福建省厦门市2017-2018学年七年级下学期期末考试数学试题(WORD版)答案不全
- 格式:doc
- 大小:459.50 KB
- 文档页数:5
2024年初中七年级适应性练习数学一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,下列各点在第一象限的是()A .B .C .D .2.已知,则下列不等式成立的是()A .B .C .D .3.为了解全校36个班级的学生完成课后作业的时间的情况,下列调查方式中,最合理的是()A .了解所有学生完成课后作业的时间B .了解七年级所有学生完成课后作业的时间C .全校随机抽取7名学生,了解他们完成课后作业的时间D .每班随机抽取7名学生,了解他们完成课后作业的时间4.下列式子中表示“16的平方根是”的是()AB .CD .5.如图,已知,则与相等的角是()A .B .C .D .6.若只研究小于180°的角,则下列图形中一定存在相等的角的是()① ② ③A .①②B .①③C .②③D .①②③7.如图,处有个雨污分流工厂,计划铺设一条雨水排放管道收集雨水,用于灌溉农场.已知,,,以下挖渠方式能使管道最短的是()()1,1()0,1()1,1-()1,0m n <33m n +>+22m n ->-66m n >1122m n ->-4±4=±4=±4=±4=±DAC C ∠=∠B ∠BAC ∠C ∠DAC ∠EAD∠A AP PQ ⊥AQ QR ⊥AR l ⊥A .B .C .D .8.原价为元的衣服打折后以元出售,下列说法中,能正确表示该衣服售价的是()A .原价打4折后再减20元B .原价减20元后再打4折C .原价打6折后再减20元D .原价减20元后再打6折9.如图,将沿方向平移得到.设四边形的周长为,四边形的周长为,下列说法正确的是()A .B .C .D .10.在平面直角坐标系中,已知点,点,点,下列说法正确的是()A .当时,点始终在点的左边B .当且时,存在的值,使得点在线段上C .当时,存在的值,使得点在点的右边D .当且时,存在的值,使得点在线段上二、填空题:本题共6小题,每小题4分,共24分.11____________________;__________;__________.12.(1)不等式组的解集为__________;(2)不等式组的解集为__________.13.在平面直角坐标系中,已知轴,若点,则点的坐标可以为__________.(写出AO AP AQ ARa ()140%20a ⎡⎤--⎣⎦ABC △AC DEF △ABED 1C BCFE 2C ()122C C AB BC AC +=++()122C C AB BC AC +=+-()122C C AB BC -=-()122C C AB BC -=+(),1A m ()21,1B m -(),1C n 2m <A B 2m <12n =m C AB 1m >m A B 1m >12n =m C AB ==-=2=12x x >-⎧⎨≤⎩21x x >-⎧⎨≥⎩xoy AB y ∥()1,2A B一个即可)14.据统计,A ,B 两省人口总数基本相同.2024年A 省的城镇在校中学生人数为156万,农村在校中学生人数为72万;B 省的城镇在校中学生人数为84万,农村在校中学生人数为103万.李军同学根据数据画出甲、乙两种复合条形统计图,其中能更好反映两省在校中学生总人数的是__________图.(填“甲”或“乙”)甲乙15.在平面直角坐标系中,点从点出发沿轴正方向以每秒1个单位长度的速度运动;同时,点从点出发沿轴负方向以每秒2个单位长度的速度运动.设运动时间为,当,两点间的距离最短时,的值为__________.16.七年级数学文化节有一个“猜数游戏”:在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将上面的数相加,重复这样做,每次所得的和都是17,20,24,27中的一个数,并且这4个数都能取到.以下的通关卷轴供参考.设4个数分别为,,,,并且.则.这4张纸片上写的数是__________.三、解答题:本题共9小题,共86分.17.(12分)解下列二元一次方程组:(1)(2)18.(8分)解不等式,并在数轴上表示解集.19.(8分)如图,线段,相交于点,,,求证:.xoy P ()1,3-x Q ()7,1-x P Q x y z w x y z w <<<x y x z x w y w z w +<+<+<+<+4,322;x y x y =+⎧⎨+=⎩3213,547.a b a b +=⎧⎨-=⎩51232x x --≥AB CD O C COA ∠=∠D BOD ∠=∠AC BD ∥20.(8分)依依需要一块长、宽比为6:5且面积为120平方米的长方形舞台幕布.现有两块闲置的边长为9米的正方形布料,依依想按下图所示的方式将两块正方形布料裁开后缝合成一块大正方形布料,再将其大正方形沿边裁剪出长方形舞台幕布.(接缝处忽略不计)(1)缝合后大正方形的边长为__________米;(2)依依能否裁剪出符合条件的长方形舞台幕布,请说明理由.21.(8分)已知关于,的方程组,其中满足不等式,且,均为整数,求的值.22.(10分)将一副三角板按如图1的位置摆放,其中,,两直角边,在同一条直线上,固定三角板不动,移动三角板(点在点的右边),连接,做和的角平分线交于点.图1图2图3(1)当时,求证:;(2)如图2,过点做直线交的延长线于点,求,,三者之间的数量关系;(3)如图3,连接,若,当时,比较与的大小,并说明理由.23.(12分)x y 2312326x y m x y m -=-+⎧⎨+=+⎩x 11m x m -<<+x m 2x y -30BAC ∠=︒45EDF ∠=︒BC EF ABC DEF E C BD DBC ∠DEF ∠G 22.5GBF ︒∠=BD EG ∥E EM BG ∥AB H ABD ∠AHE ∠MEF ∠DC 45DCE DBG ︒∠-∠=1520DBG <∠<︒︒ABD ∠ACD ∠为直观感受厦门的美,许多游客都会购买“厦门海上游”船票.船票分为成人票和儿童票两种,一张船票外加30元还能获得一件纪念T 恤.若只买船票,2个大人3个孩子需360元,4个大人5个孩子需660元.(1)求成人票和儿童票的票价;(2)现有10个大人5个孩子参加“厦门海上游”,有一部分人购买了纪念T 恤.若总费用不超过1600元,则最多有多少人购买了纪念T 恤?(3)为了丰富孩子的暑期生活,家长们自发组织了一次“厦门海上游”.其中没购买纪念T 恤的孩子的数量占总人数的一半.所有船票连同购买纪念T 恤的费用共计2010元,求有多少个大人购买纪念T 恤.24.(12分)在平面直角坐标系中,已知和的横坐标满足,连接.(1)若,则线段的长为__________;(2)若满足且,,为平面内一点,连接,,记的面积为,若,求的值;(3)将点平移到点,将点平移到点,点在直线的上方,请问是否存在点使得的面积为,并说明理由.(参考答案)2024年初中七年级数学适应性练习一、选择题12345678910A D D B D A B C C B二、填空题11.3;-3;;5.12.(1);(2).13..(答案不唯一,若写“,”也可得分;只写给2分)14.乙.15..16.7,10,10,17或5,12,12,15.(写对一个得2分,有错最多得2分)三、解答题17.(本题满分12分)xoy (),A s t (),B p q ()2260s p -+-=AB 2t q ==AB ,t q ()()40t m q m q m =-⎧⎨+-=⎩0t >0q ≥()2,C t m AC BC ABC △S 8S =m A (),0M t B ()5,2N t -()2,D t d +MN D MND △d 12x -<<1x >()1,3()1,a 2a ≠()1,a 83(1)解:将①代入②得把代入①得∴方程组的解为(2)解:①得③②+③得把代入①得∴方程组的解为18.(本题满分8分)解:这个不等式的解集在数轴上的表示如图所示19.(本题满分8分)解:∵,又∴∴20.(本题满分8分)4322x y x y =+⎧⎨+=⎩①②()3422y y ++=2y =-2y =-2x =22x y =⎧⎨=-⎩3213547a b a b +=⎧⎨-=⎩①②2⨯6426a b +=1133a =3a =3a =2b =32a b =⎧⎨=⎩51232x x --≥()251312x x --≥102312x x --≥103122x x -≥+714x ≥2x ≥C COA ∠=∠D BOD∠=∠COA BOD∠=∠C D∠=∠AC BD∥(1(或)分析:设大正方形的边长是米.(舍去)(2)设长方形的长为米,宽为米(舍去)∴∵∴答:依依能裁剪出符合条件的长方形舞台幕布.21.(本题满分8分)解法一:解:∵,且,均为整数∴∴可化为∴法(一):得法(二):解得∴解法二:解:由解得又∵∴a 2292a =⨯a =a =6x 5x 65120x x ⋅=2x =2x =-612x =12=12<11m x m -<<+m x m x=2312326x y m x y m -=-+⎧⎨+=+⎩2312326x y x x y x -=-+⎧⎨+=+⎩3312(1)6(2)x y x y -=⎧⎨+=⎩()12-①②23x y -=51x y =⎧⎨=⎩23x y -=2312326x y m x y m -=-+⎧⎨+=+⎩5301172411m x m y +⎧=⎪⎪⎨-⎪=⎪⎩11m x m -<<+5301111m m m +-<<+解集为又∵为整数∴或5或6又∵为整数,∴与舍去∴,∴∴22.(本题满分 10 分)(1)∵平分,,∴∴是直角三角形,∵平分∴,∴∴(2)设则,∴∵∴,∴(3)设∵∴∵平分∴,∴∵直角三角形中,,∴∴∴∵∴,∴∴23.(本题满分12分)194166m <<m 4m =x 4m =6m =5m =5x =1y =23x y -=BG DBC ∠22.5GBF ︒∠=245DBC GBF ︒∠=∠=DEF 90DEF ∠=︒EG DEF∠1452GEF DEF ∠︒=∠=DBC GEF ∠=∠BD EG∥DBG x∠=GBF DBG x ∠=∠=902ABD x∠=︒-90ABG DBG ABD x∠=∠+∠=︒-EM BG∥90AHE ABG x ∠=∠=︒-MEF GBF x∠=∠=AHE ABD MEF∠=∠+∠DBG x∠=45DCE DBG ︒∠-∠=45DCE x ∠=+︒BG DBC∠22DBC DBG x ∠=∠=902ABD x∠=︒-30A ∠=︒90ABC ∠=︒60ACB ∠=︒18075ACD ACB DCE x∠=︒-∠-∠=︒-15ABD ACD x∠-∠=︒-1520DBG <∠<︒︒1520x <<︒︒150x ︒-<ABD ACD∠<∠(1)解:设儿童票价每张元,成人票价每张元解得答:儿童票价为每张60元,成人票价为每张90元.(2)解:设有人购买纪念T 恤,∵为整数,∴最大为13答:最多有13人购买纪念T 恤.(3)解法一:解:设没买纪念T 恤的孩子有人,有买纪念T 恤的孩子和没买纪念T 恤的大人共人,则总人数有人.∵有买纪念T 恤的大人有人,∴且,都为整数,∴或答:①当,则购买T 恤的大人有7人;②当,则购买T 恤的大人有2人.解法二:解:设有买纪念T 恤的大人有人,没买纪念T 恤的孩子有人,则总人数有人,有买纪念T 恤的孩子和没买纪念T 恤的大人共有人.∵有买纪念T 恤的孩子和没买纪念T 恤的大人共有人,∴且,都为整数,∴或x y 3236054660x y x y +=⎧⎨+=⎩6090x y =⎧⎨=⎩s 1090560301600s ⨯+⨯+≤403s ≤s s m n 2m ()60901202010m n m n ++-=667m n -=667n m =-()m n -m n ≥n m 125m n =⎧⎨=⎩1311m n =⎧⎨=⎩125m n =⎧⎨=⎩1311m n =⎧⎨=⎩n m 2m ()m n -()60901202010m m n n +-+=567m n +=675n m=-()m n -m n ≥n m 132m n =⎧⎨=⎩127m n =⎧⎨=⎩答:购买T 恤的大人有2人或7人.24.(本题满分12分)(1)∵,∴,∴,∵∴,∴轴,∴(2)过做于∵,满足且,,∴,∴∵,∴∵∴∴∵,∴,∴轴,∴∵∴,∴,∴或9.(3)∵点,将向左平移5个单位,向上平移2个单位得到点∴∵且∴①当时,如图①()2260s p -+-=()220s -≥60p -≥20s -=60p -=2s =6x =2t q ==()2,2A ()6,2B AB x ∥624AB =-=A AH BC ⊥Hq ()()40t m q m q m =-⎧⎨+-=⎩0t >0q ≥40m ->4m >0q ≥0m q +>()()0q m q m +-=q m=()6,B m ()2,C t m 4t m =-()28,C m m -BC x ∥214BC m =-()2,4A m -12S BC AH =⋅1821442m =-⋅5m =(),0M t (),0M t N ()5,2N t -(),D c d 2c t =+()2,D t d +0d >图①过做轴于,轴于∴∴(不符合题意,舍去)②当时,如图②图②过点做轴,平行轴∴∴综上所述:.N NG x ⊥G DE x ⊥E MND NGM DME NGED S S S S =--四边形△△△()11127522222d d d =+⨯-⨯⨯-⨯⨯43d =-0d <D DF x ∥NF y MND NFD NFM DFMS S S S =--△△△△()()()11127257222d d d d -=-⨯--⨯-⨯⨯-47d =-47d =-。
泉州市第八中学2017—2018学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x ≥6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于x 的方程26x m +=的解,则m 的值是A .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是5题图-118题图BCP A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩ B .1,0,1.x y z =⎧⎪=⎨⎪=⎩ C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩ D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为 A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为 A .30° B .50° C .80° D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = .14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 .17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.… A BECDF10题图12题图′15题图 DEABC19.解方程组:,.202321x y x y -=⎧⎨+=⎩ 20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数.ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5;(3)解不等式:|x -3|+|x +4|≥926.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分 20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分四、解答题:21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得 4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分(1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21, 又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分∴A BQC ∠+︒=∠4190.。
人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。
福建省厦门市集美区2023-2024学年下学期七年级数学期末综合练习注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列实数中最大的是A.B.0C.1D.-232.点P (3,m )在平面直角坐标系中的位置如图1所示,则m 的值可能是A.3B.2C.0D.-33.下列调查中,适宜用全面调查的是A.调查某款LED 灯的使用寿命B.调查某批汽车的抗撞击能力C.了解某班学生的身高情况D.了解央视春节联欢晚会的收视率4.如图2,直线AB ,CD 相交于点O ,OA 平分∠COE ,若∠BOD =30°,则图中大小为60°的角是A.∠COEB.∠EODC.∠COBD.∠BOE 5.若a >b ,则下列变形错误的是A.a -3>b -3B.>C.-4a >-4bD.3a +1>3b +1a 4b46.如图3,点A ,E 在直线l 1上,点B ,C ,D 在直线l 2上,AB ⊥l 2于点B ,AC ⊥l 1于点A ,BE ⊥l 1于点E ,下列线段的长度是点A 到直线l 2的距离的是A.ADB.ABC.ACD.AE7.关于x ,y 的二元一次方程组 ,则下列代数式的值为1的是{3x +2y =1+a,x +2y =3−a A.x +yB.x -yC.2x +yD.2x -y8.小陈打算用一张长为5dm ,宽为dm 的长方形纸片裁出边长为2dm 的正方形纸片,她能5裁出符合要求的正方形纸片的张数是A.1B.2C.3D.49.某互联网公司为了解员工薪资情况,调查了2021-2023年期间公司的总支出、员工数及员工薪资占公司总支出的比例,调查结果如表一,并制作了这三年公司的员工薪资占比折线统计图(如图4),根据统计图表,下列说法正确的是A.该公司2021-2023年期间员工薪资总额逐年减少B.该公司2021-2023年期间员工薪资总额逐年增加C.该公司2021-2023年期间员工人均薪资逐年减少D.该公司2021-2023年期间员工人均薪资逐年增加10.在平面直角坐标系xOy 中,互不重合的四个点A (m ,n ),B (p +n ,2),C (p ,0),D (m +n ,n +2),直线AD 与x 轴交于E 点,直线BD 与x 轴交于F 点,折线段E →D →F 的长度记为l 1,E →A →B →F 的长度记为l 2,E →A →C →B →F 的长度记为l 3,对于l 1,l 2,l 3的大小关系,下列判断正确的是A.l 1<l 2=l3B.l 2<l 1<l3C.l 2<l 1=l3D.l 1=l 3<l 2二、填空题(本大题有6小题,每小题4分,共24分)11.计算:(1)2+=;(2)=.223812.已知是关于x ,y 的二元一次方程ax +y =5的一个解,则a 的值为.{x =2,y =313.小高同学计划去文具店购买3支笔和x 本笔记本,笔的单价为2元,笔记本单价为8元,若购买的总金额少于30元,依题意可列不等式:.14.某工厂生产一批某款自行车,图5是这款自行车放在水平地面l 的示意图,AB ∥l ,CD ∥l.当 AM ∥BC 时,自行车是合格产品,若该款自行车质量检验合格,测得∠BCD =60°,∠BAC =50°,则∠MAC =.年份2021年2022年2023年总支出(单位:万)6000800010000员工数120100100表一15.菲尔兹奖是数学界最高荣誉,仅授予做出卓越贡献且不超过40周岁的青年数学家,下面数据是截至2022年菲尔兹奖得主获奖时的年龄,使用频数分布直方图对上述数据进行描述,如果取组距为5,则组数为.16.小庄和小范在玩猜扑克牌点数的游戏,小庄选了4张除数字不同之外,其他完全相同的扑克牌,每次让小范从中随机抽取2张,并将它们上面的数相加,然后放回.重复这样做,每次所得的和都是8,10,m ,14,16(10<m <14)的其中一个,则小庄选的这四张牌上的数字分别是_____________,m 的值为____________. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程组:{2x +y =16,x +y =10.18.(本题满分12分)(1)解不等式:2(x +1)≤3,并在图6的数轴上表示解集;(2)解不等式组:{2x +3≤x +11,2x +53+x >5.19.(本题满分8分)在平面直角坐标系xOy 中,已知三角形ABC 三个顶点的坐标分别为A (-1,2),B (3,2),C (2,-1).(1)在图7的平面直角坐标系中画出三角形ABC ;(2)若P (m -1,2)在AB 上,且CP ∥y 轴,求m 的值.2839353339293335313137323836313932383734293438323536332932353637393838383739383433403636374031403837353735403937304034363639404020.(本题满分8分)某快递公司为了提高工作效率,计划购买A,B两种型号的机器人来搬运货物.已知2台A型机器人和1台B型机器人每小时共搬运货物2750千克,1台A型机器人和2台B型机器人每小时共搬运货物2500千克.求每台A型机器人和每台B型机器人每小时分别搬运货物多少千克?21.(本题满分8分)如图8,在四边形ABCD中,AB∥CD,E是BC延长线上一点,AE与CD交于点F.(1)若∠DFE=100°,求∠BAE的度数;(2)若∠ACE=∠D+∠BAC,且AE平分∠CAD,判断∠ACB与∠E的数量关系,并说明理由.22.(本题满分9分)近年,随着电子产品的普及等因素,青少年视力健康状况产生明显下滑,受到社会广泛关注.教育部门为了解某校七八年级学生的视力健康状况,在某校随机抽取部分七八年级学生进行视力调查,四种视力健康状况的百分比如图9所示,并整理了七八年级学生视力健康状况表二的统计表(如表二).视力健康状况七年级八年级视力正常20a轻度视力2416中度视力b9高度视力55(1)直接写出a,b,c的值;(2)若该校有600名七年级学生,请估计七年级学生中未能达到“视力正常”的人数;(3)周同学说:“样本中七年级近视的人数比八年级更多,因此七年级整体视力健康状况比八年级差”.请结合以上数据,判断该观点是否正确,并说明理由.23.(本题满分9分)某家具厂接到一笔2160套组合餐桌订单,一套该款组合餐桌有1张餐桌和6把餐椅,需要在15天内完成该笔订单的生产.目前,该家具厂的组合餐桌生产车间有100名工人,每个工人每天能制作6张餐桌或9把餐椅,该家具厂计划让一部分工人专门制作餐桌,剩下的工人专门制作餐椅.(1)若每天有20名工人制作餐桌,则每天生产餐桌和餐椅的数量能否恰好配套?请说明理由;(2)若使用(1)中的方案安排工人制作餐桌和餐椅,能否如期完成该笔订单?若能请说明理由.若不能,家具厂还可从其他车间调用工人参与该款组合餐桌的生产,新调入的工人由于操作不熟练,只会制作餐椅,并且每人每天只能制作6把,则至少需要调用多少人?在平面直角坐标系xOy 中,正方形ABCD 的顶点A (m ,3),B (4-3m ,3),点B 在点A 的右侧,点C ,点D 在AB 的下方.(1)直接写出AB 的长度(用含m 的式子表示);(2)若三角形AOB 的面积为3.①求m 的值;②在平面直角坐标系中,二元一次方程的图象都是一条直线,直线上每个点的坐标(x ,y )都是这个方程的一个解.记二元一次方程x -y +n =0(0<n <2)的图象为直线l ,直线l 与正方形的边AB ,AD 分别交于点E ,点F ,如图10所示,且三角形AEF的面积为(4-2n )2.现将正方形进行平移,使得直线l 与正方形12的边CD ,BC 分别交于点P ,点Q ,在平移过程中,是否存在三角形CPQ 的面积也为(4-2n )2的情形?若存在,请探究如何平移;若不存在,请说明理由.12如图,在四边形ABCD中,AE⊥BC于点E.(1)如图11,延长AE交DC的延长线于点F,延长AB至点G,连接FG,使得∠G=∠ABC,求∠AFG的度数;(2)如图12,连接AC,BD,延长BD至点H,使得AD平分∠CAH.将三角形ABD 沿射线DB方向平移,使点A的对应点A´在CB的延长线上,点B,点D的对应点分别为点B´,点D´,作CQ⊥AA´于点Q.①若BH=AA´,请在图中找出一条线段的长度与DH相等,并说明理由;②当∠D´A´B=∠DAH,∠A´BB´+∠DAB=130°,2∠BAC=∠CAH +80°时,判断AE和CQ的大小关系,并说明理由.数学答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.(1)3;(2)212.1.13.6+8x <30.214. 70°. 15. 3.16.3,5,7,9;12.三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程组:{2x +y =16,①x +y =10.②解法一(代入消元):解:由②得y =10-x .③……………………………3分把③代入①,得2x +(10-x) =16,x =16-10,x =6.……………………………5分将x =6代入②,得y =4.……………………………7分所以这个方程组的解为……………………………8分{x =6,y =4.解法二(加减消元):解:①-②,得题号12345678910选项ADCACBABDCx =6.……………………………5分将x =6代入②,得y =4.……………………………7分所以这个方程组的解为……………………………8分{x =6,y =4.18.(本题满分12分)(1)(本小题满分6分)解:2x +2≤3 ……………………1分2x ≤3-2 ………………2分2x ≤1……………………3分x ≤ (4)分12这个不等式的解集在数轴上表示如下:12……………………6分(2)(本小题满分6分)解:解不等式组:{2x +3≤x +11,①2x +53+x >5.②由①得∶2x -x ≤11-3……………………1分x ≤8……………………2分由②得∶2x +5+3x >15……………………3分5x >15-5……………………4分5x >10 x >2……………………5分所以不等式组的解集为∶2<x ≤8 ……………………6分19.(本题满分8分)解:(1) 所以如图所示,即为所求.…………4分x yABC–1–2123–1–2123O(2) 因为若P (m -1,2)在AB 上,且CP ∥y 轴,又因为C (2,-1),所以 m -1=2, ………………7分m =3.…………8分20.(本题满分8分)解:设每台A 型机器人每小时搬运x 千克,每台B 型机器人每小时搬运y 千克…………1分………………5分{2x +y =2750x +2y =2500解得………………7分{x =1000,y =750.答:A 型机器人每小时搬运1000千克,B 型机器人每小时搬运750千克.………………8分21.(本题满分8分)(1)(本小题满分4分)∵∠DFE =100°,∴∠AFC =∠DFE =100°. …………2分又∵AB ∥CD ,∴∠BAE +∠AFC =180°…………3分∴∠BAE =80° …………4分(2)(本小题满分4分)∵AB ∥CD ,∴∠BAC =∠ACD .……………………5分∴∠ACE =∠ACD +∠DCE,∵∠ACE =∠BAC +∠D,∴∠DCE =∠D∴AD ∥BE ,……………………6分∴∠E =∠DAE ,∠BCA =∠CAD .∵AE 平分∠CAD ,∴∠CAD =2∠DAE ,∴∠CAD =2∠E ,……………………7分∴∠BCA =2∠E .……………………8分22.(本题满分9分)解:(1)(本小题满分3分)a =10,b =11,c =10.………………3分根据统计图表可知轻度视力的学生的人数为24+16=40,占样本容量的40%,所以总人数40÷40%=100.视力正常的人数所占的百分比30%,100×30%=30,30-20=10,所以a =10.中度视力的人数所占的百分比20%,100×20%=20,20-9=11,所以b =11.高度近视的人数所占的百分比为×100%=10%,5+5100所以c =10.(2)(本小题满分3分)七年级未达到视力正常的人数为24+11+5=40, ………………4分近视的人数的占比为40÷60=,………………5分23由样本估计总体得600×=400.23答:估计七年级学生未能达到“视力正常”的人数有400人.………………6分(3)(本小题满分3分)不正确,原因如下.抽样调查七年级中,样本容量为60,八年级样本容量为40,因此不能直接比较近视人数.根据样本估计总体:估计七年级近视的近视率为= (7)分24+11+56023估计八年级近视的近视率为=.………………8分16+9+54034因为<,因此八年级整体视力情况较差,故他的说法不正确 (9)分233423.(本题满分9分)(1)(本小题满分4分)因为20×6=120(张),……………………………1分(100-20)×90=720(把), ……………………………3分所以120×6=720,答:每天生产餐桌和餐椅的数量能恰好配套. ……………………………4分(2)(本小题满分5分)由(1)知,一天能够生产120套组合餐桌,所以120×15=1800(套),因为1800<2160,所以不能如期完成该笔订单.. ……………………………5分解法一:设安排(20+k)人制作餐桌,(80-k)人制作餐椅,调入a个工人制作餐椅.若要使得生产速度更快,则生产的餐桌和餐椅需要配套,则6×6(20+k)=9(80-k)+6a,化简得a=7.5k.……………7分若要在15天内完成该笔订单,则15×6(20+k)≥2160,解得k≥4,因为k是正整数,要使得调入的人最少,所以取k=4.所以a≥30,至少需要调用30人……………9分解法二:设:x人制作餐桌,(100-x)人制作餐椅,调入a个工人制作餐椅.若要在15天内完成该笔订单,则餐桌的生产量满足15·6x≥2160,解得x≥24,……………7分要使得调入的人最少,所以取x=24.若要在15天内完成该笔订单,则餐椅的生产量满足15×9(100-24)+15×6a≥2160×6解得a≥30.至少需要调用30人……………9分解法三:设:x 人制作餐椅,(100-x )人制作餐桌,调入a 个工人制作餐椅.若要使得生产速度更快,则生产的餐桌和餐椅需要配套,则6×6(100-x )=9x +6a ,化简得x =80-.……………7分2a15若要在15天内完成该笔订单,则餐椅的生产量满足15×9(9x +6a )≥2160×6将x =80-代入上述不等式,解得a ≥30.2a15当a 取30时,x =80-=76,为整数,满足题意.2a15至少需要调用30人……………9分24.(本题满分12分)解:(1)(本小题满分4分)AB =4-4m .……………………4分(2)(本小题满分8分)①因为S 三角形AOB =y A ·AB =·3·(4-4m )=3 …………6分1212所以4-4m =2,所以m =. ……………………8分12②因为正方形ABCD 中,AB ∥x 轴,AD ∥y 轴,且E 在AB 上,F 在AD 上,所以y A =y E =3,x A =x F =m .因为E 、F 在二元一次方程x -y +n =0的图象上,所以将y E =3代入方程x -y +n =0,得:x -3+n=0,将x F =代入方程x -y +n =0,得:-y +n=0,1212所以x E =3-n ,即E (3-n ,3),所以y F =+n ,即F (,+n ),……………………9分121212所以AE =-n ,AF =-n .5252因为S三角形AEF =AF ·AE =(4-2n)2,1212所以(-n)2=(4-2n)2,125212因为0<n <2,所以-n =4-2n ,52所以n =,32所以C (,1). ……………………10分52设点C 平移后的坐标C’(+h ,1+k ),52所以y P =1+k ,x Q =+h .52因为P ,Q 两点都在二元一次方程x -y +=0的图象上,32所以x P =k -,y Q =4+h , (11)分12所以C’P =3+h -k ,C’Q =3+h -k .因为S 三角形C’PQ =(3+h -k)2=(4-3)2,1212所以3+h -k =1所以k -h =2上下平移距离与左右平移距离之差为定值2.……………………12分25.(本题满分12分)解:(1)(本小题满分4分)∵∠G =∠ABC ,∴CB ∥FG .……………………2分∵AE ⊥BC,∴∠AEB =90°.……………………3分∴∠AFG =∠AEB =90°.…………4分(2)①(本小题满分4分)DH =BD ´,理由如下:∵三角形ABD 沿DB 平移得三角形A ´B ´D ´,x y A D BC Q P O∵BH =AA ´,∴BH =DD ´. …………………7分∵BH =HD +DB ,DD ´=BD ´+DB ,∴HD =BD ´. ……………………8分(2)②(本小题满分4分)AE <CQ ,理由如下:∵AD 平分∠CAH ,∴∠HAD =∠DAC =∠CAH .12设∠HAD =∠DAC =x ,∴∠BA ´D ´=∠HAD =x .∵2∠BAC =∠CAH +80°,∴2∠BAC =2x +80°,∴∠BAC =x +40°. ……………………9分∵∠A ´BB ´+∠DAB =130°,∴∠A ´BB ´+x +(x +40°)=130°,∴∠A ´BB ´=90°-2x .∵三角形ABD 沿DB 平移得三角形A ´B ´D ´,∴∠ADB =∠A ´D ´B ´,D D ´∥AA ´,∴AD ∥A ´D ´,∴∠BA ´A =∠A ´BB ´=90°-2x ,∠DAA ´+∠AA ´D =180°,……………………10分∴∠DAC +∠CAB +∠BAA ´+∠AA ´B +∠BA ´D ´=180° ,∴x +(x +40°)+∠BAA ´+(90°-2x)+x =180°,∴∠BAA ´=50°-x ,∴∠CAQ =∠BAA ´+∠CAB =(x +40°)+(50°-x)=90°,∴CA ⊥AA ´,∴点A 与点Q 重合.……………………11分∵AE ⊥BC ,根据连接直线外一点与直线上各点的所有线段中,垂线段最短。
人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
2021~2022学年(下)初一期末质量检测数 学 试 题(试卷满分:150分 考试时间:120分钟)班级 姓名 座号 考号注意事项:1. 全卷三大题,26小题,试卷共4页,另有答题卡。
2. 答案一律写在答题卡上,否则不能得分。
3. 作图题可直接用2B 铅笔画。
一、选择题(本大题共10个小题。
每小题4分,共40分。
每小题只有一个选项符合题意) 1.下列实数中,是无理数的是( )A .13−B .2−C . D2.下列各组能围成一个三角形的是( )A .1,1,2B .2,3,4C .1,3,5D .3,5,93. 如图,小手盖住的点的坐标可能是( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)4.下列调查中,其中适合采用抽样调查的是( ) A .调查某班50名同学的视力情况B .为了解新型冠状病毒确诊病人同一架飞机乘客的健康情况C .为保证“神舟十四号”成功发射,对其零部件进行检查D .检测厦门市的空气质量5.如图所示,下列条件中不能推出AB ∥CE 成立的条件是( ) A .∠A =∠ACE B .∠B =∠ECD C .∠B =∠ACED .∠B +∠BCE =180°6.下列四个命题中,假命题有( ) ①内错角相等,两直线平行; ②若3-x >3y −,则x >y ;③三角形的一个外角大于任何一个与之不相邻的内角; ④若1a <−,则21a >. A .1个 B .2个 C .3个D .4个7.不等式26x x ≤−的解集是( ) A .2x <B .2x ≤C .2x >D .2x ≥8.一个正多边形的一个外角是60°,则该正多边形的内角和是( ) A .720° B .900° C .1085° D .1260° 9.象棋,作为中国传统棋类益智游戏,用具简单,趣味性强,深受大众喜爱, 其“马走日,相走田,小卒一去不会返……”的口诀也被很多人熟知.如图, 是一盘象棋的一部分,在象棋棋盘上建立平面直角坐标系,象棋中小正方形的边长视为一个单位长度,若“马”的坐标(4,)a ,“相”的 坐标为(,3)b ,则“炮”的坐标为( ) A .()41,B .()13,−C .()31,−D .()13,−10.如图,△OAB 的边OB 在x 轴的正半轴上,点B 的坐标为(3,0),把△OAB 沿x 轴向右平移2个单位长度,得到△CDE ,连接AC ,DB ,若 △DBE 的面积为3,则图中阴影部分的面积为( )A .B .1C .2D .二、填空题(本大题共6个小题。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
厦门市湖滨中学2023-2024学年第二学期期末考试初二数学一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1有意义,那么x 的取值范围是( )A .B .C .D .2.在中,,则∠C 的度数是()A .40°B .50°C .100°D .130°3.若直线l 与y 轴的交点为,则这条直线的关系式可能是( )A .B .C .D .4.如图1,在中,D ,E 分别是AB ,BC 的中点,AE ,CD 相交于点F ,连接BF ,DE ,下列线段中,是的中位线的是()图1A.DEB .AEC .CDD .BF5.在中,点D 在边BC 上,若,则下列结论正确的是()A .B .C .D .6.下列计算中,正确的是( )A B.C D7.如图2,用一根绳子检查一平行四边形书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线AC ,BD 就可以判断,其推理依据是()图2A .矩形的对角线相等B .矩形的四个角是直角C .对角线垂直的平行四边形是矩形D .对角线相等的平行四边形是矩形1x <1x >1x ≥1x ≠ABCD 50A ∠=︒()0,221y x =+32y x =-+2y x =-2y x=ABC △ABC △ABC △222AD BD AB +=90BAC ∠=︒90BAD ∠=︒90ABD =︒90ADB ∠=︒=3-==4=8.某学习小组5名同学测试成绩如图3所示,拿到试卷后,小刚发现自己的成绩少加了10分,老师加回分数后,下列说法正确的是()图3A .小刚的成绩位于组内中等水平B .该小组成绩不存在中位数C .小组的成绩稳定性增加,方差变大D .小组平均分增加2分9.若一次函数图象经过点,则该函数图象有可能经过点( )A .B .C .D .10.如图4,在矩形ABCD 中,点O 为对角线的交点,点E 为CD 上一点,沿BE 折叠,点C 恰好与点O 重合,点G 为BD 上的一动点,则的最小值m 与BC 的数量关系是()图4AB .C.D二、填空题(本大题有6小题,每小题4分,共24分)11.计算:(1______;(2______.12.若点在直线上,则m 的值为______.13.如图5,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点M 是DC 的中点,若菱形ABCD 的周长为24,则OM 的长为______.()21y a x b =++()1,2()3,2()2,1-()0,3()4,8EG CG +=m =2m ====(),7m 31y x =+图514.某公司招聘一名员工,采取先笔试后面试的方式(两项测试的原始满分均为100分),笔试前四名进入面试,再根据两项成绩按照一定的百分比折合成最终成绩,公司招聘最终成绩最高的应聘者.下表是参加面试的四名应聘者的原始分得分情况,已知丁应聘者的最终成绩是87分,则最后招聘的应聘者是______.甲乙丙丁笔试成绩/分88928590面试成绩/分8783908515.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.它是由四个全等的直角三角形和一个小正方形拼成的大正方形(如图所示),若大正方形的面积是29,小正方形的面积是9,设直角三角形较长直角边为b ,较短直角边为a ,则的值是______.图616.如图7,已知矩形ABCD 的长,宽,将矩形ABCD先向上平移,再向右平移得到矩形,连接,,,,连接交DE 于点G ,则图中面积为的三角形为______.图7三、解答题(本大题有9小题,共86分)17.(本题满分818.(本题满分8分)如图8,在菱形ABCD 中,点E 、F 分别在BC 、CD 边上,,求证:.a b +AB m =AD n =2m 2nA B C D ''''AB 'BB 'DD 'D F 'A F '2mnBAF DAE ∠=∠BE DF =图819.(本题满分8分)已知,一次函数的图象经过,两点.(1)求一次函数的解析式;(2)试判断点是否在该函数图象上,并说明理由.20.(本题满分8分)图9是某品牌婴儿车,图10为其简化结构示意图,现测得,,,其中AB 与BD 之间由一个固定为90°的零件连接(即),根据安全标准需满足,通过计算说明该车是否符合安全标准?图9图1021.(本题满分8分)如图11,已知在中,点D 在边BC 上.图11(1)求作四边形ABDE ,使得,且;(要求尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,点F 在边BC 上,且,连接AF ,CE .当时,探究四边形AFCE 的形状.22.(本题满分10分)某大黄鱼养殖户今年获得大丰收,现准备出售网箱中的一批成品大黄鱼.为了解这批大黄鱼的产量,从网箱中随机捕捞了50条大黄鱼称重,并将数据制成如下统计图.()0y kx b k =+≠()1,1M -()1,3N ()5,8P 6dm AB CD ==3dm BC =9dm AD =90ABD ∠=︒BC CD ⊥ABC △//AE BD AE BD =BF DC =BCE AEC ∠=∠(1)求这50条大黄鱼质量的平均数;(每组中各个数据用该组中间值代替,如0.35~0.45kg的中间值为0.4kg)(2)现有经销商欲收购这批大黄鱼,提供了以下两种收购方案:方案一:不分等级,全部按30元/千克收购;方案二:按质量大小分成3个等级,并按如下等级价格收购:等级合格品一等品优等品质量(kg)0.35~0.550.55~0.750.75~0.95单价(元/kg)263240在不考虑其它因素的条件下,从售价的角度分析,该养殖户选择哪种收购方案更合算.23.(本题满分10分)根据以下素材,探索完成任务.如何利用“漏壶”探索时间素材1“漏壶”是一种古代计时器,数学兴趣小组根据“漏壶”的原理制作了如图12所示的液体漏壶,漏壶是由一个圆锥和一个圆柱(圆柱的最大高度是27厘米)组成的,中间连通,液体可以从圆锥容器中匀速漏到圆柱容器中,实验开始时圆柱容器中已有一部分液体.图12 图13素材2实验记录的圆柱体容器液面高度y(厘米)与时间x(小时)的部分数据如右表所示:时间x小时…12457…圆柱体容器液面高度y(厘米)…69151824…问题解决任务1描点连线在如图13所示的直角坐标系中描出上表的各点,用光滑的线连接;任务2确定关系请确定一个合理的y与x之间函数关系式,并求出自变量x的取值范围;任务3拟定计时方案小明想要设计出圆柱体容器液面高度和计时时长都是整数的计时器,且圆柱体容器液面高度需满足10厘米~20厘米,请求出所有符合要求的方案.24.(本题满分12分)如图14,正方形ABCD 和正方形AEFG (其中点E 在BC 的延长线上),AE 与CD 相交于点H .图14图15图16(1)若H 是CD 的中点,求证:;(2)如图15,连接CF ,求∠ECF 的度数;(3)如图16,连接AF ,GE 相交于点O ,求证:点O 在直线BD 上.25.(本题满分14分)在平面直角坐标系中,点,,其中,,.(1)当时,连接AB 交y 轴于点①求直线AB 的函数解析式;②若m为整数,且也是整数,求点B 的坐标;(2)过点A ,B 分别作x 轴的垂线,,且直线,与直线分别相交于点C ,D .若.试判断AB 与CD 的位置和数量关系,并说明理由.AH EH =()1,A a (),B m a n +0a <0n <0m <2a =-()0,3-2nm1l 2l 1l 2l ()04ny x t t =-+>122AOB S n a =--△厦门市湖滨中学2023-2024学年第二学期期末考试初二数学答案一、选择题1.C 2.B 3.B 4.A 5.D 6.C 7.D 8.D 9.D 10.D 二、填空题11.(1)3;(2. 12.2. 13.3.14.丙15.7 16..三、解答题(本大题有9小题,共86分)17.解:原式18.证明:在菱形ABCD 中,图8,∵∴∴在和中∴∴19.解:(1)把,代入得:,解得:,∴,(2)点不在该函数图象上.∵当时,.∴不在该函数图象上.20.解:该车符合安全标准,证明如下:A D F ''△22=+=AB AD =B D∠=∠BAF DAE∠=∠BAE EAF EAF DAF ∠+∠=∠+∠BAE DAF∠=∠BAE △DAF △B DAB ADBAE DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩BAE DAF △≌△BE DF=()1,1M -()1,3N y kx b =+13k b k b -+=⎧⎨+=⎩12k b =⎧⎨=⎩2y x =+()5,8P 5x =527y =+=()5,8P在中,在中,,∴∴是直角三角形,,∴,∴该车符合安全标准.21.解:(1)如图,以点A 为圆心,BD 的长为半径画弧,再以点D 为圆心,AB 的长为半径画弧,两弧相交于点E ,连接AE ,DE ,则即为所求.(2)∵四边形ABDE 为平行四边形,∴,,∵,∴, ∴,∴四边形AFCE 是平行四边形.∵,,∴,∴,∴四边形AFCE 是矩形.22.解:(1)由题意可得,这50条大黄鱼质量的平均数为:(千克).答:这50条大黄鱼质量的平均数为0.59千克;(2)两种收购方案的总售价分别是:方案一:(元);方案二:(元).∵,∴方案二更合算.23.解:任务一,如图2;Rt ABD △90ABD ∠=︒222229645BD AD AB =-=-=BCD △22223645BC CD +=+=222BC CD BD +=BCD △90BCD ∠=︒BC CD ⊥ABDE //BD AE BD AE =BF DC =BD BF DF DC DF CF =+=+=CF AE =BCE AEC ∠=∠//BC AE 2180BCE AEC AEC ∠+∠=∠=︒90AEC ∠=︒80.4120.5150.670.780.829.50.595050⨯+⨯+⨯+⨯+⨯==300.5950885⨯⨯=()()2680.4120.532150.67074080.8239.2448.8256940⨯⨯+⨯+⨯⨯+⨯+⨯⨯=++=.940885>图2任务二,设,将,代入得,,解得,∴;∵圆柱的最大高度是27厘米,∴时,,∴自变量x 的取值范围是;任务三,因为当时,水位高度和计时时长都是整数的点有,,,∴共有三种方案:方案一,时间3小时,水位高12厘米;方案二,时间4小时,水位高15厘米;方案三,时间5小时,水位高18厘米.24.(1)证明:∵四边形ABCD 是正方形,∴,即,∴,∵H 是CD 的中点,∴,在和中,,∴(AAS ),∴;(2)解:如图1,过点F 作的延长线于点M ,图1∴,∵四边形ABCD 是正方形,∴,,∴,,∵四边形AEFG是正方形,y kx b =+()1,6()2,9629k b k b +=⎧⎨+=⎩33k b =⎧⎨=⎩33y x =+27y =8x =08x ≤≤1020y ≤≤()3,12()4,15()5,18//AD BC //AD BE DAH CEH ∠=∠DH CH =ADH △ECH △DAH CEHAHD EHC DH CH ∠=∠⎧⎪∠=∠⎨⎪=⎩ADH ECH △≌△AH EH =FM BE ⊥90M ∠=︒90B ∠=︒AB BC =B M ∠=∠90BAE AEB ∠+∠=︒∴,,∴,∴,在和中,,∴(AAS ),∴,,∴,∴,∴是等腰直角三角形,∴;(3)证明:如图2,连接BD ,OD ,延长AD 交CF 于点N ,图2∵四边形ABCD 是正方形,∴,,,由(2)知,∴,∴,∵,∴,∴,∵,∴,∴是等腰直角三角形,∴,∴,即点D 是AN 的中点,∵四边形AEFG 是正方形,∴点O 是AF 的中点,∴OD 是的中位线,∴,即,又,∴点B 、D 、O 在一条直线上,即点O 在直线BD 上.25.解:(1)①当时,,,AE EF =90AEF ∠=︒90MEF AEB ∠+∠=︒BAE MEF ∠=∠ABE △EMF △B M BAE MEF ZE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE EMF △≌△BE MF =AB EM =BE BC CE AB CE EM CE CM =+=+=+=MF CM =CMF △45ECF ∠=︒45CBD ∠=︒90BCD ADC ∠=∠=︒AD CD =45ECF ∠=︒CBD ECF ∠=∠//BD CF 90BCD ∠=︒90ECD ∠=︒45DCN ∠=︒90ADC ∠=︒90CDN ∠=︒CDN △CD DN =AD DN =ANF △//OD NF //OD CF //BD CF 2a =-()1,2A -(),2B m n -设AB 直线解析式为,将,代入得,解得,∴.②将代入得,即,∵为整数,∴或,∴或,∴点B 坐标为或.(2)设,交x 轴于点M ,N ,如图,连接OA ,OA ,AB ,∵,∴,∴,设AB 所在直线解析式为,将,代入解析式得,解得,∴直线AB 与CD 平行,∴四边形ABDC 为平行四边形,∴.y kx b =+()1,2-()0,3-y kx b =+23k b b -=+⎧⎨=-⎩13k b =⎧⎨=-⎩3y x =-(),2m n -3y x =-23n m -=-1n m =-22222n m m m m-==-1m =-2m =-234n m -=-=-235n m -=-=-()1,4--()2,5--1l 2l ()111222AOB BON AOM ABMN S S S S BN AM MN BN ON AM OM =--=+-⋅-⋅△△四边形()()()()111122222222mn n am mn a a a n m a n a am a =---------=+----+122222a n am n a =--+=--222a am a -+=-3m =-y kxb =+()1,A a (),B m a n +a k b a n mk b =+⎧⎨+=+⎩14n n k m ==--AB CD =。
最新2017-2018年七年级数学下期末联考试题有完整答案和解释题号一二三四总分得分一、选择题(本大题共8小题)下列计算中,正确的是( )A. x^3⋅x^3=x^6B. x^3+x^3=x^6C. 〖(x^3)〗^3=x^6D. x^3÷x^3=x下列图形中,由MN//PQ,能得到∠1=∠2的是( ) A. B.C. D.不等式组{■(&x+1>0,@&x<1)┤的解集在数轴上表示正确的是( )A.B.C.D.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm若方程组{■(&x+2y=1,@&2x+y=a)┤的解满足x+y=3,则a的值是( )A. 6B. 7C. 8D. 9下列命题是真命题的是( )A. 同旁内角相等,两直线平行B. 若|a|=|b|,则a=bC. 如果a>b,那么a^2>b^2D. 平行于同一直线的两直线平行《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银?(注:这里的斤是指市斤,1市斤=10两)设共有x人,y两银子,下列方程组中正确的是( )A. {■(&6x+6=y@&5x-5=y)┤B. {■(&6x+6=y@&5x+5=y)┤C. {■(&6x-6=y@&5x-5=y)┤D.{■(&6x-6=y@&5x+5=y)┤若关于x的不等式组{■(&x-m<0,@&3-2x≤1)┤所有整数解的和是10,则m的取值范围是( )A. 4<m≤5B. 4<m<5C. 4≤m<5D. 4≤m≤5二、填空题(本大题共8小题)计算:(2x-3)(x+1)=________.分解因式:x^2 y-xy^2=________.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm,这个直径用科学记数法可表示为________cm.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.若a+b=6,ab=7,则a^2+b^2=________.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火材棒,图案②需15根火柴棒,……,按此规律,图案ⓝ需________________根火材棒.已知3^n×27=3^8,则n的值是________________.如图,已知AB//DE,∠BAC=m^∘,∠CDE=n^∘,则∠ACD=________________ ^∘.三、计算题(本大题共4小题)计算:(1)(-1/2)^0+|3-π|+(1/3)^(-2);(2)〖(a+3)〗^2-(a+1)(a-1).分解因式:(1)5mx^2-20my^2;(2)12a^2 b+12ab^2+3b^3.解方程组和不等式组:(1){■(&2x-y=3,@&4x-3y=1;)┤(2){■(&3(x-1)<5x+1,@&(2x+1)/3>2x-5.)┤求代数式x(y-z)-y(z-x)+z(x-y)的值,其中x=1/4,y=1/2,z=-3/4.四、解答题(本大题共5小题)如图,已知点E在AB上,CE平分∠ACD,∠ACE=∠AEC.求证:AB//CD.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗.已知2棵A种树苗和3棵B 种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.(1)A、B两种树苗的单价分别是多少元⊕(2)该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵⊕如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形⊕请画出示意图,并在图形下方写上剩余部分多边形的内角和.已知关于x、y的方程组{■(&2x+y=k-5,@&x-y=2k-1.)┤(1)求代数式2^2x⋅4^y的值;(2)若x<5,y≤-2,求k的取值范围;(3)若x^y=1,请直接写出两组x,y的值.如图①,直线l⊥MN,垂足为O,直线PQ经过点O,且∠PON=〖30〗^∘.点B在直线l上,位于点O下方,OB=1.点C在直线PQ上运动.连接BC过点C作AC⊥BC,交直线MN于点A,连接AB(点A、C与点O都不重合).(1)小明经过画图、度量发现:在△ABC中,始终有一个角与∠PON相等,这个角是________________;(2)当BC//MN时,在图②中画出示意图并证明AC//OB;(3)探索∠OCB和∠OAB之间的数量关系,并说明理由.常州市教育学会学业水平监测2018.6七年级数学试题答案和解析【答案】1. A2. C3. B4. B5. C6. D7. D8. A9. 2x^2-x-310. xy(x-y)11. 2×〖10〗^(-7)12. 如果两个数的乘积为1,那么这两个数互为倒数13. 2214. (7n+1)15. 516. (m+n-180)17. 解:(1)原式=1+π-3+9=7+π;(2)原式=a^2+6a+9-a^2+1=6a+10.18. 解:(1)原式=5m(x^2-4y^2)=5m(x+2y)(x-2y);(2)原式=3b(4a^2+4ab+b^2)=3b(2a+b)^2.19. 解:(1){■(2x-y=3①@4x-3y=1②)┤,①×2-②,得:y=5,将y=5代入①,得:2x-5=3,解得:x=4,∴方程组的解为{■(x=4@y=5)┤;(2){■(3(x-1)<5x+1①@(2x+1)/3>2x-5②)┤,解不等式①,得:x>-2;解不等式②,得:x<4,∴不等式组的解集为-2<x<4.20. 解:原式=xy-xz-yz+xy+xz-yz=2xy-2yz=2y(x-z),当x=1/4,y=1/2,z=-3/4时,原式=2×1/2×(1/4+3/4)=1.21. 证明:∵CE平分∠ACD,∴∠ACE=∠DCE,又∵∠ACE=∠AEC,∴∠DCE=∠AEC,∴AE//CD.22. 解:(1)设A种树苗单价为x元,B种树苗单价为y 元,根据题意,得{■(2x+3y=270@3x+6y=480)┤,解方程组,得{■(x=60@y=50)┤,答:A种树苗单价为60元,B中树苗单为50元.(2)设购进A种树苗m棵,则购进B种树苗(28-m)棵,根据题意,得60m+50(28-m)≤1550,解不等式,得m≤15,因为m为整数,所以m的最大值是15,答:最多可以购进A种树苗15棵.23. 解:如图①,剩余的部分是三角形,其内角和为〖180〗^∘,如图②,剩余的部分是四边形,其内角和为〖360〗^∘,如图③,剩余的部分是五边形,其内角和为〖540〗^∘.24. 解:{■(2x+y=k-5①@x-y=2k-1②)┤,①+②,得3x=3k-6,∴x=k-2,把x=k-2代入①,得2k-4+y=k-5,∴y=-k-1,∴{■(x=k-2@y=-k-1)┤,(1)∵{■(x=k-2@y=-k-1)┤,∴2x+2y=-6,∴2^2x⋅4^y=2^(2x+2y)=2^(-6)=1/64;(2)∵x<5,y≤-2,∴{■(k-2<5@-k-1≤-2)┤,解得1≤k<7;(3){■(x=-3@y=0)┤,{■(x=1@y=-4)┤.25. 解:(1)∠ABC(2)如图所示:∵BC//MN,∴∠AOB+∠OBC=〖180〗^∘,∵∠AOB=〖90〗^∘,∴∠OBC=〖90〗^∘,∵∠ACB=〖90〗^∘,∴∠OBC+∠ACB=〖90〗^∘+〖90〗^∘=〖180〗^∘,∴AC//OB.(3)如图①,设BC与OA相交于点E,在△OCE和△BAE中,∵∠OCB=〖180〗^∘-∠OEC-∠COE,∠OAB=〖180〗^∘-∠BEA-∠ABE,又∠COE=∠ABE=〖30〗^∘,∠OEC=∠BEA,∴∠OCB=∠OAB;如图②∠AOC=∠AOB+∠BOC=〖90〗^∘+〖60〗^∘=〖150〗^∘,∵∠ABC=〖30〗^∘,∴∠AOC+∠ABC=〖150〗^∘+〖30〗^∘=〖180〗^∘,在四边形ABCO中,∠OCB+∠OAB=〖360〗^∘-(∠AOC+∠ABC)=〖360〗^∘-〖180〗^∘=〖180〗^∘,即∠OCB和∠OAB互补,∴∠OCB和∠OAB的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法.掌握法则是解题的关键.根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:A.x^3⋅x^3=x^6,故A正确;B.x^3+x^3=2x^3,故B错误;C.(x^3 )^3=x^9,故C错误;D.x^3÷x^3=1,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:A.由MN//PQ,能得到∠1+∠2=〖180〗^∘,故不合题意;B.由MP//NQ,根据两直线平行,内错角相等能得到∠1=∠2,故不合题意;C.如图:∵MN//PQ,∴∠1=∠3,又∵∠2=∠3,∴∠1=∠2.故C合题意;D.观察图形∠1与∠2为同旁内角,由MN//PQ,不能得到∠1=∠2,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:{■(x+1>0①@x<1②)┤,解不等式①,得x>-1,解不等式②,刘x<1,所以不等式组的解集为-1<x<1,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:A.∵4+6<11,∴不能组成三角形,故不合题意;B.∵3+4>5,∴能组成三角形,故合题意;C.∵4+1=5,∴不能组成三角形,故不合题意;D.∵2+3<6,∴不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入x+y=3,转化为关于a的一元一次方程求解即可.【解答】解:{■(x+2y=1①@2x+y=a②)┤,①×2-②,得:3y=2-a,解得:y=(2-a)/3,②×2-①,得:3x=2a-1,解得:x=(2a-1)/3,∵x+y=3,∴(2a-1)/3+(2-a)/3=3,解得:a=8.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:A.同旁内角互补,两直线平行,故A错误;B.若|a|=|b|,则a=±b,则B错误;C.如果a=1,b=-2,则a^2<b^2,故C错误;D.平行于同一直线的两直线平行,故D正确.故选D.7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案.【解答】解:根据题意得:{■(6x-6=y@5x+5=y)┤.故选D.8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:{■(x-m<0①@3-2x≤1②)┤,由①得x<m;由②得x≥1;故原不等式组的解集为1≤x<m.又因为不等式组的所有整数解的和是10=1+2+3+4,由此可以得到4<m≤5.故选A.9. 【分析】此题考查的是多项式乘多项式.用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:(2x-3)(x+1)=2x^2+2x-3x-3=2x^2-x-3.故答案为2x^2-x-3.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.直接提取公因式xy进而分解因式得出即可.【解答】解:x^2 y-xy^2=xy(x-y).故答案为xy(x-y).11. 【分析】本题考查用科学记数法表示较小的数,一般形式为a ×〖10〗^n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×〖10〗^(-n).与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000002cm= 2×〖10〗^(-7) cm.故答案为2×〖10〗^(-7).12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值.将已知条件中的a+b=6两边平方,利用完全平方公式变形后整体代入即可求出a^2+b^2的值.【解答】解:∵a+b=6,∴(a+b)^2=36,∴a^2+2ab+b^2=36,∵ab=7,∴a^2+b^2=36-14=22.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n-1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=8+7×2=22根;…∴图案n需火柴棒:8+7(n-1)=(7n+1)根.故答案为(7n+1).15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则.将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:∵3^n×27=3^8,∴3^n×3^3=3^8,3^(n+3)=3^8,∴n+3=8,解得:n=5.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.延长ED交BC于F,根据平行线的性质求出∠AFE=∠BAC=m^∘,求出∠DFC=〖180〗^∘-m^∘,根据三角形外角性质得出∠C=∠CDE-∠DFC,代入求出即可.【解答】解:延长ED交AC于F,如图所示:∵AB//DE,∠BAC=m^∘,∴∠AFE=∠BAC=m^∘,∴∠DFC=〖180〗^∘-m^∘,∵∠CDE=n^∘,∴∠ACD=∠CDE-∠CFD=n^∘-(〖180〗^∘-m^∘)=(m+n-180)^∘.故答案为(m+n-180).17. 此题考查的是实数的运算以及整式的混合运算.熟练掌握相关的运算性质和运算法则是关键.(1)根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;(2)先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.(1)首先提公因式5m,再利用平方差进行分解即可;(2)首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法.熟练掌握解答步骤是关键.(1)利用加减消元法即可求解;(2)先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值.掌握法则是解题的关键.先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法.根据角平分线定义可得∠ACE=∠DCE,结合已知条件利用等量代换得到∠DCE=∠AEC,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用不超过1550元,列出关于m的一元一次不等式.(1)设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种树苗m棵,则购进B种树苗(28-m)棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理.注意分情况讨论.①过四边形的两个顶点剪一刀,剩余图形为三角形;②故其中一个顶点和一条边剪一刀,剩余图形为四边形;③过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法.解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;(2)根据x<5,y≤-2,列出不等式组,解不等式组求出k的取值范围即可;(3)由x^y=1,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用.通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.(1)通过观察和动手操作易得答案;(2)根据平行线的性质可得∠AOB+∠OBC=〖180〗^∘,结合已知条件易得∠OBC+∠ACB=〖180〗^∘,根据同旁内角互补,两直线平行可得答案;(3)分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:(1)经过画图、度量发现:在△ABC中,始终有一个角与∠PON相等,这个角是∠ABC.故答案为∠ABC;(2)见答案;(3)见答案.。
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年沪科版七年级下册期末数学试卷含答案解析2017-2018学年七年级(下)期末数学试卷一、选择题1.在实数0.1,0.2,√2,0.中,无理数的个数是()A。
2个 B。
1个 C。
3个 D。
4个2.下列图形中,不能通过其中一个四边形平移得到的是()A。
B。
C。
D。
3.下列运算正确的是()A。
(2a^2)^3=8a^6 B。
-a^2b^2×3ab^3=-3a^3b^5C。
a^2+=-1 D。
a^2•=-14.某种计算机完成一次基本运算的时间约为0.xxxxxxxx3秒,把数据0.xxxxxxxx3用科学记数法表示为()A。
0.3×10^-8 B。
0.3×10^-9 C。
3×10^-8 D。
3×10^-95.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为()A。
20x/12+20(x/5)=1200 B。
20x/12+2(x/5)=1200C。
20x/15+20(x/5)=1200 D。
20x/15+2(x/5)=12006.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A。
∠1=∠3 B。
∠5=∠4 C。
∠5+∠3=180° D。
∠4+∠2=180°7.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为()A。
26cm B。
52cm C。
78cm D。
104cm8.如图,长方形ABCD的周长为16,以长方形四条边为边长向外作四个正方形,若四个正方形面积之和为68,则长方形ABCD的面积为()A。
12 B。
15 C。
18 D。
209.观察下列等式:a1=n,a2=1-n,a3=1-n,a4=1-n,…根据其蕴含的规律可得()A。
七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。
1个B。
2个C。
3个D。
4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。
原点B。
x轴上C。
y轴上D。
x轴上或y轴上3.不等式组2x-1>1。
4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。
图形的平移是指把图形沿水平方向移动B。
“相等的角是对顶角”是一个真命题C。
平移前后图形的形状和大小都没有发生改变D。
“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。
1500B。
1000C。
150D。
5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。
①③④B。
①②③C。
①②④D。
②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。
8.-364的绝对值等于______。
9.不等式组{x-2≤x-1>的整数解是______。
10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。
11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。
某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。
12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。
则老师知道XXX与XXX之间的距离是______。
13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
2017-2018学年七年级数学上册期末模拟题一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106 C.34×106D.3.4×1072.如图是一个正方体,则它的表面展开图可以是()3.一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( )A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.下列方程中,以-2为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-15.计算1-(-2)的正确结果是( )A.-2 B.-1 C.1 D.36.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xy C.3y2﹣2y2=1 D.3x2+2x=5x37.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2B.-1 C,0 D,211.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元12.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是()A.2015 B.1036 C.518 D.259二、填空题:13.x,y,z在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.14.18.36°= °′″.15.如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。
2017—2018学年第二学期七年级期末测试英语试题卷一、听力测试(本题有27小题,每小题1分,共27分)A请听下面8段对话。
每段对话后有一小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都将有10秒钟的时间回答有关小题和阅读下一小题.每段对话读两遍.1. Whatclubdoesthemanwanttojoin?A.Thesportsclub.B.Theswimmingclub. C。
Themusicclub。
2。
Howdoesthemangettoschool?A。
Bybus。
B。
Bycar. C.Onfoot。
3. WhatisJackdoing?A。
Cleaningtheclassroom。
B.Singing。
C。
Listeningtothemusic。
4。
WherecanAnnaeatatschool?A。
Intheclassroom。
B.Inthehallways. C.Inthedininghall.5. Whereisthehospital?A。
Infrontofthebank。
B.Behindthebank。
C。
Nexttothebank。
6。
WhatdoesMikelikeforbreakfast?A。
Eggs。
B。
Bread。
C。
Eggsandbread。
7. WhatcolorisJohn'sbrother’shair?A。
Brown。
B。
Blond. C.Black。
8. HowwasEmma’svacation?A。
Great。
B。
Notbad. C。
Terrible。
B请听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟作答时间。
每段对话或独白读两遍。
请听第1段材料,回答第9至10小题.9。
Whatanimalsdoesthewomanlike?A。
福建省厦门市湖里区 2023-2024学年七年级下学期期末数学试题一、单选题1.下列实数中,最大的是( ) AB .1C .0D .3-2.如图,数轴上表示的不等式解集是( )A .3x >B .3x <C .3x ≥D .3x ≤3.如图,图中哪一条线段可以由线段m 经过平移得到( )A .aB .bC .cD .d4 ) A .4的平方根B .4的算术平方根C .2的平方根D .16的算术平方根5.某学校拟开设羽毛球社团,为了解七年级学生对羽毛球运动的喜爱情况,下列抽样方法中比较合理的是( )A .随机抽查七年级100名学生B .随机抽查七年级2个班100名学生C .随机抽查七年级100名男生D .随机抽查七年级100名女生6.杆秤是中国最古老且沿用至今的衡量工具,亦是中华文化符号的代表之一.下图所示的是一杆杆秤,它由木制的带有秤星的秤杆、金属秤砣、秤钩、提绳等组成.在称物品时,提绳AB 与秤砣绳CD 互相平行,若92α∠=︒,则∠β的度数为( )A .78︒B .88︒C .98︒D .108︒7.如图,在直角三角形ABC 中,90ACB ∠=︒,下列条件能判定DE AC ⊥的是( )A .ABE CBE ∠=∠B .CBE BED ∠=∠C .ADE BEC ∠=∠D .ABE DEB ∠=∠8.若a b <,则下列各式中正确的是( ) A .11a b ->- B .ma mb >C .22a b <D .()()2211m a m b +<+9.某商场进行“6.18”促销活动,若某商品的定价为x 元,可列出关系式()0.321001000x -<,则下列语句对该关系式描述正确的是( )A .买两件该商品可打7折,再减100元,最后不到1000元B .买两件该商品可减100元,再打7折,最后不到1000元C .买两件该商品可打3折,再减100元,最后不到1000元D .买两件该商品可减100元,再打3折,最后不到1000元10.一个长方形的长减少5cm ,宽增加2cm ,就成为一个正方形,并且这两个图形的面积相等.设这个长方形的长为cm x ,宽为cm y ,则下列关系式正确的是( )A .25x y =B .7x y +=C .()255x y -=D .()()2552x y -=+二、填空题11.计算:(1=;(2;(3);(4)1=.12.已知11x y =⎧⎨=⎩是方程32x ay +=的一个解,则a 的值为.13.如图,当剪刀口AOB ∠的度数为30︒时,则COD ∠的度数为.14.三角形ABC 沿着射线BC 的方向平移得到三角形DEF ,如图所示,已知2BE =,3EC =,则平移的距离为.15.在平面直角坐标系中,点()1A m n -,,()4,1B m n +-,()2,3C -,若CD A B ∥且12CD AB =,则点D 的坐标为.16.如图,AM BC ∥,ABC ∠是钝角,BE 平分ABC ∠交AM 于点E ,BD 平分EBC ∠交AM 于点D ,点F 在线段AE 上,若DFB DBF ∠=∠,则DBC ∠与ABF ∠之间的数量关系为.三、解答题17.解方程组25{1x y x y +=-=.18.(1)解不等式()316x +<,并把解集在数轴上表示出来; (2)解不等式组21323x x x -≤⎧⎪⎨+>⎪⎩19.如图,点D 在射线BE 上,AD BC ∥,5ADE DBC ∠=∠,求ADB ∠的度数.20.如图,在由小正方形组成的网格中,每个小正方形的边长均为1个单位长度,三角形ABC 的三个顶点都在格点上,点A ,B 的坐标分别为()4,4-,()2,1-.(1)请在图中画出平面直角坐标系xOy ;(2)三角形ABC 中任意一点(),P x y 经平移后的对应点为()2,Q x y +,将三角形ABC 作同样的平移得到三角形DEF .请画出三角形DEF ,并求出线段AB 平移扫过的面积.21.已知关于x ,y 的方程组354x y m x y m +=+⎧⎨-=⎩(1)当3y =时,求m 的值; (2)若5x y +<,求m 的取值范围.22.某市为激发学生对科学实验的兴趣,举办市学生科普创新实验暨作品大赛.大赛整体赛程分为初赛、复赛和决赛三个阶段.初赛阶段比赛项目是制作未来太空车,要求参赛队伍设计、制作、提交作品,评委对每个参赛作品打分.初赛结束后,某校项目学习小组分别随机抽取部分七、八年级的作品的打分数据,并制作了统计图表,如:表1,图1,图2.(其中A 组:6070x ≤<,B 组:7080x ≤<,C 组:8090x ≤<,D 组:90100x ≤≤)表1 七年级作品分数频数分布表a__________,c=__________,m=__________;(1)=(2)在图2中,B组对应的圆心角的度数是__________,请补全图1频数分布直方图;(3)若该市七、八年级共有200支队伍参加初赛,作品达到80分及以上的队伍进入复赛,请你估计大约有多少支队伍能进入复赛.23.无人机广泛应用于多种领域,不仅在军事领域发挥了重要作用,而且在民用领域也展现出强大的实力.在农业方面,植保无人机可以帮助进行精准施肥和喷洒农药,提高农业生产效率.某生态农业公司共有4架A型植保无人机和8架B型植保无人机,这两种型号的植保无人机在满电状态下可持续作业15分钟.1架A型植保无人机和2架B型植保无人机15分钟可完成70亩地的农药喷洒作业;3架A型植保无人机和1架B型植保无人机15分钟可完成85亩地的农药喷洒作业.(1)1架A型和1架B型植保无人机工作15分钟分别可完成多少亩地的农药喷洒作业?(2)为抢抓晴好天气开展小麦病虫害防治作业,该农业公司打算再购进这两种型号的植保无人机共6架,且每种无人机至少购买1架.若要用1小时45分钟完成1660亩地的农药喷洒作业(无人机在第一轮作业前处于满电状态,每轮作业结束后将无人机收回至无人机充满电需15分钟,充电与作业不能同时进行),有哪几种购买方案?24.如图1,在四边形ABCD 中,AE 平分BAD ∠交BC 边于点E ,BAE AEB ∠=∠.(1)求证AD BC ∥;(2)如图2,连接BD ,DE ,10BDE EBD ∠=∠+︒,DF 平分BDC ∠交线段CE 于点F ,240C EDF ∠+∠=︒,比较DE 与DF 的大小,并说明理由.25.图1. 托盘高图2图3。
2017—2018学年(下)厦门市七年级数学质量检测
一.选择题
1.如图1,直线a ,b 被直线c 所截,则2∠的内错角是
A.1∠
B.3∠
C.4∠
D.5∠ 2.在平面直角坐标系中,点(-1,1)在
A.第一象限
B. 第二象限
C. 第三象限
D. 第四象限 3.下列调查中,最适合采用全面调查的是
A.对厦门初中学生每天的阅读时间的调查
B.对厦门端午节期间市场上粽子质量情况的调查
C.对厦门周边水质情况的调查
D.对厦门某航班的旅客是否携带违禁物品的调查 4.若a b >,则下列结论中,不成立的是 A.11a b +>+ B.
22
a b
> C.2121a b ->- D.11a b ->- 5.下列命题是真命题的是 A.同位角相等
B.两个锐角的和是锐角
C.如果一个数能被4整除,那么它能被2整除
D.相等的角是对顶角
6.实数12a -有平方根,则a 可以取的值为
A.0
B.1
C.2
D.3 7.下面几个数:-1,3.14,0,2,327-,
5π,1
3
,0.2018,其中无理数的个数是
A.1
B.2
C.3
D.4
8.如图2,点D 在AB 上,BE AC ⊥,垂足为E ,BE 交CD 于点F ,则下列说法错误的是
A.线段AE 的长度是点A 到直线BE 的距离
B.线段CE 的长度是点C 到直线BE 的距离
C.线段FE 的长度是点F 到直线AC 的距离
D.线段FD 的长度是点F 到直线AB 的距离
9.小刚从学校出发往东走500m 是一家书店,继续往东走1000m ,再向南走1000m 即可到家.若选书店所在的位置为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系.规定一个单位长度代表1m 长,若以点A 表示小刚家的位置,则点A 的坐标是
A.(1500,-1000)
B.(1500,1000)
C.(1000,-1000)
D.(-1000,1000) 10.在平面直角坐标系中,点A (a ,0),点B (2a -,0),且点A 在B 的左边,点C (1,-1),连接AC ,BC .若在AB ,BC ,AC 所围成的区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为
A.10a -<≤
B.01a ≤<
C.11a -<<
D.22a -<< 二.填空题
11.计算下列各题
5
43
21
a
b c
F E A B
C D
(1)12-= ;(2)63-÷= ;(3)()2
2-= ; (4)3323-= ;(5)9-= ;(6)2-= . 12.不等式10x +<的解集是 ;
13.如图3,点D 在射线BE 上,AD BC ∥.若145ADE ∠=︒,则DBC ∠的度数为 ;
14.已知一组数据有50个,其中最大值是142,最小值是98.若取组距为5,则可分为 组.
15.在平面直角坐标系中,O 为原点,A (1,0),B (-3,2).若BC OA ∥且2BC OA =.则点C 的坐标是 ;
16.已知实数a ,b ,c ,2a b +=,1c a -=,若2a b ≥-,则a b c ++的最大值为 . 三.解答题
17.(本题满分8分,其中每小题4分)
(1)解方程:241x x -=-
(2)解方程组:323
21
x y x y +=⎧⎨
-=⎩
18. (本题满分8分)如图4,已知直线AB ,CD 相交于点O .
(1)读下列语句,并画出图形:点P 是直线AB ,CD 外的一点,直线EF 经过点P 且与直线AB 平行,与直线CD 相交于点E ;
(2)请写出第(1)小题图中所有与COB ∠相等的角.
19.(本题满分8分)解不等式组()112
241x x x -⎧
≤⎪
⎨⎪-<+⎩
,并写出该不等式组的正整数解.
O
A B C
D
B
C D
A
E
20.(本题满分8分)我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”
题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的2
3
,那么乙也共有钱50.问甲、乙二人各带了多少钱?
21.(本题满分8分)关于x ,y 的方程组1331x y m
x y m -=+⎧⎨+=+⎩
(1)当2y =时,求m 的值;
(2)若方程组的解x 与y 满足条件2x y +>,求m 的取值范围.
22.(本题满分9分)根据厦门市统计局公布的2017年厦门市常住人口相关数据显示,厦门常住人口首次突破400万大关,达到了401万人,对从2013年的人口数据绘制统计图表如下:
2013、2017年厦门市常住人口中受教育程度情况统计表(人数单位:万人) 年份 大学程度人数 高中程度人数 初中程度人数 小学程度人数
其他人数 2013 60 98 103 75 37 2017
72
105
120
68
36
请利用上述统计图表提供的信息回答下列问题:
(1)从2013年到2017年厦门市常住人口增加了多少万人?
(2)在2017年厦门市常住人口中,少儿(0~14岁)人口约为多少万人?(结果精确到万位) (3)请同学们分析一下,假如从2017年到2021年与从2013年到2017年的人口增长人数相同,而大学程度人数的增长率相同,那么到了2021年厦门的大学程度人数的比例能否超过人口的20%?请说明理由.
23.(本题满分8分)养牛场的李大叔分三次购进若干头大牛和小牛.其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如下表:
大牛(头)
小牛(头)
总价(元) 第一次 4 3 9900 第二次 2 6 9000 第三次
6
7
8550
(1)李大叔以折扣价购买大牛和小牛是第 次;
(2)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折相同),且总价不低于8100元,那么他共有哪几种购买方案?
24.(本题满分10分)如图5,点E 在四边形ABCD 的边BA 的延长线上,CE 与AD 交于点F ,DCE AEF ∠=∠,B D ∠=∠. (1)求证:AD BC ∥;
(2)如图6,若点P 在线段BC 上,点Q 在线段BP 上,且FQP QFP ∠=∠,FM 平分EFP ∠,试探究MFQ ∠与DFC ∠的数量关系,并说明理由.
F
D
A
B
C
E
P
F
D
A B
C
E
Q M
25.(本题满分11分)在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.
在平面直角坐标系中,已知点M (1,0),过点M 作直线l 平行于y 轴,点A (-1,a ),点B (b ,
2a )
,点C (1
2
-,1a -),将三角形ABC 进行平移,平移后点A 的对应点为D ,点B 的对应点为E ,点C 的对应点为F .
(1)试判断点A 是否是直线l 的“伴侣点”?请说明理由;
(2)若点F 刚好落在直线l 上,F 的纵坐标为a b +,
点E 落在x 轴上,且三角形MFD 的面积为1
12
,试判断点B 是否是直线l 的“伴侣点”?请说明理由.。