如图是某个立体图形的三视图,则该立体图形的名称是 _ __.8.我们可以用下面的方法测出月球与地球的距离:在月圆时,把一个五分的硬币 (直径约为2.4 cm),放在离眼睛0约 2.6 m 的AB 处 (如图),正好把月亮遮住,已知月球的直径约为 3500 km ,那么月球与地球的距离约为 km .(保留两个有效数字). 9.抛物线23y x =-的开口向 ,除了它的顶点,抛物线上的点都在x 轴的 下方,它的顶点是图象的最 高点.10.如图,F 、G 、D 、E 分别为AD 、AE 、AB 、AC 的中点,△AGF 的周长是10,则△ABC 的周长是_______.11.在平行四边形ABCD 中,∠A :∠B=4:5,则∠A= ,∠B= ,∠C= ,∠D= .12.如果2(7)|3|0a b -+-=,那么以a ,b 为边长的等腰三角形的周长为 .13.定义运算“@”的运算法则为: x @y = 4xy + ,则 (2@6)@8= .14.如图,∠BCA = ∠E = 90°,BC= E ,要利用“HL ”来说明 Rt △ABC ≌Rt △ADE ,则还需要补充条件 .15.如图,∠1=75°,∠2 =75°,∠3 = 105°,那么∠4 = ,可推出的平行关系有 .16.如果4x 2+mx +25是一个完全平方式,则实数m 的值是__________.17.如图,当半径为30 cm 的转动轮转过l80°角时,传送带上的物体A 平移的距离为 cm .18.如图.方格纸中的三角形要由位置①平移到位置②,应该先向 平移格,再向 平移 .19.已知 x= 2007,则22231()(2)122x x x --+-+= .20.71()4-的底数是 ,指数是 ,表示的意义是 .21.某研究性学习小组,为了了解本校八年级学生一天中做家庭作业所用的大致时间(时间以整数记,单位:min),对本校的八年级学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示).请结合统计图中提供的信息,回答下列问题:(1)这个研究性学习小组所抽取样本的容量是 人.(2)在被调查的学生中,一天做家庭作业所用的大致时问超过l20 min(不包括120 min)的人数占被调查学生总人数的 %.(3)这次调查得到的所有数据的中位数落在了五个时间段中 min 内.三、解答题22.某广告公司设计一幅周长为12m 的矩形广告牌,广告设计费为每平方米1000元,设矩形-边长为x (m) ,面积为S(m 2).请你设计一个方案,使获得的设计费最多,并求出这个费用.23.某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.(1)用代数式表示,这种商品的单价为x 元(x<40)时,销售1件该商品的利润和每天销售该商品的数量;(2)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元.24.说出下列命题的题设和结论,并指出它是真命题还是假命题:(1)系数相同的单项式是同类项;(2)有两个角和一条边对应相等的两个三角形全等;(3)同旁内角相等.25.已知函数y=(2m-1)x-2+m.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.如果将直角三角形的三条边长同时扩大一倍,得到三角形还是直角三角形吗?扩大n倍呢(n为正整数)?27.如图,已知 AC=CE,∠1=∠2=∠3.(1)说明∠B=∠D的理由;(2)说明AB=DE的理由.28.如图,AB⊥BD于B,DE⊥BD于D,已知AB=CD,BC=ED,求∠ACE的度数.29.如下表,“谢氏三角”是波兰著名数学家谢尔宾斯基在1915年~l916年期间提出的,它的作法是:第一步:取一个等边三角形(记为P1),连结各边的中点,得到完全相同的小正三角形,挖掉中间的一个;第二步:将剩下的三个小正三角形(记为P2),按上述办法各自取中点,各自分成4个小三角形,去掉各自中间的一个小正三角形;依次类推,不断划分出小的正三角形,同时去掉中间的一个小正三角形.试求P4的“黑”三角形的个数,“黑”三角形的总边数,边长,周长和面积,并将结果填入下表中.30.某商场出售的A型冰箱每台售价2190元,每日耗电量为l度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但是每日耗电量为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,每度电0.40元计算)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.A4.A5.D6.D二、填空题7.三棱柱8.3. 8×lO59.下,下,高10.4011.80°,l00°,80°,l00°12.1713.614.AB=AD15.105°;1l ∥2l 、3l ∥4l16.20± 17.30π18.右,2,上,319.120.14-,7,7 个(14-)相乘 21.(1)30;(2)70%;(3)120.5~150.5三、解答题22.S =-x 2+6x ,边长为3m 的正方形面积最大,最大面积为9m 2,最多设计费为9000元. 23.(1)x -20;200+(40-x )×20;(2)(x -20)(1000-20x )=4500,x =35. 24.(1)题设:单项式的系数相同;结论:它们是同类项,是假命题;(2)题设:两个三角形的两个角和一条边对应相等;结论:这两个三角形全等,是假命题;(3)题设:两个角是同旁内角;结论:这两个角相等,是假命题25.(1)m=2;(2)m<1226.均是直角三角形27.略28.△ABC ≌△CDE (SAS ),则∠ACB=∠E ,由于∠ACB+∠ACE =∠E+∠D, 则∠ACE=∠D=90°.29.27,81,118a ,1818a ,12764S 30.8折。
扬州市2024届中考联考数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在实数π,0,17,﹣4中,最大的是( )A .πB .0C .17D .﹣42.已知二次函数y=x 2+bx ﹣9图象上A 、B 两点关于原点对称,若经过A 点的反比例函数的解析式是y=8x ,则该二次函数的对称轴是直线( )A .x=1B .x=49C .x=﹣1D .x=﹣493.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .324.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 5.|﹣3|的值是( )A .3B .13C .﹣3D .﹣136.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为( )A.16B.15C.13D.127.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg 用科学记数法可表示为( )A.13×710kg B.0.13×810kg C.1.3×710kg D.1.3×810kg8.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A.2人B.16人C.20人D.40人9.实数4的倒数是()A.4 B.14C.﹣4 D.﹣1410.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b-2)二、填空题(共7小题,每小题3分,满分21分)11.抛物线y=2x2+4x﹣2的顶点坐标是_______________.12.分式213a b 与21a b的最简公分母是_____. 13.如图,在△ABC 和△EDB 中,∠C =∠EBD =90°,点E 在AB 上.若△ABC ≌△EDB ,AC =4,BC =3,则AE =_____.14.已知 x(x+1)=x+1,则x =________.15.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是 ▲ .16.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.17.在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB =60°,AC =6cm ,则AB 的长是_____.三、解答题(共7小题,满分69分)18.(10分)如图,将平行四边形ABCD 纸片沿EF 折叠,使点C 与点A 重合,点D 落在点G 处.(1)连接CF ,求证:四边形AECF 是菱形;(2)若E 为BC 中点,BC =26,tan ∠B =125,求EF 的长.19.(5分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下(1)样本中D 级的学生人数占全班学生人数的百分比是 ;(2)扇形统计图中A 级所在的扇形的圆心角度数是 ;(3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数之和.20.(8分)如图,在平面直角坐标系xOy 中,函数m y x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.(1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.21.(10分)如图,已知抛物线y=ax 2﹣2ax+b 与x 轴交于A 、B (3,0)两点,与y 轴交于点C ,且OC=3OA ,设抛物线的顶点为D .(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;(3)若平行于x 轴的直线与该抛物线交于M 、N 两点(其中点M 在点N 的右侧),在x 轴上是否存在点Q ,使△MNQ为等腰直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.22.(10分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?23.(12分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?24.(14分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据实数的大小比较即可得到答案.【题目详解】解:∵16<17<25,∴417517>π>0>-417 C.【题目点拨】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、D【解题分析】设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴.【题目详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a ). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab a a ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x =﹣49. 故选D .【题目点拨】 本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.3、D【解题分析】如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5. ∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.4、C【解题分析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.5、A【解题分析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 3 3.-=故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.6、D【解题分析】连接CD ,再利用勾股定理分别计算出AD 、AC 、BD 的长,然后再根据勾股定理逆定理证明∠ADC =90°,再利用三角函数定义可得答案.【题目详解】连接CD ,如图:222222AD =+=CD 22112+=AC 223110+.∵22222210+=()()(),∴∠ADC =90°,∴tan ∠BAC =222CD AD ==12. 故选D .【题目点拨】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC =90°.7、D【解题分析】试题分析:科学计数法是指:a×10n ,且110a ≤<,n 为原数的整数位数减一.8、C【解题分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【题目详解】 400×2201216102=+++人. 故选C .【题目点拨】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.9、B【解题分析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【题目详解】解:实数4的倒数是:1÷4=14. 故选:B .【题目点拨】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1. 10、D【解题分析】设点A 的坐标是(x ,y ),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【题目详解】根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 2a x +=0, 2b y +=-1, 解得x=-a ,y=-b-2,∴点A 的坐标是(-a ,-b-2).故选D .【题目点拨】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、(﹣1,﹣1)【解题分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【题目详解】 x=-422⨯=-1, 把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【题目点拨】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解. 12、3a 2b【解题分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【题目详解】 分式213a b 与21a b的最简公分母是3a 2b .故答案为3a 2b . 【题目点拨】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.13、1【解题分析】试题分析:在Rt △ACB 中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC ≌△EDB ,∴BE=AC=4,∴AE=5﹣4=1.考点:全等三角形的性质;勾股定理14、1或-1【解题分析】方程(1)1x x x +=+可化为:(1)(1)0x x +-=,∴10x +=或10x -=,∴1x =-或1x =.故答案为1或-1.15、-2<x <-1或x >1.【解题分析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质. 不等式k 1x <2k x +b 的解集即k 1x -b <2kx的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y =k 1x -b 在双曲线2k y=x下方的自变量x 的取值范围即可.而直线y =k 1x -b 的图象可以由y =k 1x +b 向下平移2b 个单位得到,如图所示.根据函数2k y=x图象的对称性可得:直线y =k 1x -b 和y =k 1x +b 与双曲线2k y=x的交点坐标关于原点对称. 由关于原点对称的坐标点性质,直线y =k 1x -b 图象与双曲线2ky=x图象交点A′、B′的横坐标为A 、B 两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x <-1或x >1时,直线y =k 1x -b 图象在双曲线2k y=x图象下方. ∴不等式k 1x <2k x+b 的解集是-2<x <-1或x >1. 16、3×1 【解题分析】因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:600×50=30 000,用科学记数法表示为3×1立方米. 故答案为3×1. 17、3cm . 【解题分析】根据矩形的对角线相等且互相平分可得OA =OB =OD =OC ,由∠AOB =60°,判断出△AOB 是等边三角形,根据等边三角形的性质求出AB 即可. 【题目详解】解:∵四边形ABCD 是矩形,AC =6cm ∴OA =OC =OB =OD =3cm ,∴△AOB是等边三角形,∴AB=OA=3cm,故答案为:3cm【题目点拨】本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)EF=1.【解题分析】(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB=EHBH=125可计算出BH=5,从而得到EF=AB=2BH=1.【题目详解】(1)证明:如图1,∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,∴EA=EC,∠1=∠2,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四边形AECF为平行四边形,∵EA=EC,∴四边形AECF为菱形;(2)解:作EH⊥AB于H,如图,∵E为BC中点,BC=26,∵四边形AECF为菱形,∴AE=AF=CE=13,∴AF=BE,∴四边形ABEF为平行四边形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB=EHBH=125,设EH=12x,BH=5x,则BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【题目点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.19、(1)10%; (2)72; (3)5,见解析; (4)330.【解题分析】解:(1)根据题意得:D级的学生人数占全班人数的百分比是:1-20%-46%-24%=10%;(2)A级所在的扇形的圆心角度数是:20%×360°=72°;(3)∵A等人数为10人,所占比例为20%,∴抽查的学生数=10÷20%=50(人),∴D 级的学生人数是50×10%=5(人), 补图如下:(4)根据题意得:体育测试中A 级和B 级的学生人数之和是:500×(20%+46%)=330(名), 答:体育测试中A 级和B 级的学生人数之和是330名. 【题目点拨】本题考查统计的知识,要求考生会识别条形统计图和扇形统计图. 20、(1)m=8,n=-2;(2) 点F 的坐标为1(0,6)F ,2(0,2)F - 【解题分析】分析:(1)利用三角形的面积公式构建方程求出n ,再利用 待定系数法求出m 的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b 与x 轴,y 轴的交点分别为1E ,1F . ②图中,当k>0时,设直线y=kx+b 与x 轴,y 轴的交点分别为点2E ,2F . 详解:(1)如图②∵ 点A 的坐标为()4,A n -,点C 与点A 关于原点O 对称, ∴ 点C 的坐标为()4,C n -.∵ AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,∴ B ,D 两点的坐标分别为()4,0B -,()4,0D . ∵ △ABD 的面积为8,()118422ABDS AB BD n n =⨯=⨯-⨯=-, ∴ 48n -=.解得 2n =-. ∵ 函数my x=(0x <)的图象经过点()4,A n -, ∴ 48m n =-=.(2)由(1)得点C 的坐标为()4,2C .① 如图,当0k <时,设直线y kx b =+与x 轴,y 轴的交点分别为点1E ,1F . 由 CD ⊥x 轴于点D 可得CD ∥1OF . ∴ △1E CD ∽△1E 1F O .∴ 1111E CDC OF E F =. ∵ 112CF CE =,∴113DC OF =. ∴ 136OF DC ==. ∴ 点1F 的坐标为()10,6F .②如图,当0k >时,设直线y kx b =+与x 轴,y 轴的交点分别为 点2E ,2F .同理可得CD ∥2OF ,2222E CDC OF E F =. ∵ 222CF CE =,∴ 2E 为线段2CF 的中点,222E C E F =. ∴ 22OF DC ==.∴ 点2F 的坐标为()20,2F -.综上所述,点F 的坐标为()10,6F ,()20,2F -.点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题. 21、(1)y=﹣x 2+2x+1;(2)P (2,1)或(32+,55-);(1)存在,且Q 1(1,0),Q 2(20),Q 1(0),Q 40),Q 50). 【解题分析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B 的坐标来确定点A 的坐标,已知OC=1OA ,即可得到点C 的坐标,利用待定系数法即可求得该抛物线的解析式.(2)求出点C 关于对称轴的对称点,求出两点间的距离与CD 相比较可知,PC 不可能与CD 相等,因此要分两种情况讨论:①CD=PD ,根据抛物线的对称性可知,C 点关于抛物线对称轴的对称点满足P 点的要求,坐标易求得;②PD=PC ,可设出点P 的坐标,然后表示出PC 、PD 的长,根据它们的等量关系列式求出点P 的坐标.(1)此题要分三种情况讨论:①点Q 是直角顶点,那么点Q 必为抛物线对称轴与x 轴的交点,由此求得点Q 的坐标;②M 、N 在x 轴上方,且以N 为直角顶点时,可设出点N 的坐标,根据抛物线的对称性可知MN 正好等于抛物线对称轴到N 点距离的2倍,而△MNQ 是等腰直角三角形,则QN=MN ,由此可表示出点N 的纵坐标,联立抛物线的解析式,即可得到关于N 点横坐标的方程,从而求得点Q 的坐标;根据抛物线的对称性知:Q 关于抛物线的对称点也符合题意;③M 、N 在x 轴下方,且以N 为直角顶点时,方法同②. 【题目详解】解:(1)由y=ax 2﹣2ax+b 可得抛物线对称轴为x=1,由B (1,0)可得A (﹣1,0); ∵OC=1OA , ∴C (0,1);依题意有:203a a bb++=⎧⎨=⎩,解得13ab=-⎧⎨=⎩;∴y=﹣x2+2x+1.(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=2<2,②由①此时CD⊥PD,根据垂线段最短可得,PC不可能与CD相等;②PC=PD时,∵CP22=(1﹣y)2+x2,D P22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2将y=﹣x2+2x+1代入可得:35 x+=∴555y=;∴P2(35+55-.综上所述,P(2,135+55-.(1)存在,且Q1(1,0),Q2(250),Q1(50),Q450),Q550);①若Q是直角顶点,由对称性可直接得Q1(1,0);②若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN为等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(20);由对称性可得Q10);③若N是直角顶点,且M、N在x轴下方时;同理设Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y为负,∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=∴Q4(0);由对称性可得Q5,0).【题目点拨】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.22、(1)落回到圈A的概率P1=14;(2)她与嘉嘉落回到圈A的可能性一样.【解题分析】(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;【题目详解】(1)∵共有1种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=14;(2)列表得:3 (1,3)(2,3)(3,3)(1,3)1 (1,1)(2,1)(3,1)(1,1)∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),∴最后落回到圈A的概率P2=416=14,∴她与嘉嘉落回到圈A的可能性一样.【题目点拨】此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数.23、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解题分析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【题目详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得,解得:,∴该一次函数解析式为y=﹣x+1;(2)当y=﹣x+1=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【题目点拨】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.24、(1)证明见解析;(2)1.【解题分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.。
2020年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)实数3的相反数是()A.﹣3B.C.3D.±32.(3分)下列各式中,计算结果为m6的是()A.m2•m3B.m3+m3C.m12÷m2D.(m2 )33.(3分)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A.B.C.D.5.(3分)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤6.(3分)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米7.(3分)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.8.(3分)小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为.10.(3分)分解因式:a3﹣2a2+a=.11.(3分)代数式在实数范围内有意义,则实数x的取值范围是.12.(3分)方程(x+1)2=9的根是.13.(3分)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为.14.(3分)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面尺高.15.(3分)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为cm2.16.(3分)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.17.(3分)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.②分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为.18.(3分)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算或化简:(1)2sin60°+()﹣1﹣.(2)÷.20.(8分)解不等式组并写出它的最大负整数解.21.(8分)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是,扇形统计图中表示A等级的扇形圆心角为°;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.22.(8分)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.23.(10分)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.24.(10分)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE =,求EF的长;(2)判断四边形AECF的形状,并说明理由.25.(10分)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.26.(10分)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组则x﹣y=,x+y=;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=.27.(12分)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC 平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求的值;(3)当四边形ABCD的周长取最大值时,求的值.28.(12分)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.2020年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)实数3的相反数是()A.﹣3B.C.3D.±3【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3的相反数是:﹣3.故选:A.【点评】此题主要考查了相反数,解题关键是掌握相反数的概念:只有符号不同的两个数叫做互为相反数.2.(3分)下列各式中,计算结果为m6的是()A.m2•m3B.m3+m3C.m12÷m2D.(m2 )3【分析】直接利用同底数幂的乘除以及合并同类项法则分别判断得出答案.【解答】解:A、m2•m3=m5,故此选项不合题意;B、m3+m3=2m3,故此选项不合题意;C、m12÷m2=m10,故此选项不合题意;D、(m2 )3=m6,故此选项符合题意.故选:D.【点评】此题主要考查了同底数幂的乘除法以及合并同类项,正确掌握相关运算法则是解题关键.3.(3分)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点分析得出答案.【解答】解:∵x2+2>0,∴点P(x2+2,﹣3)所在的象限是第四象限.故选:D.【点评】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.4.(3分)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【解答】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点评】本题考查设置问卷的方法,一般情况下问卷的各个选项之间相对独立,不能有重合或交叉的地方.6.(3分)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.【解答】解:∵小明每次都是沿直线前进10米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×10=80(m).故选:B.【点评】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.7.(3分)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.【分析】首先根据圆周角定理可知,∠ADC=∠ABC,然后在Rt△ACB中,根据锐角三角函数的定义求出∠ABC的正弦值.【解答】解:如图,连接BC.∵∠ADC和∠ABC所对的弧长都是,∴根据圆周角定理知,∠ADC=∠ABC.在Rt△ACB中,根据锐角三角函数的定义知,sin∠ABC=,∵AC=2,BC=3,∴AB==,∴sin∠ABC==,∴sin∠ADC=.故选:A.【点评】本题考查了圆周角定理,解直角三角形,勾股定理,锐角三角函数的定义,解答本题的关键是利用圆周角定理把求∠ADC的正弦值转化成求∠ABC的正弦值,本题是一道比较不错的习题.8.(3分)小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0【分析】由图象可知,当x>0时,y<0,可知a<0;x=﹣b时,函数值不存在,则b >0;【解答】解:由图象可知,当x>0时,y<0,∴a<0;x=﹣b时,函数值不存在,∴﹣b<0,∴b>0;故选:C.【点评】本题考查函数的图象;能够通过已学的反比例函数图象确定b的取值是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为 6.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500000用科学记数法表示应为:6.5×106,故答案为:6.5×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)分解因式:a3﹣2a2+a=a(a﹣1)2.【分析】此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.11.(3分)代数式在实数范围内有意义,则实数x的取值范围是x≥﹣2.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:代数式在实数范围内有意义,则x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.【点评】此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键.12.(3分)方程(x+1)2=9的根是x1=2,x2=﹣4.【分析】根据直接开平方法的步骤先把方程两边分别开方,再进行计算即可.【解答】解:(x+1)2=9,x+1=±3,x1=2,x2=﹣4.故答案为:x1=2,x2=﹣4.【点评】此题考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移到等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解,本题直接开方求解即可.13.(3分)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为4.【分析】根据圆锥的侧面积公式:S侧=2πr•l=πrl即可进行计算.【解答】解:∵S侧=πrl,∴3πl=12π,∴l=4.答:这个圆锥的母线长为4.故答案为:4.【点评】本题考查了圆锥的计算,解决本题的关键是掌握扇形面积公式.14.(3分)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 4.55尺高.【分析】根据题意结合勾股定理得出折断处离地面的高度即可.【解答】解:设折断处离地面x尺,根据题意可得:x2+32=(10﹣x)2,解得:x=4.55.答:折断处离地面4.55尺.故答案为:4.55.【点评】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.15.(3分)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 2.4cm2.【分析】经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,可得点落入黑色部分的概率为0.6,根据边长为2cm的正方形的面积为4cm2,进而可以估计黑色部分的总面积.【解答】解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,∴点落入黑色部分的概率为0.6,∵边长为2cm的正方形的面积为4cm2,设黑色部分的面积为S,则=0.6,解得S=2.4(cm2).答:估计黑色部分的总面积约为2.4cm2.故答案为:2.4.【点评】本题考查了利用频率估计概率,解决本题的关键是掌握概率公式.16.(3分)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.【分析】根据正六边形的性质,可得∠ABC=120°,AB=BC=a,根据等腰三角形的性质,可得CD的长,根据锐角三角函数的余弦,可得答案.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∠BCD=∠BAC=30°.由AC=3,得CD=1.5.cos∠BCD==,即=,解得a=,故答案为:.【点评】本题考查了正多边形和圆,利用了正六边形的性质得出等腰三角形是解题的关键,又利用了等腰三角形的性质,余弦函数,17.(3分)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.②分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为27.【分析】过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC 的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.【解答】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴AB×GM=18,∴4GM=18,∴GM=,∴△CBG的面积为:BC×GN=12×=27.故答案为:27.【点评】本题考查了作图﹣基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.18.(3分)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9.【分析】根据题意和平行四边形的性质,可以得到ED和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴=,∵DF=DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.【点评】本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算或化简:(1)2sin60°+()﹣1﹣.(2)÷.【分析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质、二次根式的性质分别化简得出答案;(2)直接将分式的分子与分母分解因式进而化简得出答案.【解答】解:(1)原式=2×+2﹣2=+2﹣2=2﹣;(2)原式=•=1.【点评】此题主要考查了分式的乘除以及实数运算,正确掌握相关运算法则是解题关键.20.(8分)解不等式组并写出它的最大负整数解.【分析】分别求出每一个不等式的解集,根据口诀:同小取小确定不等式组的解集,从而得出答案.【解答】解:解不等式x+5≤0,得x≤﹣5,解不等式≥2x+1,得:x≤﹣3,则不等式组的解集为x≤﹣5,所以不等式组的最大负整数解为﹣5.【点评】本题考查的是解一元一次不等式组及其整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是500,扇形统计图中表示A等级的扇形圆心角为108°;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.【分析】(1)根据A等级的人数和所占的百分比,可以求得样本容量,然后即可计算出扇形统计图中表示A等级的扇形圆心角的度数;(2)根据(1)中的结果,可以计算出B等级的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出该校需要培训的学生人数.【解答】解:(1)本次调查的样本容量是150÷30%=500,扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,故答案为:500,108;(2)B等级的人数为:500×40%=200,补全的条形统计图如右图所示;(3)2000×=200(人),答:该校需要培训的学生人有200人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.【分析】(1)直接利用概率公式求解可得答案;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.【解答】解:(1)小明从A测温通道通过的概率是,故答案为:;(2)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.【分析】设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其分别代入(1+50%)x ,,中即可得出结论.【解答】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:﹣=40,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴(1+50%)x=60,=80,=120.答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=,求EF的长;(2)判断四边形AECF的形状,并说明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=,进而得出EF的长;(2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.【点评】本题主要考查了平行四边形的性质以及菱形的判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.25.(10分)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.【分析】(1)连接OA、AD,可求得∠ACE=∠AEC=30°,可证明△AOD为等边三角形,可求得∠EAO=90°,可证明AE为⊙O的切线;(2)作OF⊥AC于F,结合(1)可得到OA=2,AE=6,再根据圆的面积公式和扇形面积公式即可求解.【解答】(1)证明:连接OA、AD,如图,∵CD为⊙O的直径,∴∠DAC=90°,又∵∠ADC=∠B=60°,∴∠ACD=30°,又∵AE=AC,OA=OD,∴△ADO为等边三角形,∴∠E=30°,∠ADO=∠DAO=60°,∴∠P AD=30°,∴∠EAD+∠DAO=90°,∴AE为⊙O的切线;(2)解:作OF⊥AC于F,由(1)可知△AEO为直角三角形,且∠E=30°,∴OA=2,AE=6,∴阴影部分的面积为×6×2﹣=6﹣2π.故阴影部分的面积为6﹣2π.【点评】本题主要考查切线的判定和性质,掌握切线的证明方法是解题的关键,即有切点时连接圆心和切点证明垂直,没有切点时,作垂直证明距离等于半径.注意这类问题的常用辅助线的作法.26.(10分)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组则x﹣y=﹣1,x+y=5;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共。
江苏省扬州市2020年中考数学试题学校:___________姓名:___________班级:___________考号:___________1.实数3的相反数是( )A .B .C .3D .3-133±2.下列各式中,计算结果为的是()6m A .B .C .D .32m m⋅33m m+122m m÷()32m 3.在平面直角坐标系中,点所在的象限是( )()22,3P x +-A .第一象限B .第二象限C .第三象限D .第四象限4.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A .B .C .D .5.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:调查问卷 ________年________月________日你平时最喜欢的一种体育运动项目是()(单选)A .B .C .D .其他运动项目准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A .①②③B .①③⑤C .②③④D .②④⑤6.如图,小明从点A 出发沿直线前进10米到达点B ,向左转后又沿直线前进1045︒米到达点C ,再向左转后沿直线前进10米到达点D ……照这样走下去,小明第一45︒次回到出发点A 时所走的路程为()A .100米B .80米C .60米D .40米7.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 、D ,则的值为()sin ADC∠ABC .D .23328.小明同学利用计算机软件绘制函数(a 、b 为常数)的图像如图所示,()2axy x b =+由学习函数的经验,可以推断常数a 、b 的值满足()A .,B .,C .,D .,0a >0b >0a >0b <0a <0b >0a <0b <9.2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为________.10.分解因式:______.322a a a -+=11在实数范围内有意义,则实数x 的取值范围是________.12.方程的根是_______.()219x +=13.圆锥的底面半径为3,侧面积为,则这个圆锥的母线长为________.12π14.《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10尺),中部有一处折断,=竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面________尺高.15.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm 的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________.2cm 16.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度,则螺帽边长________cm .3cm b =a=17.如图,在中,按以下步骤作图:ABC A ①以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于点D 、E .②分别以点D 、E 为圆心,大于的同样长为半径作弧,两弧交于点F .12DE ③作射线BF 交AC 于点G .如果,,的面积为18,则的面积为________.8AB =12BC=ABG A CBG A 18.如图,在中,,,,点E 为边AB 上的一个ABCD A 60B ∠=︒10AB =8BC =动点,连接ED 并延长至点F ,使得,以EC 、EF 为邻边构造,14DF DE =EFGC A 连接EG ,则EG 的最小值为________.19.计算或化简:(1)112sin 602-⎛⎫︒+ ⎪⎝⎭(2)2211x x xx x --÷+20.解不等式组,并写出它的最大负整数解.5031212x x x +≤⎧⎪⎨-≥+⎪⎩21.扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是________,扇形统计图中表示A 等级的扇形圆心角为________;︒(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.22.防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A 、B 、C 三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A 测温通道通过的概率是________;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.23.如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高.50%王师傅:甲商品比乙商品的数量多件.40请你求出乙商品的进价,并帮助他们补全进货单.24.如图,的对角线AC ,BD 相交于点O ,过点O 作,分别交ABCD A EF AC ⊥AB ,DC 于点E 、F ,连接AF 、CE.(1)若,求EF 的长;32OE =(2)判断四边形AECF 的形状,并说明理由.25.如图,内接于,,点E 在直径CD 的延长线上,且ABC A O A 60B ∠=︒.AE AC =(1)试判断AE 与的位置关系,并说明理由;O A (2)若,求阴影部分的面积.6AC =26.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足①,②,求和的值.35x y -=237x y +=4x y -75x y +本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①②可得,由①-42x y -=-+②可得.这样的解题思想就是通常所说的“整体思想”.2⨯7519x y +=解决问题:(1)已知二元一次方程组,则________,________;2728x y x y +=⎧⎨+=⎩x y -=x y +=(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:,其中a 、b 、c 是常数,等式*x y ax by c =++右边是通常的加法和乘法运算.已知,,那么________.3*515=4*728=1*1=27.如图1,已知点O 在四边形ABCD 的边AB 上,且,2OA OB OC OD ====OC 平分,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F .BOD ∠(1)求证:;//OC AD (2)如图2,若,求的值;DE DF =AEAF (3)当四边形ABCD 的周长取最大值时,求的值.DEDF 28.如图,已知点、,点P 为线段AB 上的一个动点,反比例()1,2A ()()5,0B n n >函数的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值()0ky x x =>逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当时.1n =①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.参考答案1.A 【解析】【分析】根据相反数的定义判断即可.【详解】3的相反数是﹣3.故选A .【点睛】本题考查相反数的定义,关键在于牢记相反数基础知识.2.D 【解析】【分析】根据同底数幂的乘方和除法运算法则,合并同类项法则,幂的乘方运算法则即可求解.【详解】A .,不符合题意253m m m ⋅=B .,不符合题意3332m m m +=C .,不符合题意12210m m m ÷=D .,符合题意()326m m =故选:D【点睛】本题考查了同底数幂的乘法及除法法则:同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;合并同类项时,把同类项的系数相加,所得的结果作为系数,字母部分保持不变.3.D【解析】【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x2+2>0,∴点P(x2+2,−3)所在的象限是第四象限.故选:D.【点睛】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.4.C【解析】【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的定义,属于基础概念题型,熟知轴对称图形的概念是解题关键.5.C【解析】【分析】在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中找到三个互不包含,互不交叉的项目即可.【详解】解:∵①室外体育运动,包含了②篮球和③足球,⑤球类运动,包含了②篮球和③足球,∴只有选择②③④,调查问卷的选项之间才没有交叉重合,故选:C.【点睛】本题考查收集调查数据的过程与方法,理解题意,准确掌握收集数据的方法是解题的关键.6.B【解析】【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.【详解】解:∵小明每次都是沿直线前进10米后再向左转,45︒∴他走过的图形是正多边形,边数n =360°÷45°=8,∴小明第一次回到出发点A 时所走的路程=8×10=80米.故选:B .【点睛】本题考查了正多边形外角问题的实际应用,根据题意判断小明走过的图形是正多边形是解题的关键.7.A【解析】【分析】首先根据圆周角定理可知,∠ABC =,在Rt △ACB 中,根据锐角三角函数的定义ADC ∠求出∠ABC 的正弦值.【详解】∵和∠ABC 所对的弧长都是,ADC ∠A AC ∴根据圆周角定理知,∠ABC =,ADC ∠∴在Rt △ACB 中,==根据锐角三角函数的定义知,sin ∠ABC =AC AB==∴,sin ADC ∠故选A .【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求的正弦值转化成求∠ABC 的正弦值,本题是一道比较不错的习题.ADC ∠8.D【解析】【分析】根据图像过二、四象限可判断a 的取值,根据x 在负半轴的图像,可判断b 的取值.【详解】∵图像过二、四象限∴a <0,∵x 在负半轴时,图像不连续∴b <0故选D .【点睛】此题主要考查函数图像的综合判断,解题的关键是熟知函数图像与变量之间的关系.9.6.5×106【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:6500000用科学记数法表示应为:6.5×106,故答案为:6.5×106.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.2(1)a a -【解析】【分析】先提公因式,再利用完全平方公式因式分解即可.【详解】原式=,22(21)(1)a a a a a -+=-故答案为:.2(1)a a -【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解答的关键.11.2x ≥-【解析】【分析】根据二次根式的非负性计算即可得到结果.【详解】,0≥即,20x +≥解得:.2x ≥-故答案为.2x ≥-【点睛】本题主要考查了二次根式的非负性,准确理解非负性的含义是解题的关键.12.122,4x x ==-【解析】【分析】利用直接开平方法解方程.【详解】解:()219x +=13x +=±,13x =-±∴,122,4x x ==-故答案为:.122,4x x ==-【点睛】此题考查一元二次方程的解法:直接开平方法,根据一元二次方程的特点选择恰当的解法是解题的关键.13.4【解析】【分析】根据圆锥的底面半径可以求出底面周长即为展开后的弧长,侧面积即为展开后扇形的面积,再根据扇形的面积公式求出扇形的半径即为圆锥的母线.【详解】∵底面半径为3,∴底面周长=2×3π=6π.∴圆锥的母线=.21246ππ⋅=故答案为:4.【点睛】本题考查圆锥与扇形的结合,关键在于理解圆锥周长是扇形弧长,圆锥母线是扇形半径.14.9120【解析】【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10-x )尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10-x )尺,根据勾股定理得:x 2+32=(10-x )2,解得:;9120x =故答案为:.9120【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.15.2.4【解析】【分析】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形面积得60%计算即可;【详解】∵正方形的二维码的边长为2cm ,∴正方形二维码的面积为,24cm ∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,∴黑色部分的面积占正方形二维码面积得60%,∴黑色部分的面积约为:,2460%=2.4cm ⨯故答案为.22.4cm 【点睛】本题主要考查了利用频率估计概率进行求解,准确立即数据的意义是解题的关键.16【解析】【分析】根据正六边形的性质,可得∠ABC=120°,AB=BC=a ,根据等腰三角形的性质,可得CD 的长,根据锐角三角函数的余弦,可得答案.【详解】解:如图:作BD ⊥AC 于D 由正六边形,得∠ABC=120°,AB=BC=a ,∠BCD=∠BAC=30°.由AC=3,得CD=.32cos ∠BCD=,即,CDBC32a解得,.【点睛】本题考查正多边形和圆,利用正六边形的性质得出等腰三角形是解题关键,又利用了正三角形的性质,余弦函数.17.4105【解析】【分析】由作图步骤可知BG 为∠ABC 的角平分线,过G 作GH ⊥BC,GM ⊥AB ,可得GM=GH,然后再结合已知条件和三角形的面积公式求得GH ,最后运用三角形的面积公式解答即可.【详解】解:由作图作法可知:BG 为∠ABC 的角平分线过G 作GH ⊥BC,GM ⊥AB∴GM=GH∵S △ABC =S △ABG + S △BCG =18∴,111822AB GM BC GH ⋅+⋅=∵,,8AB =12BC =∴,解得:GH=118121822GH GH ⨯+⨯=95∴的面积为.CBG A 1941210255⨯⨯=故答案为.4105【点睛】本题考查了角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键.18..【解析】【分析】连接FC ,作DM//FC ,得△DEM ∽△FEO ,△DMN ∽△CON ,进一步得出DM=,45FO EO=,过C 作CH ⊥AB 于H ,可求出CH=EG 必过点N ,当98ENEN ⊥CD 时,EG 最小,此时四边形EHCN 是矩形,故可得EN=CH=EO=求出EO 即可得到结论.98EN 【详解】解:连接FC ,交EG 于点O ,过点D 作DM//FC ,交EG 于点M ,如图所示,∵14DF DE =∴45DE EF =∵DM//FC ,∴△DEM ∽△FEO ,∴,45DM DE EM FOEF EO ===∵DM//FC ,∴△DMN ∽△CON ,∴,MN DM NOOC =∵四边形ECGF 是平行四边形,∴CO=FO ,∴ 45MN DM NO OF ==∴,4455EN EO EN EM EO ENEO EN --==--∴,98EO EN =过点C 作CH ⊥AB 于点H ,在Rt △CBH ,∠B=60︒,BC=8,∴CH=BCsin60︒根据题意得,EG 必过点N ,当EN ⊥CD 时,EG 最小,此时四边形EHCN 是矩形,∴EN=CH=4,∴EO=,98⨯=∴EG=2EO=9.故答案为:.【点睛】本题考查了平行四边形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.19.(1);(2)12【解析】【分析】(1)先根据特殊角的三角函数值、负整数指数幂、二次根式的运算法则对各项进行化简计算,再进行加减计算即可;(2)先将除法变为乘法,根据分式的乘法运算法则进行计算即可.【详解】解:(1)112sin602-⎛⎫︒+-⎪⎝⎭22=-2=-2=(2)2211x xx x x--÷+()()()1111x xxx x x+-=⨯+-1=【点睛】本题考查特殊角的三角函数值、负整数指数幂、二次根式的运算和分式的混合运算,解题的关键是要熟练掌握运算法则.20.不等式组的解集为x≤−5;最大负整数解为-5【解析】【分析】分别求出每一个不等式的解集,根据口诀:同小取小确定不等式组的解集,从而得出答案.【详解】解不等式x+5≤0,得x≤−5,解不等式,得:x ≤−3,31212x x -≥+则不等式组的解集为x ≤−5,所以不等式组的最大负整数解为−5.【点睛】本题考查的是解一元一次不等式组及其整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(1)500;108;(2)见解析;(3)估计该校需要培训的学生人数为200人【解析】【分析】(1)根据条形统计图中A 项为150人,扇形统计图中A 项为30%,计算出样本容量;扇形统计图中计算360°的30%即360°×30%即可;(2)根据扇形统计图中B 选项占40%,求出条形统计图中B 选项的人数,补全条形统计图即可;(3)抽取的样本中“不太熟练或不熟练”的同学所占的百分比为×100%,由此估计505002000名学生所占的百分比也为×100%,进而求出该校需要培训的学生人数.50500【详解】解:(1)150÷30%=500(人),360°×30%=108°,故答案为:500;108;(2)500×40%=200(人),补全条形统计图如下:(3)×100%×2000=200(人)50500∴估计该校需要培训的学生人数为200人.【点睛】本题考查条形统计图与扇形统计图的综合运用、用样本估计总体等知识,熟练掌握条形统计图与扇形统计图的之间的关系是解题的关键.22.(1) ;(2) .1313【解析】【分析】(1) 因为共开设了A 、B 、C 三个测温通道,小明从A 测温通道通过的概率是.13(2)根据题意画出树状图,再根据所得结果算出概率即可.【详解】(1) 因为共开设了A 、B 、C 三个测温通道,小明从A 测温通道通过的概率是,13故答案为:.13(2)由题意画出树状图:由图可知,小明和小丽从同一个测温通道通过的概率=.3193=【点睛】本题考查概率的计算和树状图的画法,关键在于理解题意,由图得出相关概率.23.每件元,进货单见解析.40【解析】【分析】设乙的进价每件为元,分别表示乙的数量,甲的数量,利用数量关系列方程解方程即可.x 【详解】解:设乙的进价每件为元,乙的数量为件,x 3200x 则甲的进价为每件元,甲的数量为件,所以:1.5x 72001.5x72003200401.5x x -=6240,x ∴=,40x ∴=经检验:是原方程的根,40x =320072001.560,80,120,1.5x x x ∴===所以:乙商品的进价为每件元.40所以:进货单如下:商品进价(元/件)数量(件)总金额甲60 120 7200乙 4080 3200【点睛】本题考查的是分式方程的应用,掌握列分式方程解应用题是解题的关键.24.(1)3;(2)菱形,理由见解析【解析】【分析】(1)只要证明即可得到结果;AOE COF ≅A A (2)先判断四边形AECF 是平行四边形,再根据对角线互相垂直且平分证明是菱形,即可得到结论;【详解】(1)∵四边形ABCD 是平行四边形,AC 、BD 是对角线,∴,OA=OC ,EAO FCO ∠=∠又∵,EF AC ⊥∴,AOE COF ∠=∠在△AOE 和△COF 中,,E A O FC O OA O C A O E C O F ⎧∠=∠⎪=⎨⎪∠=∠⎩∴.()△△A O E C O F A S A ≅∴FO=EO ,又∵,32OE =∴.32232E F O E ==⨯=故EF 的长为3.(2)由(1)可得,,四边形ABCD 是平行四边形,AOE COF ≅A A ∴,FC ∥AE,FC A E =∴四边形AECF 是平行四边形,又,OE=OF ,OA=OC ,EF AC ⊥∴平行四边形AECF 是菱形.【点睛】本题主要考查了特殊平行四边形的性质应用,准确运用全等三角形的性质及菱形的判定是解题的关键.25.(1)AE 与⊙O 相切,理由见详解;(2).2S π=-阴影【解析】【分析】(1)利用圆周角定理以及等腰三角形的性质得出∠E=∠ACE=∠OCA=∠OAC=30°,∠EAC=120°,进而得出∠EAO=90°,即可得出答案;(2)连接AD ,利用解直角三角形求出圆的半径,然后根据,即可求AOE S S S ∆=-阴影扇A O D 出阴影部分的面积.【详解】(1)AE 与⊙O 相切,理由如下:连接AO ,∵∠B=60°,∴∠AOC=120°,∵AO=CO ,AE=AC ,∴∠E=∠ACE ,∠OCA=∠OAC=30°,∴∠E=∠ACE=∠OCA=∠OAC=30°,∴∠EAC=120°,∴∠EAO=90°,∴AE 是⊙O 的切线;(2)连接AD ,则,60ADC B ∠=∠=︒∴∠DAC=90°,∴CD 为⊙O 的直径,在Rt △ACD 中,AC=6,∠OCA=30°,∴,cos30AC CD ︒==∴,CD =∴AOD=60°,OA OD OC ===∴162AOE S S S ∆=-=⨯⨯阴影扇AO D ∴.2S π=-阴影【点睛】本题考查了圆的切线的判定和性质,解直角三角形,圆周角定理,等腰三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而进行解题.26.(1)-1,5;(2)购买5支铅笔、5块橡皮、5本日记本共需30元;(3)-11【解析】【分析】(1)已知,利用解题的“整体思想”,①-②即可求得x-y ,①+②即可求得2728x y x y +=⎧⎨+=⎩①②x+y 的值;(2)设每支铅笔x 元,每块橡皮y 元,每本日记本z 元,根据题意列出方程组,根据(1)中“整体思想”,即可求解;(3)根据,可得,,*x y ax by c =++3*53515a b c =++=4*74728a b c =++=,根据“整体思想”,即可求得的值.1*1a b c =++a b c ++【详解】(1)2728x y x y +=⎧⎨+=⎩①②①-②,得x-y=-1①+②,得3x+3y=15∴x+y=5故答案为:-1,5(2)设每支铅笔x 元,每块橡皮y 元,每本日记本z 元,则203232395358x y z x y z ++=⎧⎨++=⎩①②①×2,得40x+6y+4z=64③③-②,得x+y+z=6∴5(x+y+z)=30∴购买5支铅笔、5块橡皮、5本日记本共需30元答:购买5支铅笔、5块橡皮、5本日记本共需30元(3)∵*x y ax by c=++∴①,②,3*53515a b c =++=4*74728a b c =++=1*1a b c=++∴②-①,得③213a b +=∴④51065a b +=①+②,得⑤712243a b c ++=⑤-④,得22222a b c ++=-∴11a b c ++=-故答案为:-11【点睛】本题考查了利用“整体思想”解二元二次方程组,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,引入了新运算,根据定义结合“整体思想”求代数式的值.27.(1)见详解;(2;(3【解析】【分析】(1)先由三角形外角得出∠BOD=∠DAO+∠ODA ,然后根据OA=OD ,OC 平分∠BOD 得出∠DAO=∠ODA ,∠COD=∠COB ,可得∠COD=∠ODA ,即可证明;(2)先证明△BOG ≌△DOG ,得出∠ADB=∠OGB=90°,然后证明△AFO ∽△AED ,得出∠AOD=∠ADB=90°,,根据勾股定理得出,即可求出答案;AD AE AO AF =(3)先设AD=2x,OG=x ,则CG=2-x ,,==CD ,然后得出四边形ABCD 的周长=t≥0,即x=2-t 2,可得四边形ABCD 的周长=-2(t-1)2+10,得出x=2-t 2=1,即AD=2,然后证明△ADF ≌△COF ,得出DF=OF=OD=1,根据△ADO 是等边三角形,得出∠DAE=30°,可得12tan 30DE DA == 【详解】(1)由三角形外角可得∠BOD=∠DAO+∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∵OC 平分∠BOD ,∴∠COD=∠COB ,∴∠COD=∠ODA ,∴OC ∥AD ;(2)∵OC 平分,BOD ∠∴∠COD=∠COB ,在△BOG 与△DOG 中,OB OD BOG DOG OG OG =⎧⎪=⎨⎪=⎩∠∠∴△BOG ≌△DOG ,∴∠BGO=∠DGO=90°,∵AD ∥OC ,∴∠ADB=∠OGB=90°,∠DAC=∠OCA ,∵OA=OC ,∴∠OAC=∠OCA ,∴∠DAC=∠OAC ,∵DE=DF ,∴∠DFE=∠DEF ,∵∠DFE=∠AFO ,∴∠AFO=∠DEF ,∴△AFO ∽△AED ,∴∠AOD=∠ADB=90°,,AD AE AO AF =∵OA=OD=2,∴根据勾股定理可得AD=2,∴;AD AE AO AF =(3)∵OA=OB ,OC ∥AD,∴根据三角形中位线可设AD=2x ,OG=x ,则CG=2-x ,∴,∴四边形ABCD 的周长=AB+AD+DC+BC,即x=2-t 2,∴四边形ABCD 的周长=4+2(2-t 2)+4t=-2t 2+4t+8=-2(t-1)2+10,当t=1时,四边形ABCD 的周长取得最大值,最大值为10,此时x=2-t 2=1,∴AD=2,∵OC ∥AD ,∴∠ADF=∠COF ,∠DAF=∠OCF ,∵AD=OC=2,∴△ADF ≌△COF∴DF=OF=OD=1,12∵AD=OC=OA=OD ,∴△ADO 是等边三角形,由(2)可知∠DAF=∠OAF ,∠ADE=90°,∴在Rt △ADE 中,∠DAE=30°,∴tan 30DE DA== ∴∴DE DF 【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数,平行线的判定与性质,等腰三角形的性质,二次函数的性质,涉及的知识点比较复杂,综合性较强,灵活运用这些知识点是解题关键.28.(1)①;②不完全同意小明的说法;理由见详解;当时,有最1944y x =-+92x =k大值;当时,有最小值;(2)或;81161x =k 21029n ≤<2n >【解析】【分析】(1)①直接利用待定系数法,即可求出函数的表达式;②由①得直线AB 为,则,利用二次函数的性质,即可求出1944y x =-+21944k x x =-+答案;(2)根据题意,求出直线AB 的直线为,设点P 为(x ,),则得21044n n y x --=+k x 到,由二次函数的性质,得到对称轴,即可求出n 的取值221044n n k x x --=-52b a -≥范围.【详解】解:(1)当时,点B 为(5,1),1n =①设直线AB 为,则y ax b =+,解得:,251a b a b +=⎧⎨+=⎩1494a b ⎧=-⎪⎪⎨⎪=⎪⎩∴;1944y x =-+②不完全同意小明的说法;理由如下:由①得,1944y x =-+设点P 为(x ,),由点P 在线段AB 上则kx ,1944k x x =-+∴;22191981(444216k x x x =-+=--+∵,104-<∴当时,有最大值;92x =k 8116当时,有最小值;1x =k 2∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在的位置时k 值最大.92x =(2)∵、,()1,2A ()5,B n 设直线AB 为,则y ax b =+,解得:,25a b a b n +=⎧⎨+=⎩24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩∴,21044n n y x --=+设点P 为(x ,),由点P 在线段AB 上则kx,221044n n k x x --=-则对称轴为:;101042242n n x n n --==--∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在中,k 随x 的增大而增大;15x ≤≤当时,有204n ->∴,解得:,20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩26n n >⎧⎨≥-⎩∴不等式组的解集为:;2n >当时,有204n -<∴,解得:,20410524n n n -⎧<⎪⎪⎨-⎪≥⎪-⎩1029n ≤<∴综合上述,n 的取值范围为:或.1029n ≤<2n >【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.。
2022年江苏省扬州市中考数学试卷和答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.(3分)实数﹣2的相反数是()A.2B.﹣C.﹣2D.2.(3分)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x只,兔有y只,那么可列方程组为()A.B.C.D.4.(3分)下列成语所描述的事件属于不可能事件的是()A.水落石出B.水涨船高C.水滴石穿D.水中捞月5.(3分)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥6.(3分)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC7.(3分)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③8.(3分)某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁二、填空题(本大题共有10小题,每小题3分,共30分.不需写出答案过程,请把答案直接填写在答题卡相应位置上)9.(3分)扬州某日的最高气温为6℃,最低气温为﹣2℃,则该日的日温差是℃.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)分解因式:3m2﹣3=.12.(3分)请填写一个常数,使得关于x的方程x2﹣2x+=0有两个不相等的实数根.13.(3分)如图,函数y=kx+b(k<0)的图象经过点P,则关于x 的不等式kx+b>3的解集为.14.(3分)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E与震级n的关系为E=k×101.5n(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的倍.15.(3分)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2S乙2.(填“>”“<”或“=”)16.(3分)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND=°.17.(3分)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B′处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB′于点P.若BC=12,则MP+MN=.18.(3分)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sinA的值为.三、答案题(本大题共有10小题,共96分.请在答题卡指定区域内作答,答案时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(1)2cos45°+(π﹣)0﹣;(2)(+1)÷.20.(8分)解不等式组并求出它的所有整数解的和.21.(8分)某校初一年级有600名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中(填“A”或“B”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:23457131415成绩/个人数/11185121人这组测试成绩的平均数为个,中位数为个;(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.22.(8分)某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果;(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.23.(10分)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?24.(10分)如图,在▱ABCD中,BE、DG分别平分∠ABC、∠ADC,交AC于点E、G.(1)求证:BE∥DG,BE=DG;(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF =6,求△ABC的面积.25.(10分)如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若sinA=,OA=8,求CB的长.26.(10分)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)27.(12分)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.28.(12分)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D 作DE⊥AD,交射线AB于点E.(1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;①点E在线段AB的延长线上且BE=BD;②点E在线段AB上且EB=ED.(2)若AB=6.①当=时,求AE的长;②直接写出运动过程中线段AE长度的最小值.答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.【知识点】实数的性质;相反数.【答案】解:实数﹣2的相反数是2.故选:A.2.【知识点】点的坐标.【答案】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.3.【知识点】由实际问题抽象出二元一次方程组.【答案】解:设鸡有x只,兔有y只,可列方程组为:.故选:D.4.【知识点】随机事件.【答案】解:A、水落石出,是必然事件,不符合题意;B、水涨船高,是必然事件,不符合题意;C、水滴石穿,是必然事件,不符合题意;D、水中捞月,是不可能事件,符合题意;故选:D.5.【知识点】由三视图判断几何体.【答案】解:由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥,故选:B.6.【知识点】全等三角形的应用.【答案】解:A.利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,∠B,无法确定三角形的形状,故此选项符合题意;D.根据∠A,∠B,BC,三角形形状确定,故此选项不合题意;故选:C.7.【知识点】相似三角形的判定与性质;旋转的性质.【答案】解:∵将△ABC以点A为中心逆时针旋转得到△ADE,∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,∴∠B=∠ADB,∴∠ADE=∠ADB,∴DA平分∠BDE,∴②符合题意;∵∠AFE=∠DFC,∠E=∠C,∴△AFE∽△DFC,∴①符合题意;∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠FAE,∵△AFE∽△DFC,∴∠FAE=∠CDF,∴∠BAD=∠CDF,∴③符合题意;故选:D.8.【知识点】反比例函数图象上点的坐标特征.【答案】解:根据题意,可知xy的值即为该校的优秀人数,∵描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,∴乙、丁两所学校的优秀人数相同,∵点丙在反比例函数图象上面,∴丙校的xy的值最大,即优秀人数最多,故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出答案过程,请把答案直接填写在答题卡相应位置上)9.【知识点】有理数的减法.【答案】解:根据题意得:6﹣(﹣2)=6+2=8(℃),则该日的日温差是8℃.故答案为:8.10.【知识点】二次根式有意义的条件.【答案】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.11.【知识点】提公因式法与公式法的综合运用.【答案】解:原式=3(m2﹣1)=3(m+1)(m﹣1).故答案为:3(m+1)(m﹣1).12.【知识点】根的判别式.【答案】解:a=1,b=﹣2.∵Δ=b2﹣4ac=(﹣2)2﹣4×1×c>0,∴c<1.故答案为:0(答案不唯一).13.【知识点】一次函数与一元一次不等式.【答案】解:由图象可得,当x=﹣1时,y=3,该函数y随x的增大而减小,∴不等式kx+b>3的解集为x<﹣1,故答案为:x<﹣1.14.【知识点】科学记数法—表示较大的数.【答案】解:由题意得:==1000,故答案为:1000.15.【知识点】方差.【答案】解:图表数据可知,甲数据偏离平均数数据较大,乙数据偏离平均数数据较小,即甲的波动性较大,即方差大,故答案为:>.16.【知识点】平行线的性质;三角形内角和定理.【答案】解:∵∠E=60°,∠C=45°,∴∠F=30°,∠B=45°,∵EF∥BC,∴∠NDB=∠F=30°,∴∠BND=180°﹣∠B﹣∠NDB=180°﹣45°﹣30°=105°,故答案为:105.17.【知识点】翻折变换(折叠问题);三角形中位线定理.【答案】解:如图2,由折叠得:AM=MD,MN⊥AD,AD⊥BC,∴GN∥BC,∴AG=BG,∴GN是△ABC的中位线,∴GN=BC=×12=6,∵PM=GM,∴MP+MN=GM+MN=GN=6.故答案为:6.18.【知识点】锐角三角函数的定义;勾股定理.【答案】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sinA==.故答案为:.三、答案题(本大题共有10小题,共96分.请在答题卡指定区域内作答,答案时应写出必要的文字说明、证明过程或演算步骤)19.【知识点】分式的化简求值;零指数幂;最简二次根式;特殊角的三角函数值;实数的运算.【答案】解:(1)原式=2×+1﹣2=+1﹣2=1﹣;(2)原式=(+)•=•=.20.【知识点】一元一次不等式组的整数解;解一元一次不等式组.【答案】解:,解不等式①,得:x≥﹣2,解不等式②,得:x<4,∴原不等式组的解集是﹣2≤x<4,∴该不等式组的整数解是﹣2,﹣1,0,1,2,3,∵﹣2+(﹣1)+0+1+2+3=3,∴该不等式组所有整数解的和是3.21.【知识点】总体、个体、样本、样本容量;用样本估计总体;算术平均数;中位数.【答案】解:(1)从初一所有男生中随机抽取20名男生进行引体向上测试,收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况,故答案为:B;(2)这组测试成绩的平均数为:(2×1+3×1+4×1+5×8+7×5+13×1+14×2+15×1)=7(个),中位数为:5(个),故答案为:7,5;(3)600×=90(人),答:校初一有90名男生不能达到合格标准.22.【知识点】列表法与树状图法.【答案】解:(1)画树状图如下:共有6种等可能出现的结果;(2)摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球对应的奖次为一等奖,理由如下:由树状图可知,摸出颜色不同的两球的结果有4种,摸出颜色相同的两球的结果有2种,∴摸出颜色不同的两球的概率为=,摸出颜色相同的两球的概率为=,∵一等奖的获奖率低于二等奖,<,∴摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球对应的奖次为一等奖.23.【知识点】分式方程的应用.【答案】解:设每个小组有学生x名,由题意得:,解得:x=10,当x=10时,12x≠0,∴x=10是分式方程的根,答:每个小组有学生10名.24.【知识点】平行四边形的性质;三角形的面积;全等三角形的判定与性质.【答案】(1)证明:在▱ABCD中,AD∥BC,∠ABC=∠ADC,∴∠DAC=∠BCA,AD=BC,AB=CD,∵BE、DG分别平分∠ABC、∠ADC,∴∠ADG=∠CBE,∵∠DGE=∠DAC+∠ADG,∠BEG=∠BCA+∠CBE,∴∠DGE=∠BEG,∴BE∥DG;在△ADG和△CBE中,,∴△ADG≌△CBE(ASA),∴BE=DG;(2)解:过E点作EH⊥BC于H,∵BE平分∠ABC,EF⊥AB,∴EH=EF=6,∵▱ABCD的周长为56,∴AB+BC=28,∴S△ABC====84.25.【知识点】切线的判定;锐角三角函数的定义;勾股定理.【答案】解:(1)直线BC与⊙O相切,理由:如图,连接OB,∵OA=OB,∴∠A=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠A+∠APO=90°,∴∠OBA+∠CBP=90°,∴∠OBC=90°,∵OB为半径,∴直线BC与⊙O相切;(2)在Rt△AOP中,sinA=,∵sinA=,∴设OP=x,则AP=5x,∵OP2+OA2=AP2,∴,解得:x=或﹣(不符合题意,舍去),∴OP=×=4,∵∠OBC=90°,∴BC2+OB2=OC2,∵CP=CB,OB=OA=8,∴BC2+82=(BC+4)2,解得:BC=6,∴CB的长为6.26.【知识点】作图—复杂作图;角平分线的性质;等腰直角三角形;扇形面积的计算.【答案】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.27.【知识点】二次函数综合题.【答案】解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C (0,8),设抛物线的解析式为:y=ax2+8,把B(4,0)代入得:0=16a+8,∴a=﹣,∴抛物线的解析式为:y=﹣x2+8,∵四边形EFGH是正方形,∴GH=FG=2OG,设H(t,﹣t2+8)(t>0),∴﹣t2+8=2t,解得:t1=﹣2+2,t2=﹣2﹣2(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;(2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,∵﹣1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,则MN=OM=3,NQ⊥MN,设N(m,﹣m2+8),由勾股定理得:PM2+PN2=MN2,∴m2+(﹣m2+8﹣3)2=32,解得:m1=2,m2=﹣2(舍),∴N(2,4),∴PM=4﹣1=3,∵cos∠NMP===,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴,∴,∴QN的解析式为:y=﹣2x+12,﹣x2+8=﹣2x+12,x2﹣2x+4=0,Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆.28.【知识点】三角形综合题.【答案】解:(1)①AE=2BE,理由如下:∵DE⊥AD,∴∠AED+∠EAD=90°=∠ADE=∠BDE+∠BDA,∵BE=BD,∴∠AED=∠BDE,∴∠EAD=∠BDA,∴AB=BD,∴BE=BD=AB,∴AE=2BE;②AE=2EB,理由如下:如图:∵∠BAC=90°,∠C=60°,∴∠B=30°,∵EB=ED,∴∠EDB=∠B=30°,∴∠AED=∠EDB+∠B=60°,∵DE⊥AD,∴∠EDA=90°,∠EAD=30°,∴AE=2ED,∴AE=2EB;(2)①过D作DF⊥AB于F,如图:∵∠FAD=∠DAE,∠AFD=90°=∠ADE,∴△AFD∽△ADE,∴=,即=,∵=,∴=,设DF=m,则AF=2m,在Rt△BDF中,BF=DF=3m,∵AB=6,∴BF+AF=6,即3m+2m=6,∴m=,∴AF=,DF=,∴AD==,∵△AFD∽△ADE,∴=,即=,∴AE=;②作AE的中点G,连接DG,如图:∵∠ADE=90°,DG是斜边上的中线,∴AE=2DG,DG=AG=EG,当AE最小时,DG最小,此时DG⊥BC,∵∠B=30°,∴BG=2DG,∴AE=2DG=BG,∴BE=AG,∴AG=EG=BE,∴此时AE=AB=4,答:线段AE长度的最小值为4,法2:过A做AG⊥BC于G,过E做EH⊥BC于H,如图:∵∠ADE=90°,∴∠EDH=90°﹣∠ADG=∠DAG,∵∠EHD=∠AGD=90°,∴=,∴AG•EH=DH•DG,∵∠BAC=90°,∠C=60°,∴∠B=30°,∴AG=AB=3,EH=BE=(6﹣AE),∴DH•DG=3EH,∴AE2=AD2+DE2=AG2+DG2+DH2+EH2=9+DG2+DH2+EH2,∵DG2+DH2≥2DH•DG,∴AE2≥9+2DH•DG+EH2,即AE2≥9+6EH+EH2,∴AE2≥(3+EH)2,∵AE>0,EH>0,∴AE≥3+EH,∵EH=(6﹣AE),∴AE≥3+(6﹣AE),∴AE≥4.答:线段AE长度的最小值为4,。
2021年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)实数100的倒数是()A.100B.﹣100C.1100D.−11002.(3分)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱3.(3分)下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽4.(3分)不论x取何值,下列代数式的值不可能为0的是()A.x+1B.x2﹣1C.1x+1D.(x+1)25.(3分)如图,点A、B、C、D、E在同一平面内连接AB、BC、CD、DE、EA,若∠BCD =100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°6.(3分)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是()A.2B.3C.4D.57.(3分)如图,一次函数y=x+√2的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.√6+√2B.3√2C.2+√3D.√3+√28.(3分)如图,点P是函数y=k1x(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=k2x(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=k1−k22;③S△DCP=(k1−k2)22k1,其中正确的是()A.①②B.①③C.②③D.①二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为.10.(3分)计算:20212﹣20202=.11.(3分)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为.12.(3分)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是.13.(3分)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马天追上慢马.14.(3分)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为cm2.15.(3分)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE=.16.(3分)如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE =10,则▱ABCD的面积为.17.(3分)如图,在△ABC 中,AC =BC ,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若CF =4,BF =3,且DE =2EF ,则EF 的长为 .18.(3分)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 .三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算或化简:(1)(−13)0+|√3−3|+tan60°.(2)(a +b )÷(1a +1b ). 20.(8分)已知方程组{2x +y =7x =y −1的解也是关于x 、y 的方程ax +y =4的一个解,求a 的值. 21.(8分)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数统计表喜欢程度人数50人A.非常喜欢m人B.比较喜欢C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是;(2)扇形统计图中表示A程度的扇形圆心角为°,统计表中m=;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).22.(8分)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.(1)甲坐在①号座位的概率是;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.23.(10分)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?24.(10分)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.(1)试判断四边形AFDE的形状,并说明理由;(2)若∠BAC=90°,且AD=2√2,求四边形AFDE的面积.25.(10分)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2√3,∠BCD=60°,求图中阴影部分的面积.26.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.(1)b=,c=;(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P 的坐标.27.(12分)在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②△ABC面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=4 3.①线段PB长的最小值为;②若S△PCD=23S△P AD,则线段PD长为.28.(12分)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是元;当每个公司租出的汽车为辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.2021年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)实数100的倒数是()A.100B.﹣100C.1100D.−1100【解答】解:100的倒数为1 100,故选:C.2.(3分)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.3.(3分)下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽【解答】解:A、3天内将下雨,是随机事件;B、打开电视,正在播新闻,是随机事件;C、买一张电影票,座位号是偶数号,是随机事件;D、没有水分,种子不可能发芽,故是不可能事件;故选:D.4.(3分)不论x取何值,下列代数式的值不可能为0的是()A.x+1B.x2﹣1C.1x+1D.(x+1)2【解答】解:A、当x=﹣1时,x+1=0,故不合题意;B、当x=±1时,x2﹣1=0,故不合题意;C、分子是1,而1≠0,则1x+1≠0,故符合题意;D、当x=﹣1时,(x+1)2=0,故不合题意;故选:C.5.(3分)如图,点A、B、C、D、E在同一平面内连接AB、BC、CD、DE、EA,若∠BCD =100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°【解答】解:连接BD,∵∠BCD=100°,∴∠CBD+∠CDB=180°﹣100°=80°,∴∠A+∠ABC+∠E+∠CDE=360°﹣∠CBD﹣∠CDB=360°﹣80°=280°,故选:D.6.(3分)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是()A.2B.3C.4D.5【解答】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有3个.故共有3个点,故选:B.7.(3分)如图,一次函数y=x+√2的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.√6+√2B.3√2C.2+√3D.√3+√2【解答】解:∵一次函数y=x+√2的图像与x轴、y轴分别交于点A、B,令x=0,则y=√2,令y=0,则x=−√2,则A(−√2,0),B(0,√2),则△OAB为等腰直角三角形,∠ABO=45°,∴AB=√(√2)2+(√2)2=2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC=√AD2+CD2=√2x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x,∴BD=2−CD2=√3x,又BD=AB+AD=2+x,∴2+x=√3x,解得:x=√3+1,∴AC=√2x=√2(√3+1)=√6+√2,故选:A.8.(3分)如图,点P是函数y=k1x(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=k2x(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=k1−k22;③S△DCP=(k1−k2)22k1,其中正确的是()A .①②B .①③C .②③D .①【解答】解:∵PB ⊥y 轴,P A ⊥x 轴,点P 在y =k1x 上,点C ,D 在y =k2x 上,设P (m ,k 1m ),则C (m ,k 2m),A (m ,0),B (0,k 1m),令k 1m=k 2x,则x =k 2mk 1,即D (k 2m k 1,k 1m), ∴PC =k 1m −k 2m =k 1−k 2m ,PD =m −k 2m k 1=m(k 1−k 2)k 1, ∵PD PB=m(k 1−k 2)k 1m=k 1−k 2m,PCPA=k 1−k 2m k 1m=k 1−k 2m,即PD PB=PC PA,又∠DPC =∠BP A , ∴△PDC ∽△PBA , ∴∠PDC =∠PBC , ∴CD ∥AB ,故①正确;△PDC 的面积=12×PD ×PC =(k 1−k 2)22k 1,故③正确;S △OCD =S 四边形OAPB ﹣S △OCA ﹣S △DPC=k 1−12k 2−12k 2−(k 1−k 2)22k 1=k 12−k222k 1,故②错误;故选:B .二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为 3.02×106 .【解答】解:将3020000用科学记数法表示为3.02×106. 故答案为:3.02×106.10.(3分)计算:20212﹣20202= 4041 . 【解答】解:20212﹣20202 =(2021+2020)(2021﹣2020) =4041×1 =4041故答案为:4041.11.(3分)在平面直角坐标系中,若点P (1﹣m ,5﹣2m )在第二象限,则整数m 的值为 2 . 【解答】解:由题意得:{1−m <05−2m >0,解得:1<m <52, ∴整数m 的值为2, 故答案为:2.12.(3分)已知一组数据:a 、4、5、6、7的平均数为5,则这组数据的中位数是 5 . 【解答】解:∵这组数据的平均数为5, 则a+4+5+6+75=5,解得:a =3,将这组数据从小到大重新排列为:3,4,5,6,7, 观察数据可知最中间的数是5, 则中位数是5. 故答案为:5.13.(3分)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马 20 天追上慢马.【解答】解:设快马行x 天追上慢马,则此时慢马行了(x +12)日,依题意,得:240x=150(x+12),解得:x=20,∴快马20天追上慢马,故答案为:20.14.(3分)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为100πcm2.【解答】解:由题意得圆柱的底面直径为10cm,高为10cm,∴侧面积=10π×10=100π(cm2).故答案为:100π.15.(3分)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE=3.【解答】解:∵∠ACB=90°,DE⊥BC,∴DE∥AC,∵点D是AB的中点,∴E是BC的中点,AB=2CD=10,∴AC=2DE,∵BC=8,∴AC=√AB2−BC2=√102−82=6,∴DE=3.故答案为3.16.(3分)如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE =10,则▱ABCD的面积为50.【解答】解:过点E作EF⊥BC,垂足为F,∵∠EBC=30°,BE=10,∴EF=BE=5,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DEC=∠BCE,又EC平分∠BED,即∠BEC=∠DEC,∴∠BCE=∠BEC,∴BE=BC=10,∴四边形ABCD的面积=BC×EF=10×5=50,故答案为:50.17.(3分)如图,在△ABC中,AC=BC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若CF=4,BF=3,且DE=2EF,则EF的长为125.【解答】解:∵DE =2EF ,设EF =x ,则DE =2x , ∵四边形DEFG 是矩形, ∴GF ∥AB , ∴△CGF ∽△CAB , ∴GF AB=CF CB=44+3=47,即2xAB=47,∴AB =7x 2, ∴AD +BE =AB ﹣DE =7x 2−2x =32x , ∵AC =BC ,在△ADG 和△BEF 中, {∠A =∠B∠ADG =∠BEF DG =EF,∴△ADG ≌△BEF (AAS ), ∴AD =BE =34x ,在△BEF 中,BE 2+EF 2=BF 2, 即(34x)2+x 2=32, 解得:x =125或−125(舍), ∴EF =125, 故答案为:125.18.(3分)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 1275 . 【解答】解:第①个图形中的黑色圆点的个数为:1, 第②个图形中的黑色圆点的个数为:(1+2)×22=3, 第③个图形中的黑色圆点的个数为:(1+3)×32=6, 第④个图形中的黑色圆点的个数为:(1+4)×42=10,…第n 个图形中的黑色圆点的个数为n(n+1)2,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,…, 其中每3个数中,都有2个能被3整除, 33÷2=16…1, 16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50×512=1275,故答案为:1275.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(8分)计算或化简:(1)(−13)0+|√3−3|+tan60°. (2)(a +b )÷(1a+1b ).【解答】解:(1)原式=1+3−√3+√3 =4;(2)原式=(a +b)÷a+bab=(a +b)×ab a+b=ab .20.(8分)已知方程组{2x +y =7x =y −1的解也是关于x 、y 的方程ax +y =4的一个解,求a 的值.【解答】解:方程组{2x +y =7①x =y −1②,把②代入①得:2(y ﹣1)+y =7, 解得:y =3,代入①中, 解得:x =2,把x =2,y =3代入方程ax +y =4得,2a +3=4, 解得:a =12.21.(8分)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数统计表 喜欢程度 人数 A .非常喜欢 50人B .比较喜欢 m 人 C .无所谓 n 人 D .不喜欢16人 根据以上信息,回答下列问题:(1)本次调查的样本容量是 200 ;(2)扇形统计图中表示A 程度的扇形圆心角为 90 °,统计表中m = 94 ; (3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢). 【解答】解:(1)16÷8%=200, 则样本容量是200; (2)50200×360°=90°,则表示A 程度的扇形圆心角为90°; 200×(1﹣8%﹣20%−50200×100%)=94, 则m =94; (3)50+94200×2000=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.22.(8分)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上. (1)甲坐在①号座位的概率是13;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.【解答】解:(1)∵丙坐了一张座位, ∴甲坐在①号座位的概率是13;(2)画树状图如图:共有6种等可能的结果,甲与乙两同学恰好相邻而坐的结果有4种,∴甲与乙相邻而坐的概率为46=23.23.(10分)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?【解答】解:设原先每天生产x万剂疫苗,由题意可得:240(1+20%)x +0.5=220x,解得:x=40,经检验:x=40是原方程的解,∴原先每天生产40万剂疫苗.24.(10分)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.(1)试判断四边形AFDE的形状,并说明理由;(2)若∠BAC=90°,且AD=2√2,求四边形AFDE的面积.【解答】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠F AD=∠EAD,∵DE∥AB,∴∠EDA=∠F AD,∴∠EDA =∠EAD ,∴AE =DE ,∴平行四边形AFDE 是菱形;(2)∵∠BAC =90°,∴四边形AFDE 是正方形,∵AD =2√2,∴AF =DF =DE =AE =2√2√2=2, ∴四边形AFDE 的面积为2×2=4.25.(10分)如图,四边形ABCD 中,AD ∥BC ,∠BAD =90°,CB =CD ,连接BD ,以点B 为圆心,BA 长为半径作⊙B ,交BD 于点E .(1)试判断CD 与⊙B 的位置关系,并说明理由;(2)若AB =2√3,∠BCD =60°,求图中阴影部分的面积.【解答】解:(1)过点B 作BF ⊥CD ,垂足为F ,∵AD ∥BC ,∴∠ADB =∠CBD ,∵CB =CD ,∴∠CBD =∠CDB ,∴∠ADB =∠CDB .在△ABD 和△FBD 中,{∠ADB =∠FDB∠BAD =∠BFD BD =BD,∴△ABD ≌△FBD (AAS ),∴BF =BA ,则点F 在圆B 上,∴CD 与⊙B 相切;(2)∵∠BCD =60°,CB =CD ,∴△BCD 是等边三角形,∴∠CBD =60°∵BF ⊥CD ,∴∠ABD =∠DBF =∠CBF =30°,∴∠ABF =60°,∵AB =BF =2√3,∴AD =DF =AB ·tan30°=2,∴阴影部分的面积=S △ABD ﹣S 扇形ABE=12×2√3×2−30×π×(2√3)2360 =2√3−π.26.(10分)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C .(1)b = ﹣2 ,c = ﹣3 ;(2)若点D 在该二次函数的图象上,且S △ABD =2S △ABC ,求点D 的坐标;(3)若点P 是该二次函数图象上位于x 轴上方的一点,且S △APC =S △APB ,直接写出点P 的坐标.【解答】解:(1)∵点A 和点B 在二次函数y =x 2+bx +c 图像上,则{0=1−b +c 0=9+3b +c ,解得:{b =−2c =−3, 故答案为:﹣2,﹣3;(2)连接BC ,由题意可得:A (﹣1,0),B (3,0),C (0,﹣3),y =x 2﹣2x ﹣3,∴S △ABC =12×4×3=6, ∵S △ABD =2S △ABC ,设点D (m ,m 2﹣2m ﹣3),∴12×AB ×|y D |=2×6,即12×4×|m 2﹣2m ﹣3|=2×6, 解得:m =1+√10或1−√10,代入y =x 2﹣2x ﹣3,可得:y 值都为6,∴D (1+√10,6)或(1−√10,6);(3)设P (n ,n 2﹣2n ﹣3),∵点P 在抛物线位于x 轴上方的部分,∴n <﹣1或n >3,当点P 在点A 左侧时,即n <﹣1,可知点C 到AP 的距离小于点B 到AP 的距离,∴S △APC <S △APB ,不成立;当点P 在点B 右侧时,即n >3,∵△APC 和△APB 都以AP 为底,若要面积相等,则点B 和点C 到AP 的距离相等,即BC ∥AP ,设直线BC 的解析式为y =kx +p ,则{0=3k +p −3=p,解得:{k =1p =−3, 则设直线AP 的解析式为y =x +q ,将点A (﹣1,0)代入,则﹣1+q =0,解得:q =1,则直线AP 的解析式为y =x +1,将P (n ,n 2﹣2n ﹣3)代入,即n 2﹣2n ﹣3=n +1,解得:n =4或n =﹣1(舍),n 2﹣2n ﹣3=5,∴点P 的坐标为(4,5).27.(12分)在一次数学探究活动中,李老师设计了一份活动单:已知线段BC =2,使用作图工具作∠BAC =30°,尝试操作后思考:(1)这样的点A 唯一吗?(2)点A 的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为 2 ;②△ABC 面积的最大值为 √3+2 ;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ′,请你利用图1证明∠BA ′C >30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长AB =2,BC =3,点P 在直线CD 的左侧,且tan ∠DPC =43.①线段PB 长的最小值为 √97−54 ;②若S △PCD =23S △P AD ,则线段PD 长为7√24 .【解答】解:(1)①设O 为圆心,连接BO ,CO ,∵∠BCA =30°,∴∠BOC =60°,又OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =2,即半径为2;②∵△ABC 以BC 为底边,BC =2,∴当点A 到BC 的距离最大时,△ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,∴BE =CE =1,DO =BO =2,∴OE =√BO 2−BE 2=√3,∴DE =√3+2,∴△ABC 的最大面积为12×2×(√3+2)=√3+2;(2)如图,延长BA ′,交圆于点D ,连接CD ,∵点D 在圆上,∴∠BDC =∠BAC ,∵∠BA ′C =∠BDC +∠A ′CD ,∴∠BA ′C >∠BDC ,∴∠BA ′C >∠BAC ,即∠BA ′C >30°;(3)①如图,当点P 在BC 上,且PC =32时,∵∠PCD =90°,AB =CD =2,AD =BC =3,∴tan ∠DPC =CD PC =43,为定值,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆, ∴当点P 在优弧CPD 上时,tan ∠DPC =43,连接BQ ,与圆Q 交于P ′,此时BP ′即为BP 的最小值,过点Q 作QE ⊥BE ,垂足为E ,∵点Q 是PD 中点,∴点E 为PC 中点,即QE =12CD =1,PE =CE =12PC =34,∴BE =BC ﹣CE =3−34=94,∴BQ =√BE 2+QE 2=√974,∵PD =√CD 2+PC 2=52,∴圆Q 的半径为12×52=54, ∴BP ′=BQ ﹣P ′Q =√97−54,即BP 的最小值为√97−54;②∵AD =3,CD =2,S △PCD =23S △P AD ,则CD AD =23, ∴△P AD 中AD 边上的高=△PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在∠ADC 的平分线上,如图,过点C 作CF ⊥PD ,垂足为F ,∵PD 平分∠ADC ,∴∠ADP =∠CDP =45°,∴△CDF 为等腰直角三角形,又CD =2,∴CF =DF =2=√2, ∵tan ∠DPC =CF PF =43, ∴PF =3√24, ∴PD =DF +PF =√2+3√24=7√24.28.(12分)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.【解答】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x辆,由题意可得:[(50﹣x)×50+3000]x﹣200x=3500x﹣1850,解得:x=37或x=﹣1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,则y甲=[(50﹣x)×50+3000]x﹣200x,y乙=3500x﹣1850,当甲公司的利润大于乙公司时,0<x<37,y=y甲﹣y乙=[(50﹣x)×50+3000]x﹣200x﹣(3500x﹣1850)=﹣50x2+1800x+1850,当x=−1800−50×2=18时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,37<x≤50,y=y乙﹣y甲=3500x﹣1850﹣[(50﹣x)×50+3000]x+200x =50x2﹣1800x﹣1850,∵对称轴为直线x=−−180050×2=18,当x=50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为y=﹣50x2+1800x+1850﹣ax=﹣50x2+(1800﹣a)x+1850,对称轴为直线x=1800−a 100,∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,∴16.5<1800−a100<17.5,解得:50<a<150.。
2024年江苏省扬州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数2的倒数是( )A .2-B .2C .12-D .122.“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识.其中的轴对称图形是( )A .B .C .D .【答案】C【分析】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,进行分析即可.【详解】解:A ,B ,D 选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C 选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C .3.下列运算中正确的是( )A .222()a b a b -=-B .523a a a -=C .()235a a =D .236326a a a ⋅=【答案】B【分析】本题考查了乘法公式,合并同类项,幂的乘方,同底数幂乘法,掌握整式的混合运算法则是解题的关键.【详解】解:A 、()2222a b a ab b -=-+,原选项错误,不符合题意;B 、523a a a -=,正确,符合题意;C 、()236a a =,原选项错误,不符合题意;D 、2353·26a a a =,原选项错误,不符合题意;故选:B .4.第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力4.3 4.4 4.5 4.6 4.7 4.8 4.95.0人数7447111053这45名同学视力检查数据的众数是( )A .4.6B .4.7C .4.8D .4.9【答案】B【分析】本题主要考查了众数的定义,在一组数据中出现最多的数,叫做众数,根据众数的定义进行判断即可.【详解】解:这45名同学视力检查数据中,4.7出现的次数最多,因此众数是4.7.故选:B .5.在平面直角坐标系中,点()1,2P 关于原点的对称点P'的坐标是( )A .()1,2B .()1,2-C .()1,2-D .()1,2--【答案】D【分析】根据关于原点对称的点的坐标特征:横坐标、纵坐标都变为相反数,即可得答案.【详解】∵点()1,2P 关于原点的对称点为P',∴P'的坐标为(-1,-2),故选D .【点睛】本题考查关于原点对称的点的坐标,其坐标特征为:横坐标、纵坐标都变为相反数.6.如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了几何图形展开的识别,理解并掌握几何展开图的特点与立体图形的关系是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴三棱柱,故选:C .7.在平面直角坐标系中,函数42=+yx的图像与坐标轴的交点个数是()A.0B.1C.2D.48.1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )A .676B .674C .1348D .1350【答案】D【分析】将这一列数继续写下去,发现这列数的变化规律即可解答.本题主要考查的是数字规律类问题,发现这列数的变化规律是解题的关键.【详解】这一列数为:1,1,2,3,5,8,13,21,34,…可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数.由于202436742÷= ,即前2024个数共有674组,且余2个数,∴奇数有674221350⨯+=个.故选:D 二、填空题9.近年来扬州经济稳步发展:2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为 .【答案】71.8710⨯【分析】根据科学记数法的要求,将18700000变为10(110)n a a ⨯<≤,分别确定a 和n 的值即可.本题考查了科学记数法,其表示形式为10(110)n a a ⨯<≤,正确确定a 和n 的值是解答本题的关键.n 是整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数的绝对值大于等于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】718700000 1.8710=⨯,故答案为:71.8710⨯.10.分解因式:2242a a -+= .【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.11.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872650盖面朝上频率0.56000.54000.53000.52670.52800.52700.52800.52900.530随着实验次数的增大,“盖面朝上”的概率接近于(精确到0.01).【答案】0.53【分析】本题考查了利用频率估计概率的知识,解题的关键是能够仔细观察表格并了解:现随着实验次数的增多,频率逐渐稳定到某个常数附近,可用这个常数表示概率.根据图表中数据解答本题即可.【详解】解:由表中数据可得:随着实验次数的增大,“盖面朝上”的概率接近0.53,故答案为:0.5312有意义,则x 的取值范围是 .13.若用半径为10cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为 cm .【答案】5【分析】本题考查了圆锥的计算.用到的知识点为:圆锥的侧面展开图弧长等于底面周长.根据题意得圆锥的母线长为10cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为210210(cm)ππ⨯÷=,∴圆锥的底面半径为1025(cm)ππ÷=,故答案为:5.14.如图,已知一次函数(0)y kx b k =+≠的图象分别与x 、y 轴交于A 、B 两点,若2OA =,1OB =,则关于x 的方程0kx b +=的解为 .【答案】2x =-【分析】本题主要考查了一次函数与一元一次方程之间的关系,难度不大,认真分析题意即可.根据一次函数与x 轴交点坐标可得出答案.【详解】解:∵2OA =,∴(2,0)A -,∵一次函数y kx b =+的图象与x 轴交于点(2,0)A -,∴当0y =时,2x =-,即0kx b +=时,2x =-,∴关于x 的方程0kx b +=的解是2x =-.故答案为:2x =-.15.《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要 分钟.【答案】2.5【分析】本题考查了一元一次方程的运用,理解数量关系,掌握方程解决实际问题是解题的关键.根据题意,设需要t 分钟追上,则速度快的人的路程等于速度慢的人的路程,由此列式求解即可.【详解】解:根据题意,设t 分钟追上,∴10060100t t +=,解得, 2.5t =,∴速度快的人追上速度慢的人需要2.5分钟,故答案为:2.5 .16.物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图像投影的方法.如图,燃烧的蜡烛(竖直放置)AB 经小孔O 在屏幕(竖直放置)上成像A B ''.设36cm AB =,24cm A B ''=.小孔O 到AB 的距离为30cm ,则小孔O 到A B ''的距离为 cm .【答案】20【分析】此题主要考查了相似三角形的应用,由题意得AB A B ''∥,AOB A OB ''∽△△,过O 作OC AB ⊥于点C ,CO 交A B ''于点C ',利用已知得出''AOB A OB △∽△,进而利用相似三角形的性质求出即可,熟练掌握相似三角形的性质是解题关键.【详解】由题意得:AB A B ''∥,∴AOB A OB ''∽△△,如图,过O 作OC AB ⊥于点C ,CO 交A B ''于点C ',∴OC A B '''⊥,30cm OC =∴A B OC AB OC'''=,即243630OC =∴20OC '=(cm ),即小孔O 到A B ''的距离为20cm 2017.如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)k y x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .18.如图,已知两条平行线1l 、2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C 、D 分别是1l 、2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为 .则点H 在O 上运动,∴当AH 与O 相切时BAH ∠最大,∴OH AH ⊥,∵2AE OB OE ==,∴3AO AE OE OE =+=,三、解答题19.(1)计算:0|3|2sin 302)π-+︒--;(2)化简:2(2)1x x x -÷-+.20.解不等式组260412x x x -≤⎧⎪⎨-<⎪,并求出它的所有整数解的和.21.2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x (分)百分比A 组60x <5%B 组6070x ≤<15%C 组7080x ≤<a D 组8090x ≤<35%E 组90100x ≤≤25%成绩条形统计图根据所给信息,解答下列问题:(1)本次调查的成绩统计表中=a ________%,并补全条形统计图;(2)这200名学生成绩的中位数会落在________组(填A 、B 、C 、D 或E );(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.【答案】(1)20,条形统计图见详解(2)D(3)300人【分析】(1)用1减去其余各组人数所占的百分数即可得a 的值,进而可求出C 组人数,补全条形统计图即可.(2)按照中位数的定义解答即可.(3)用总人数乘以D 组人数所占百分比即可.【详解】(1)5153522105%%%%%a -=---=,C 组人数为:20020%40⨯=,补全条形统计图如图所示:故答案为:20(2)055124005%%%%%+=<+,51532075505%%%%%%++=>+,∴200名学生成绩的中位数会落在D 组.(3)120025%300⨯=(人)估计该校1200名学生中成绩在90分以上(包括90分)的人数为300人.【点睛】本题主要考查了统计表和统计图的综合运用、用样本估计总体等知识.综合运用所学知识并且正确计算是解题的关键.22.2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A 、B 、C 、D 、E )参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是______;(2)小明和小亮在C 、D 、E 三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.23.为了提高垃圾处理效率,某垃圾处理厂购进A 、B 两种机器,A 型机器比B 型机器每天多处理40吨垃圾,A 型机器处理500吨垃圾所用天数与B 型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?【答案】B 型机器每天处理60吨【分析】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾,根据题意列出方程即可求出答案.【详解】解:设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾,24.如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD .(1)试判断四边形ABCD 的形状,并说明理由;(2)已知矩形纸条宽度为2cm ,将矩形纸条旋转至如图2位置时,四边形ABCD 的面积为28cm ,求此时直线AD CD 、所夹锐角1∠的度数.【答案】(1)四边形ABCD 是菱形,理由见详解(2)130∠=︒【分析】本题主要考查矩形的性质,菱形的判定和性质,全等三角形的判定和性质,含30︒的直角三角形的性质,掌握菱形的判定和性质是解题的关键.(1)根据矩形的性质可得四边形ABCD 是平行四边形,作AT NP CU EH ⊥⊥,,可证ATB CUB ≌,可得AB CB =,由此可证平行四边形ABCD 是菱形;(2)作AR CD ⊥,根据面积的计算方法可得42CD AR ==,,结合菱形的性质可得4AD =,根据含30︒的直角三角形的性质即可求解.【详解】(1)解:四边形ABCD 是菱形,理由如下,如图所示,过点A 作AT NP ⊥于点T ,过点C 作CU EH ⊥于点U ,根据题意,四边形EFGH ,四边形∴EH FG MQ NP ,,∴AB DC AD BC ,,∴四边形ABCD 是平行四边形,∵宽度相等,即AT CU =,且根据题意,2AR cm =,∵·8ABCD S CD AR ==四边形,∴4CD =,25.如图,已知二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点.、的值;(1)求b c(2)若点P在该二次函数的图像上,且PAB的面积为6,求点P的坐标.当224x x --+=-时,13x =-,22x =;∴122434()()P P ---,,,.26.如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长.∴2COQ CAQ ∠=∠;点O 即为所求连接BC ,以点B 为圆心,以径画弧交AQ 于点11C D ,,分别以点连接11B F 并延长交AP 于点M ∵根据作图可得,2COQ CAQ ∠=∠,∴在Rt AMW 中,3sin 5WM A AM ==27.如图,点A B M E F 、、、、依次在直线l 上,点A B 、固定不动,且2AB =,分别以AB EF、为边在直线l 同侧作正方形ABCD 、正方形EFGH ,90PMN ∠=︒,直角边MP 恒过点C ,直角边MN 恒过点H .(1)如图1,若10BE =,12EF =,求点M 与点B 之间的距离;(2)如图1,若10BE =,当点M 在点B E 、之间运动时,求HE 的最大值;(3)如图2,若22BF =,当点E 在点B F 、之间运动时,点M 随之运动,连接CH ,点O 是CH 的中点,连接HB MO 、,则2OM HB +的最小值为_______.∵90CMH∠= ,点O是CH的中点,∴12OM CH=,∴2OM HB CH HB+=+,∴当C H B'、、三点共线时,CHRt'CB Q28.在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在 O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示)在Rt BDE △中,∴cos30BE BD =︒⋅=∴3BC =,∵AD 是直径,则ABD Ð∵ AB AB=∴60ADB ACB ∠=∠=∴DBF 是等边三角形,∴BF BD =,则60BFD ∠=︒∴120AFB ∠=︒∵四边形ACDB 是圆内接四边形,∴120CDB ∠=︒∴AFB CDB ∠=∠;∵CA CB =,60ACB ∠=︒,∴ABC 是等边三角形,则60CAB ∠=︒∴AB BC =,又∵ BDBD =∴BCD BAF=∠∠在,AFB CDB 中AFB CDB BAF BCDAB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AFB CDB ≌∴AF CD =,∴AD BD AD DF AF CD-=-==即AD BD CD -=;(3)解:①如图所示,当D 在 BC上时,在AD 上截取DE BD =,∵ AB AB=∴ACB ADBÐ=Ð又∵,CA CB DE DB==∴CAB DEB ∽,则ABC EBD∠=∠∴2sin2AB BC α=⋅∴2sin 2AD BD CD α-=,即②当D 在 AB 上时,如图所示,延长∵四边形ACDB 是圆内接四边形,∴180GAD ACB ∠=∠=又∵,CA CB DG DA==∴CAB DAG ∽,则。
江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣52.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2=.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b.(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)因式分解:18﹣2x2=2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+=故答案为:【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,=OD•DE=OE•DF,∵S△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.【点评】本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+18【点评】本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是50,a+b11.(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S=•AB•DE=•3=15.菱形AEBD【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE ﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x的取值范围.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,=﹣10(46﹣50)2+4000=3840,∴x=46时,w大答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使。
江苏扬州市中考数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分) 1、实数0是 ( )
A 、有理数
B 、无理数
C 、正数
D 、负数
2、我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( ) A 、7
1049.7⨯ B 、6
1049.7⨯ C 、6
109.74⨯ D 、7
10749.0⨯
3、如图是某校学生参加课外兴趣小组的人数占总人数比例的 统计图,则参加人数最多的课外兴趣小组是 ( )
A 、音乐组
B 、美术组
C 、体育组
D 、科技组 4、下列二次根式中的最简二次根式是 ( ) A 、30 B 、12 C 、8 D 、2
1 5、如图所示的物体的左视图为( )
6、如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,Rt △ABC 经过变换得到Rt △ODE ,若点C 的坐标为(0,1),AC=2,则这种 变换可以是 ( )
A 、△ABC 绕点C 顺时针旋转90°,再向下平移3
B 、△AB
C 绕点C 顺时针旋转90°,再向下平移1 C 、△ABC 绕点C 逆时针旋转90°,再向下平移1
D 、△ABC 绕点C 逆时针旋转90°,再向下平移3
7、如图,若锐角△ABC 内接于⊙O,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ;
③D C ∠>∠tan tan 中,正确的结论为( )
A 、①②
B 、②③
C 、①②③
D 、①③
8、已知x=2是不等式)23)(5(+--a ax x ≤0的解,且x=1不是这 个不等式的解,则实数a 的取值范围是 ( )
A 、1>a
B 、a ≤2
C 、a <1≤2
D 、1≤a ≤2
二、填空题(本大题共有10小题,每小题3分,工30分) 9、-3的相反数是
10、因式分解:x x 93
-=
11、已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一
个交点坐标是
12、色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随 机抽取体检表,统计结果如下表:
抽取的体检表数n
50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m
3 7 13 29 37 55 69 85 105 138 色盲患者的频率
m/n
0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069 根据上表,估计在男性中,男性患色盲的概率为 (结果精确到0.01) 13、若532=-b a ,则=+-2015262
a b
14、已知一个圆锥的侧面积是π22
cm ,它的侧面展开图是一个半圆,则这个圆锥的高为 cm (结果保留根号)
15、如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的
三个点A 、B 、C 都在横格线上,若线段AB=4 cm ,则线段BC= cm
16、如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边
与直角三角形的两条直角边相交成∠1、∠2,则∠2-∠1=
17、如图,已知Rt △ABC 中,∠ABC=90°,AC=6,BC=4,将△ABC 绕直角顶点C 顺时 针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF=
18、如图,已知△ABC 的三边长为a 、b 、c ,且c b a <<,若平行于三角形一边的直线l
将△ABC 的周长分成相等的两部分,设图中的小三角形①、②、③的面积分别为1s 、
2s 、
3s 则1s 、2s 、3s 的大小关系是 (用“<”号连接)
三、解答题(本大题共有10小题,共96分,解答时应写出必要的文字说明、证明过程或演算步骤)
19、(本题满分8分)
(1)计算:︒--+-30tan 2731)4
1(1
(2)化简:)1
1
11(12---+÷-a a a a a
20、(本题满分8分)解不等式组⎪⎩⎪
⎨⎧->--≥22
15143x x x x ,并把它的解集在数轴上表示出来
21、(本题满分8分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的
捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图。
(1)这50名同学捐款的众数为 元,中位数为 元 (2)求这50名同学捐款的平均数
(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数
22、(本题满分8分)“扬州鉴真国际半程马拉松”的赛事共有三项:A 、“半程马拉松”、
B 、“10公里”、
C 、“迷你马拉松”。
小明和小刚参加了该项赛事的志愿者服务工作,
组委会随机将志愿者分配到三个项目组
(1)小明被分配到“迷你马拉松”项目组的概率为 (2)求小明和小刚被分配到不同项目组的概率
23、(本题满分10分)如图,将□ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的
点'D 处,折痕l 交CD 边于点E ,连接BE (1)求证:四边形'BCED 是平行四边形
(2)若BE 平分∠ABC ,求证:222BE AE AB +=
24、(本题满分10分)扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200
棵,由于志愿者的参加,实际每天栽树的棵树比原计划多20%,结果提前2天完成, 求原计划每天栽树多少棵?
25、(本题满分10分)如图,已知⊙O 的直径AB=12cm,AC 是⊙O 的弦,过点C 作⊙O 的 切线交BA 的延长线于点P ,连接BC (1)求证:∠PCA=∠B
(2)已知∠P=40°,点Q 在优弧ABC 上,从点A 开始逆时针运动到点C 停止(点Q 与点
C 不重合),当△ABQ 与△ABC 的面积相等时,求动点Q 所经过的弧长
26、(本题满分10分)平面直角坐标系中,点),(y x P 的横坐标x 的绝对值表示为x ,纵
坐标y 的绝对值表示为y ,我们把点),(y x P 的横坐标与纵坐标的绝对值之和叫做点
),(y x P 的勾股值,记为:「P 」,即「P 」=x +y ,(其中的“+”是四则运算中
的加
法)
(1)求点)3,1(-A ,)23,23(-+B 的勾股值「A 」、「B 」
(2)点M 在反比例函数x
y 3
=
的图像上,且「M 」=4,求点M 的坐标; (3)求满足条件「N 」=3的所有点N 围成的图形的面积
27、(本题满分12分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需
要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐
射处理,已知防辐射费y 万元与科研所到宿舍楼的距离x km 之间的关系式为:
b x a y +=(0≤x ≤9),当科研所到宿舍楼的距离为1km 时,防辐射费用为720
万
元;当科研所到宿舍楼的距离为9km 或大于9km 时,辐射影响忽略不计,不进行防辐
射处理,设每公里修路的费用为m 万元,配套工程费w =防辐射费+修路费
(1)当科研所到宿舍楼的距离为x =9km 时,防辐射费y = 万元;=a ,=b (2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km 时,配套 工程费最少?
(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km ,求每公里 修路费用m 万元的最大值
28、(本题满分12分)如图,直线l ⊥线段AB 于点B ,点C 在AB 上,且1:2:=CB AC ,点M 是直线l 上的动点,作点B 关于直线CM 的对称点'B ,直线'AB 与直线CM 相交于点P ,连接PB
(1)如图1,若点P 与点M 重合,则∠PAB = °,线段PA 与PB 的比值为 ;
(2)如图2,若点P 与点M 不重合,设过P 、B 、C 三点的圆与直线AP 相交于D ,
连接CD 。
求证:①CD ='CB ;②PA =2PB ;
(3)如图3,2=AC ,1=BC ,则满足条件PB PA 2=的点都在一个确定的圆上,在
以下两小题中选做一题:
①如果你能发现这个确定圆的圆心和半径,那么不必写出发现过程,只要证明这
个
圆上的任意一点Q,都满足QA=2QB
②如果你不能发现这个确定圆的圆心和半径,那么请取几个特殊位置的P点,如点P在直线AB上、点P与点M重合等进行探究,求这个圆的半径
江苏省扬州市中考数学答案
1、A
2、B
3、C
4、A
5、A
6、A
7、A
8、C
三、填空题(本大题共有10小题,每小题3分,工30分)
9、310、11、(-1,-3)12、0.07013、
15、12
16、90°
四、解答题(本大题共有10小题,共96分,解答时应写出必要的文字说明、证明过程或演算步骤)
(3)定圆如图所示。