理论力学1-7章答案
- 格式:doc
- 大小:1.15 MB
- 文档页数:25
第一章 静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A ,B 两处约束力的方向如图所示。
4.5F ,方向与5F 方向相反。
5.60°。
6. 铅直向上。
第二章 平面力系一、选择题与填空题1.B ;D 。
2.B 。
3. 2F ;向上。
4.B 。
5.L M 334;方向与水平线成︒60角,指向右下。
6.10kN ;10kN ;5kN ;5kN 。
7. 100kN ;水平向右。
二.计算题1. 70-=B F KN 70=Ax F KN ,120=Ay F KN ,30A M KN m =-⋅2. qa F Ax -= qa F F Bx += F qa F Ay += F qa F By -=3. kN 5-=Dx F kN 33.4=Dy F kN 33.4=E F kN 41.24=C F kN 08.17-=By F kN 5-='=Bx Ax F F kN 08.14-=Ay F m kN 66.14⋅-=A M4.5.N 10=Ax F N 20=Ay F m N 15⋅=A M N 1.14=CD F6. kN 5.2=Ax F kN16.2-=Ay F m kN 8⋅-=A M kN 33.20=C F 7. kN 40=B F kN 10-=Ax F kN 20-=Ay F m kN 50⋅-=A M kN 40=Cx F0=Cy F8. N 100-=Ax F N 300-=Ay F N 300-=Ex F N 100=Ey F N 200=Dy FN 300=Hx F N 100=Hy F第三章 空间力系一、选择题与填空题1.B 。
2.B 。
3. 0)(=F M x ρ;2)(Fa F M y -=ρ;46)(Fa F M z =ρ。
4. F x =240-N ;F y =302N ;M z =2402m N ⋅。
5. sin z F F ϕ=;cos cos y F F ϕβ=;()(cos cos sin )x M F F c b ϕβϕ=+r 。
第一章静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A, B两处约束力的方向如图所示60°第二章平面力系一、选择题与填空题■1. B; D。
2. B。
3. F;向上。
4. B。
5. 4^M;方向与水平线成60角,指向 23L右下。
6. 10kN; 10kN ; 5kN; 5kN。
7. 100kN;水平向右。
二•计算题1. F B - -70 KN F AX =70 KN ,F Ay =120 KN , M A二-30KN m2. F AX - -qa F BX二 F qa F Ay =qa F F By 二 qa - F3. F= -5kN F Dy = 4.33kN F E-4.33kN F C =24.41kND xF B^ -17.08kN F AX=F BX = -5kN l^y = -14.08kN M A=T4.66kN mF AX =10N FAy =20N M A =15N mF CD =14.1N6F Ax=2.5kN F Ay=—2.16kN M A=」kN ,m F c =20.33kN7 F B=40kNF AX = —10kNFA ^-20kN M -50kN m F cx = 40kNF ey = 0F HX =300N F Hy =100N第三章空间力系少2(-8. F A ^ = -100N F Ay 二-300N F Ex 二-300N F Ey =100N F °y 二 200N整=一一A > X Y m 一:J E £c X一、选择题与填空题f—- - Fa 6 Fa 1.B。
2.B。
3. M x(F)=O ; M y(F) —H2 44.F x=-40.2N; F y=30-2N; M z=240.2 N m。
5.F z= F sin :;F y= F cos :cos :;M x(F)二 F(ccos'cos : bsin )。
理论力学课后习题答案理论力学课后习题答案引言:理论力学是物理学的基础课程之一,对于理解和应用物理学的原理和方法具有重要意义。
在学习理论力学的过程中,课后习题是巩固知识、提高能力的重要途径。
本文将针对理论力学课后习题进行解答,帮助读者更好地理解和掌握这门课程。
第一章:牛顿力学1. 一个物体以初速度v0沿直线运动,加速度为a,求物体的位移与时间的关系。
答:根据牛顿第二定律F=ma,可得物体所受合力F=ma=mv/t,其中m为物体的质量,v为物体的速度,t为时间。
由此可得物体的位移s=vt+1/2at^2。
2. 一个质点在重力作用下自由下落,求它在t时刻的速度和位移。
答:在重力作用下,质点的加速度为g,即a=g。
根据牛顿第二定律F=ma,可得质点所受合力F=mg。
根据牛顿第一定律,质点的速度随时间的变化率为v=g*t,位移随时间的变化率为s=1/2gt^2。
第二章:拉格朗日力学1. 一个质点沿半径为R的圆周运动,求它的动能和势能。
答:质点的动能由动能定理可得,即K=1/2mv^2,其中m为质点的质量,v为质点的速度。
质点的势能由引力势能可得,即U=-GmM/R,其中G为引力常数,M为圆周的质量。
2. 一个质点在势能为U(r)的力场中运动,求它的运动方程。
答:根据拉格朗日方程可得,质点的运动方程为d/dt(dL/dv)-dL/dr=0,其中L=T-U,T为质点的动能,U为质点的势能。
第三章:哈密顿力学1. 一个质点在势能为U(x)的力场中运动,求它的哈密顿量和哈密顿运动方程。
答:质点的哈密顿量由哈密顿定理可得,即H=T+U,其中T为质点的动能,U为质点的势能。
质点的哈密顿运动方程为dp/dt=-dH/dx,其中p为质点的动量。
2. 一个质点在势能为U(x)的力场中运动,求它的哈密顿正则方程。
答:质点的哈密顿正则方程为dx/dt=dH/dp,dp/dt=-dH/dx,其中x为质点的位置,p为质点的动量。
结论:通过对理论力学课后习题的解答,我们可以更深入地理解和应用物理学的原理和方法。
第1章静力分析习题1.是非题(对画√,错画×)1-1.凡在二力作用下的约束称为二力构件。
()1-2.在两个力作用下,使刚体处于平衡的必要条件与充分条件式这两个力等值、反向、共线。
()1-3.力的可传性只适用于一般物体。
()1-4.合力比分力大。
()1-5.凡矢量都可以用平行四边形法则合成。
()1-6.汇交的三个力是平衡力。
()1-7.约束力是与主动力有关的力。
()1-8.作用力与反作用力是平衡力。
()1-9.画受力图时,对一般的物体力的可沿作用现任以的滑动。
()1-10. 受力图中不应出现内力。
()2.填空题(把正确的答案写在横线上)1-11.均质杆在A、B两点分别于矩形光滑槽接触,并在如图所示情况下平衡。
A点的受力方向为,B点的受力方向为。
1-12.AB杆自重不计,在5个已知力作用下处于平衡,则作用于B点的四个力的合力F R的大小F R= ,方向沿。
题1-11图F3R题1-12图3. 简答题1-13.如图所示刚体A、B自重不计,在光滑斜面上接触。
其中分别作用两等值、反向、共线的力F1和F2,问A、B是否平衡?若能平衡斜面是光滑的吗?1-14.如图所示,已知A点作用力F,能否在B点加一力使AB杆平衡?若能平衡A点的力F的方向应如何?1-15.如图所示刚架AC和BC,在C 处用销钉连接,在A、B处分别用铰链支座支承构件形成一个三铰拱。
现将作用在杆BC上的力F沿着其作用线移至刚体AC上。
不计三铰刚架自重。
试问移动后对A、B、C约束反力有没有影响?为什么?1-16.在刚体上的加上任意个的平衡力系,能改变原来力系对刚体的作用吗?但对于变形体而言又是如何?1-17.为什么说二力平衡条件、加减平衡力系原理和力的可传性等只能适用于刚体?1-18.如何区分二力平衡力和作用力与反作用力?1-19.为什么受力图中不画内力?如何理解?1-20.如何判定二力体或者二力杆?(a)(c)(d) (e)(g)(h)题1-21图题1-13图题1-14图题1-15图4.受力分析题1-21.画出下列标注字母物体的受力图,未画重力的各物体其自重不计,所有接触面均为光滑接触。
习题7-1图Oυ(a)υυ(b)习题7-3图第7章 点的复合运动7-1 图示车A 沿半径R 的圆弧轨道运动,其速度为v A 。
车B 沿直线轨道行驶,其速度为v B 。
试问坐在车A 中的观察者所看到车B 的相对速度v B /A ,与坐在车B 中的观察者看到车A 的相对速度v A /B ,是否有B A A B //v v -=?(试用矢量三角形加以分析。
)答:B A A B //v v -≠1.以A 为动系,B 为动点,此时绝对运动:直线;相对运动:平面曲线;牵连运动:定轴转动。
为了定量举例,设R OB 3=,v v v B A ==,则v v 3e =∴ ⎩⎨⎧︒==6021/θv v A B2.以B 为动系,A 为动点。
牵连运动为:平移;绝对运动:圆周运动;相对运动:平面曲线。
此时⎪⎩⎪⎨⎧︒==4522/θv v B A ∴ B A A B //v v -≠7-3 图示记录装置中的鼓轮以等角速度0ω转动,鼓轮的半径为r 。
自动记录笔连接在沿铅垂方向并按)sin(1t a y ω=规律运动的构件上。
试求记录笔在纸带上所画曲线的方程。
解:t r x 0ω= (1) )sin(1t a y ω=(2)由(1)0ωr xt =代入(2),得)sin(01r xa y ωω=7-5 图示铰接四边形机构中,O 1A = O 2B = 100mm ,O 1O 2 = AB ,杆O 1A 以等角速度ω= 2rad/s 绕轴O 1转动。
AB 杆上有一套筒C ,此套筒与杆CD 相铰接,机构的各部件都在同一铅垂面内。
试求当ϕ= ︒60,CD 杆的速度和加速度。
解:1.动点:C (CD 上),动系:AB ,绝对:直线,相对:直线,牵连:平移。
2.r e a v v v +=(图a ) v e = v A01.02121.0cos e a =⨯⨯==ϕv v m/s (↑)3. r e a a a a +=(图b )4.021.022e =⨯==ωr a m/s 2 346.030cos e a =︒=a a m/s 2(↑)习题7-5图习题7-7图习题7-9图υ(a) (b)(a)7-7 图示瓦特离心调速器以角速度ω绕铅垂轴转动。
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。
其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。
其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
习题7-1图Oυ(a)υυ(b)习题7-3图第7章 点的复合运动7-1 图示车A 沿半径R 的圆弧轨道运动,其速度为v A 。
车B 沿直线轨道行驶,其速度为v B 。
试问坐在车A 中的观察者所看到车B 的相对速度v B /A ,与坐在车B 中的观察者看到车A 的相对速度v A /B ,是否有B A A B //v v -=?(试用矢量三角形加以分析。
)答:B A A B //v v -≠1.以A 为动系,B 为动点,此时绝对运动:直线;相对运动:平面曲线;牵连运动:定轴转动。
为了定量举例,设R OB 3=,v v v B A ==,则v v 3e =∴ ⎩⎨⎧︒==6021/θv v A B2.以B 为动系,A 为动点。
牵连运动为:平移;绝对运动:圆周运动;相对运动:平面曲线。
此时⎪⎩⎪⎨⎧︒==4522/θv v B A ∴ B A A B //v v -≠7-3 图示记录装置中的鼓轮以等角速度0ω转动,鼓轮的半径为r 。
自动记录笔连接在沿铅垂方向并按)sin(1t a y ω=规律运动的构件上。
试求记录笔在纸带上所画曲线的方程。
解:t r x 0ω= (1) )sin(1t a y ω=(2)由(1)0ωr xt =代入(2),得)sin(01r xa y ωω=7-5 图示铰接四边形机构中,O 1A = O 2B = 100mm ,O 1O 2 = AB ,杆O 1A 以等角速度ω= 2rad/s 绕轴O 1转动。
AB 杆上有一套筒C ,此套筒与杆CD 相铰接,机构的各部件都在同一铅垂面内。
试求当ϕ= ︒60,CD 杆的速度和加速度。
解:1.动点:C (CD 上),动系:AB ,绝对:直线,相对:直线,牵连:平移。
2.r e a v v v +=(图a ) v e = v A01.02121.0cos e a =⨯⨯==ϕv v m/s (↑)3. r e a a a a +=(图b )4.021.022e =⨯==ωr a m/s 2 346.030cos e a =︒=a a m/s 2(↑)习题7-5图习题7-7图习题7-9图υ(a) (b)(a)7-7 图示瓦特离心调速器以角速度ω绕铅垂轴转动。
第一章 静力学基本概念
1-1 考虑力对物体作用的运动效应,力是( A )。
A.滑动矢量
B.自由矢量
C.定位矢量
1-2 如图1-18所示,作用在物体A 上的两个大小不等的力1F 和2F ,沿同一直线但方向相
反,则其合力可表为( C )。
A.1F –2F
B.2F - 1F
C.1F +2F
图1-18 图1-19 1-3 F =100N ,方向如图1-19所示。
若将F 沿图示x ,y 方向分解,则x 方向分力的大小 x F = C N ,y 方向分力的大小y F = ___B __ N 。
A. 86.6
B. 70.0
C. 136.6
D.25.9
1-4 力的可传性只适用于 A 。
A. 刚体
B. 变形体
1-5 加减平衡力系公理适用于 C 。
A. 刚体;
B. 变形体;
C. 刚体和变形体。
1-6 如图1-20所示,已知一正方体,各边长a ,沿对角线BH 作用一个力F ,则该力在x 1轴上的投影为 A 。
A. 0
B. F/2
C. F/6
D.-F/3
1-7如图1-20所示,已知F=100N ,则其在三个坐标轴上的投影分别为: Fx = -402N ,Fy = 302N ,Fz = 502 N 。
图1-20 图1-21。
.第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)b(杆ABa(球A ))c(杆AB、CD、整体)d(杆AB、CD、整体)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体.第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体.第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
理论力学(第二版)参考答案上部(一~三章)第一章1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解:设s为质点沿摆线运动时的路程,取=0时,s=0S== 4 a (1)设为质点所在摆线位置处切线方向与x轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。
该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m的小球做任一角度θ的单摆运动运动微分方程为θθθFrrm=+)2(θθsinmgmr= ①给①式两边同时乘以dθθθθθdgdr s i n=对上式两边关于θ 积分得cgr+=θθc o s212②利用初始条件θθ=时0=θ 故cosθgc-=③由②③可解得c o sc o s2-θθθ-∙=lg上式可化为dtdlg=⨯-∙θθθcoscos2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121由于上面算的过程只占整个周期的1/4故⎰-==02022sin2sin124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin2cos=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin 022θ=K通过进一步计算可得g lπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K nn K K1.5解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加,R2=R+,此时总质量不变,仍为M,此时表面的重力加速度可求:④由④得:⑤则,半径变化后的g 的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变 时,表面的重力加速度的变化为:。
习题7-1图Oυ(a)υυ(b)习题7-3图第7章 点的复合运动7-1 图示车A 沿半径R 的圆弧轨道运动,其速度为v A 。
车B 沿直线轨道行驶,其速度为v B 。
试问坐在车A 中的观察者所看到车B 的相对速度v B /A ,与坐在车B 中的观察者看到车A 的相对速度v A /B ,是否有B A A B //v v -=?(试用矢量三角形加以分析。
)答:B A A B //v v -≠1.以A 为动系,B 为动点,此时绝对运动:直线;相对运动:平面曲线;牵连运动:定轴转动。
为了定量举例,设R OB 3=,v v v B A ==,则v v 3e =∴ ⎩⎨⎧︒==6021/θv v A B2.以B 为动系,A 为动点。
牵连运动为:平移;绝对运动:圆周运动;相对运动:平面曲线。
此时⎪⎩⎪⎨⎧︒==4522/θv v B A ∴ B A A B //v v -≠7-3 图示记录装置中的鼓轮以等角速度0ω转动,鼓轮的半径为r 。
自动记录笔连接在沿铅垂方向并按)sin(1t a y ω=规律运动的构件上。
试求记录笔在纸带上所画曲线的方程。
解:t r x 0ω= (1) )sin(1t a y ω=(2)由(1)0ωr xt =代入(2),得)sin(01r xa y ωω=7-5 图示铰接四边形机构中,O 1A = O 2B = 100mm ,O 1O 2 = AB ,杆O 1A 以等角速度ω= 2rad/s 绕轴O 1转动。
AB 杆上有一套筒C ,此套筒与杆CD 相铰接,机构的各部件都在同一铅垂面内。
试求当ϕ= ︒60,CD 杆的速度和加速度。
解:1.动点:C (CD 上),动系:AB ,绝对:直线,相对:直线,牵连:平移。
2.r e a v v v +=(图a ) v e = v A01.02121.0cos e a =⨯⨯==ϕv v m/s (↑)3. r e a a a a +=(图b )4.021.022e =⨯==ωr a m/s 2 346.030cos e a =︒=a a m/s 2(↑)习题7-5图习题7-7图习题7-9图υ(a) (b)(a)7-7 图示瓦特离心调速器以角速度ω绕铅垂轴转动。
由于机器负荷的变化,调速器重球以角速度1ω向外张开。
如ω= 10 rad/s ,1ω= 1.21 rad/s ;球柄长l = 0.5m ;球柄与铅垂轴夹角α= 30°。
试求此时重球的绝对速度。
解:动点:A ,动系:固连于铅垂轴,绝对运动:空间曲线,相对运动:圆图,牵连运动:定轴转动。
r e a v v v +=3)sin (e =+=ωαl e v m/s 605.01r ==ωl v m/s06.32r 2e a =+=v v v m/s 或 i v '-=3e m/sk j k j v '+'='+'=300.0520.0sin cos r r r ααv v )300.0 ,520.0 ,3(a -=v m/s7-9 图示直角曲杆OBC 绕O 轴转动,使套在其上的小环M 沿固定直杆OA 滑动。
已知OB = 0.1m ;OB 与BC 垂直;曲杆的角速度ω= 0.5 rad/s 。
试求当ϕ= 60解:动点:小环M ,动系:OBC ,绝对运动:直线,相对运动:直线,牵连运动:定轴转动。
图(a ):r e v v v +=M1.0cos e =⋅=⋅=ϕωωOB OM v m/s 173.0tan e ==ϕv v M m/s图(b ):C r e a a a a ++=M (1)上式向a C 投影,C e cos cos a a a M +-=ϕϕ又 05.02e =⋅=ωOM a m/s 220.0cos /22e r C =⋅==ϕωωv v a m/s 2代入(1),得 a M = 0.35m/s 2(→)习题7-11图aυeυ(a)aa(b)习题7-13图yAυAυ(a)7-`11 图示偏心凸轮的偏心距OC = e ,轮半径e r 3=。
凸轮以等角速度0ω绕O 轴转动。
设某瞬时OC 与CA 成直角,试求此瞬时从动杆AB 的速度和加速度。
解:1.动点:A (AB 上),动系:轮O ,绝对运动:直线,相对运动:圆周,牵连运动:定轴转动。
2.r e a v v v +=(图a ) 0r 2ωe v =,0e a 33230tan ωe v v =︒=(↑),0a r 3342ωe v v ==3.C τr n r e a a a a a a +++=(图b )向nr a 投影,得C nr e a 30cos 30cos a a a a -+︒=︒︒-+=cos30C n r e a a a a a )23(322r02r 2e v e v e ωω-+=)33423316(322002020ωωωωe e e -+==2092ωe (↓)7-13 A 、B 两船各自以等速v A 和v B 分别沿直线航行,如图所示。
B 船上的观察者记录下两船的距离ρ和角ϕ,试证明:ρϕρϕ2-=,2ϕρ r = 解:证法一:∵v A 、v B 均为常矢量,∴B 作惯性运动。
在B 船上记录下的两船距离ρ和角ϕ为A 船相对B船运动的结果。
以A 为动点,B 为动系,则牵连运动为平移,绝对运动为直线,相对运动:平面曲线。
r e a a a a +=∵ 0a ==A a a ,0a ==B a a ∴ 0r =a由教科书公式(2-35),0)2()(2r =++-=ϕρϕρϕρϕρρe e a∴ ⎪⎩⎪⎨⎧-==ρϕρϕϕρρ 22 证法二:建立图(a )坐标系Bxy ,则ϕρcos =A x ,ϕρϕϕρcos sin+⋅-=A x习题7-15图习题6-1图习题6-3图ϕρsin =A y ,ϕρϕϕρsin cos+⋅=A yϕϕρϕρϕϕρρϕϕρϕϕρϕϕρϕρsin )2(cos )(sin cos sin 2cos 22 +--=---=A xϕϕρρϕϕρϕρϕϕρϕϕρϕϕρϕρsin )(cos )2(cos sin cos 2sin 22-++=+-+=A y0)2()(22222r =++-=+=ϕρϕρϕρρ A A y x a∴ ⎪⎩⎪⎨⎧-==ρϕρϕϕρρ227-15 图示直升飞机以速度H υ= 1.22 m/s 和加速度a H = 2m/s 2向上运动。
与此同时,机身(不是旋翼)绕铅垂轴(z )以等角速度H ω= 0.9 rad/s 转动。
若尾翼相对机身转动的角速度为H B /ω= 180 rad/s ,试求位于尾翼叶片顶端的一点的速度和加速度。
解:j i k v H B H H P v /762.01.6ωω+-=k j i 22.12.13749.5++-=)762.02(762.01.6/2/2j k k j k a H B H H B H H P a ωωωω⨯+--= i k j k 9.2462468994.42---= )2468794.49.246(k j i ---=m/s 2第6章 点的一般运动与刚体的简单运动6-1 试对图示五个瞬时点的运动进行分析。
若运动可能,判断运动性质;若运动不可能,说明原因。
答:(a )减速曲线运动; (b )匀速曲线运动; (c )不可能,因全加速度应指向曲线凹 (d )加速运动;(e )不可能,0≠v 时,0n ≠a ,此时a 应指向凹面,不能只有切向加速度。
6-3 图示点P 沿螺线自外向内运动。
它走过的弧长与时间的一次方成正比,试问该点的速度是越来越快,还是越来越慢?加速度是越来越大,还是越来越小? 解:s = ktconst ===k sv ,匀速运动; 0τ=aρ2n v a =∴n a a = ∵ρ逐渐变小,∴ 加速度a 越来越大。
6-5 已知运动方程如下,试画出轨迹曲线、不同瞬时点的v 、a 图像,说明运动性质。
ωe ωe -υa υ(c)ωe νωe -O υ(b)(b)习题6-7图 yR -R R +O υ (a) 1.⎪⎩⎪⎨⎧-=-=225.1324t t y t t x , 2.⎩⎨⎧==)2cos(2sin 2t y tx 式中,t 以s 计;x 以mm 计。
解:1.由已知得 3x = 4y (1)⎩⎨⎧-=-=t yt x3344 ∴t v 55-= ⎩⎨⎧-=-=34y x∴5-=a 为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。
2.由已知,得2arccos213arcsin y x = 化简得轨迹方程:2942xy -= (2)轨迹如图(b ),其v 、a 图像从略。
6-7 搅拌机由主动轴O 1同时带动齿轮O 2、O 3转动,搅杆ABC 用销钉A 、B 与O 2、O 3轮相连。
若已知主动轮转速为n = 950 r/min ,AB = O 2O 3,O 2A = O 3B = 250mm ,各轮的齿数Z 1、Z 2、Z 3如图中所示。
试求搅杆端点C 的速度和轨迹。
解:搅杆ABC 作平移,∴ v C = v A ,C 点的轨迹为半径250mm 的圆。
8.39502060π29502112=⨯⨯=⋅=Z Z ωωrad/s95.925.02=⨯=ωA v m/s6-9 图示凸轮顶板机构中,偏心凸轮的半径为R ,偏心距OC = e ,绕轴O 以等角速转动,从而带动顶板A 作平移。
试列写顶板的运动方程,求其速度和加速度,并作三者的曲线图像。
解:(1)顶板A 作平移,其上与轮C 接触点坐标: t e R y sin ω+=(ω为轮O 角速度)t e yv cos ωω== t e y a sin 2ωω-==(2)三者曲线如图(a )、(b )、(c )。
6-11 图示绳的一端连在小车的的点A 上,另一端跨过点B 的小滑车绕在鼓轮C 上,滑车离AC 的高习题6-9图xyωt习题6-13图习题6-15图习题6-11图度为h 。
若小车以速度v 沿水平方向向右运动,试求当θ= 45°时B 、C 之间绳上一点P 的速度、加速度和绳AB 与铅垂线夹角对时间的二阶导数θ各为多少。
解:1.∵P 点速度与AB 长度变化率相同∴2221)(d d 222122vx h x x x h t v P =+⋅=+= (θ= 45°,x = h 时) 2.同样:h v h x x h x x t va P P 2222)(d d 2222==+==(∵0=x,x = h ) 3.h x =θtan ,h x1tan -=θ ∴ 222211x h x h h x x h +=+= θ∴2222222)(2h v x h x hx -=+-= θ(顺)6-13 自行车B 沿近似用抛物线方程y = Cx 2(其中C = 0.01m -1)描述的轨道向下运动。