2015年广东省珠海市中考数学试题及解析
- 格式:docx
- 大小:344.75 KB
- 文档页数:31
2015年广东省初中中考试题数 学一、选择题 1.2-=A.2B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6 4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形6.2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是A.0B.2C.0(3)-D.5-8. 若关于的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是 A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为,则y 关于的函数图象大致是【答案】D. 二、填空题11. 正五边形的外角和等于 (度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.三、解答题(一)17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x .19. 如题19图,已知锐角△AB C.(1) 过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC=5,AD=4,tan∠BAD=34,求DC的长.四、解答题(二)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2) 求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?五、解答题(三)23. 如题23图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥轴于点B,交反比例函数图象于点D,且AB=3B D.(1) 求的值;(2) 求点C的坐标;(3) 在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.24. ⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1) 如题24﹣1图;若D是线段OP的中点,求∠BAC的度数;(2) 如题24﹣2图,在DG上取一点,使D=DP,连接C,求证:四边形AGC是平行四边形;(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB 上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了秒时,点N到AD的距离(用含的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=62+,sin15°=62-)2015年广东省初中数学中考答案一、选择题1—5 ABBCA 6—10 DBCDD 二、填空题11. 正五边形的外角和等于 (度). 【答案】360.12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 .【答案】6.13. 分式方程321x x=+的解是. 【答案】2x =.14. 若两个相似三角形的周长比为2:3,则它们的面积比是 .【答案】4:9. 15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 . 【答案】1021. 16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.【答案】4. 【略析】由中线性质,可得AG =2GD,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的. 三、解答题(一)17. 解方程:2320x x -+=. 【答案】解:(1)(2)0x x --=∴10x -=或20x -= ∴11x =,22x =18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【答案】解:原式=1(1)(1)x x x x x -⋅+-=11x + 当21x =+时,原式=122211=-+.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长. 【答案】(1) 如图所示,MN 为所作;(2) 在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =AD ﹣BD =5﹣3=2. 四、解答题(二)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 如题21图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延 长交BC 于点G ,连接AG .(1) 求证:△ABG ≌△AFG ; (2) 求BG 的长.【答案】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB , 由折叠的性质可知AD =AF ,∠AFE =∠D =90°, ∴∠AFG =90°,AB =AF , ∴∠AFG =∠B , 又AG =AG ,∴△ABG ≌△AFG ; (2) ∵△ABG ≌△AFG , ∴BG =FG ,设BG =FG =x ,则GC =6x -, ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润 120元.(1) 求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的 计算器多少台?【答案】(1) 设A ,B 型号的计算器的销售价格分别是元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元; (2) 设最少需要购进A 型号的计算a 台,得 3040(70)2500a a +-≥解得30x ≥答:最少需要购进A 型号的计算器30台. 五、解答题(三)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥轴于点B ,交反比例函数图象于点D ,且AB =3B D.(1) 求的值;(2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.【答案】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD , ∴BD =1, ∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y xy x =⎧⎪⎨=⎪⎩,得33x y ⎧⎪⎨⎪⎩或33x y ⎧=⎪⎨⎪=-⎩(舍去), ∴点C 的坐标为33; (3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求. 设直线CE 的解析式为y kx b =+,则331b k b ⎧+=⎪⎪-+=⎩233k =,232b =, ∴直线CE 的解析式为(233)232y x =+, 当=0时,y =232, ∴点M 的坐标为(0,32).24. ⊙O 是△ABC 的外接圆,AB 是直径,过»BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点,使D =DP ,连接C ,求证:四边形AGC 是平行四边形;(3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.【答案】(1) ∵AB 为⊙O 直径,»»BPPC =, ∴PG ⊥BC ,即∠ODB =90°,∵D 为OP 的中点,∴OD =1122OP OB =,∴cos ∠BOD =12OD OB =, ∴∠BOD =60°, ∵AB 为⊙O 直径, ∴∠ACB =90°, ∴∠ACB =∠ODB , ∴AC ∥PG ,∴∠BAC =∠BOD =60°; (2) 由(1)知,CD =BD , ∵∠BDP =∠CD ,D =DP , ∴△PDB ≌△CD ,∴C =BP ,∠OPB =∠CD , ∵∠AOG =∠BOP , ∴AG =BP , ∴AG =C ∵OP =OB ,∴∠OPB =∠OBP , 又∠G =∠OBP , ∴AG ∥C ,∴四边形AGC 是平行四边形; (3) ∵CE =PE ,CD =BD , ∴DE ∥PB ,即DH ∥PB ∵∠G =∠OPB , ∴PB ∥AG , ∴DH ∥AG ,∴∠OAG =∠OHD , ∵OA =OG , ∴∠OAG =∠G , ∴∠ODH =∠OHD , ∴OD =OH ,又∠ODB =∠HOP ,OB =OP , ∴△OBD ≌△HOP ,∴∠OHP=∠ODB=90°,∴PH⊥A B.角边的等量代换,三角形的全等25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB 上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了秒时,点N到AD的距离(用含的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=62+,sin15°=62-)【答案】(1) 2622(2) 如图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°,∴sin15°=FCNC,又NC=,∴62FC-,∴NE=DF 6222 -+∴点N到AD 6222-+;(3) ∵sin75°=FNNC,∴62FN+=,∵PD=CP2,∴PF+∴111)222y x x =++-·)即2y +当x =时,y即16162938623-++。
2015 年中考真题广东省珠海市2015年中考数学试卷一、选择题(本大题共5 小题,每小题1.( 3 分)( 2015?珠海) 的倒数是(3 分,共)15 分)A .B .C .2D .﹣ 2考点: 倒数. 分析:根据倒数的定义求解. 解答:解:∵ ×2=1 , ∴ 的倒数是 2. 故选 C . 点评:倒数的定义:若两个数的乘积是 1,我们就称这两个数互为倒数2.( 323的结果为()分)( 2015?珠海)计算﹣ 3a×a A .﹣ 56653a B . 3a C .﹣ 3a D .3a考点: 单项式乘单项式.分析:利用单项式相乘的运算性质计算即可得到答案.解答:2 32+35, 解:﹣ 3a ×a =﹣ 3a =﹣ 3a 故选 A .点评:本题考查了单项式的乘法,属于基础题, 比较简单, 熟记单项式的乘法的法则是解题的关键.2)3.( 3 分)( 2015?珠海)一元二次方程 x +x+ =0 的根的情况是( A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定根的情况考点:根的判别式.分析:求出 △ 的值即可判断.解答:解:一元二次方程 x 2+x+ =0 中,2015 年中考真题∵△ =1﹣ 4×1× =0,∴原方程由两个相等的实数根.故选 B .点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△> 0? 方程有两个不相等的实数根;(2)△ =0 ? 方程有两个相等的实数根;(3)△< 0? 方程没有实数根.4.( 3 分)( 2015?珠海)一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A .B.C. D .考点:列表法与树状图法.分析:先列举出同时掷两枚质地均匀的硬币一次所有四种等可能的结果,然后根据概率的概念即可得到两枚硬币都是正面朝上的概率.解答:解:同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=.故选 D .点评:本题考查了用列表法与树状图法求概率的方法:先利用列表法与树状图法表示所有等可能的结果 n,然后找出某事件出现的结果数m,最后计算P=.5.( 3 分)( 2015?珠海)如图,在⊙O 中,直径CD 垂直于弦AB ,若∠ C=25 °,则∠ BOD 的度数是()A . 25°B. 30°C. 40°D. 50考点:圆周角定理;垂径定理.分析:2015 年中考真题由“等弧所对的圆周角是所对的圆心角的一半”推知∠ DOB=2 ∠ C,得到答案.解答:解:∵在⊙ O 中,直径CD 垂直于弦 AB ,∴= ,∴∠ DOB=2 ∠ C=50 °.故选: D.点评:本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)6.( 4 分)( 2015?珠海)若分式有意义,则x 应满足x≠5.考点:分式有意义的条件.分析:根据分式的分母不为零分式有意义,可得答案.解答:解:要使分式有意义,得x﹣ 5≠0,解得 x≠5,故答案为: x≠5.点评:本题考查了分式有意义的条件,分式的分母不为零分式有意义7.( 4 分)( 2015?珠海)不等式组的解集是﹣2≤x<3.考点:解一元一次不等式组.分析:首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.解答:解:,由① 得: x≥﹣ 2,由② 得: x< 3,不等式组的解集为:﹣2≤x<3,故答案为:﹣ 2≤x<3.点评:2015 年中考真题此主要考了解一元一次不等式,关是掌握解集的律:同大取大;同小取小;大小小大中找;大大小小找不到.228.( 4 分)( 2015?珠海)填空: x +10x+ 25 =( x+ 5 ).考点:完全平方式.分析:222=a ±2ab+b完全平方公式:( a±b),从公式上可知.解答:解:∵ 10x=2 ×5x,222∴x +10x+5 =( x+5 ).故答案是: 25; 5.点:本考了完全平方公式,两数的平方和,再加上或减去它的 2 倍,就构成了一个完全平方式.要求熟悉完全平方公式,并利用其特点解9.( 4 分)( 2015?珠海)用半径12cm,心角90°的扇形片成一个的面(接忽略不),底面的半径 3 cm.考点:的算.分析:根据扇形的弧等于的底面周,利用扇形的弧公式即可求得的底面周,然后根据的周公式即可求解.解答:解:的底面周是:=6 π.r,2πr=6π.底面的半径是解得: r=3.故答案是: 3.点:本考了的算,正确理解的面展开与原来的扇形之的关系是解决本的关,理解的母是扇形的半径,的底面周是扇形的弧.10.( 4 分)( 2015?珠海)如,在△ A 1B1C1中,已知 A 1B 1=7, B1C1=4, A 1C1=5,依次接△ A 1B 1C1三中点,得△ A 2B2C2,再依次接△ A 2B 2C2的三中点得△ A 3B 3C3,⋯,△A 5 55的周 1 .B C考点:三角形中位定理.:2015 年中考真题规律型.分析:由三角形的中位线定理得: A 2B 2、B2C2、 C2A 2分别等于A 1B 1、 B1C1、C1A 1的一半,所以△A 2B2C2的周长等于△ A 1B1C1的周长的一半,以此类推可求出△ A 5B5C5的周长为△A 1B1C1的周长的.解答:解:∵ A 2B 2、 B2C2、 C2A 2分别等于 A 1 B1、 B1C1、 C1A 1的一半,∴以此类推:△ A 5B5C5的周长为△ A 1B 1C1的周长的,∴则△ A 5B 5C5的周长为( 7+4+5)÷16=1.故答案为: 1点评:本题主要考查了三角形的中位线定理,关键是根据三角形的中位线定理得: A 2B 2、B 2C2、 C2A 2分别等于 A 1B1、B1 C1、C1A 1的一半,所以△ A 2B2C2的周长等于△A 1B1C1的周长的一半.三、解答题(一)(共 5 小题,每小题 6 分,共30 分)11.(6 分)( 2015?珠海)计算:﹣2﹣ 2 +51+|﹣ 3|.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用算术平方根定义计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式 =﹣1﹣ 2×3+1+3= ﹣ 1﹣6+1+3= ﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.( 6 分)( 2015?珠海)先化简,再求值:(﹣)÷,其中x=.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.解答:解:原式 =÷=?(x+1)( x﹣1)2015 年中考真题2=x +1,)2当 x=时,原式 =(+1=3 .点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键13.( 6 分)( 2015?珠海)如图,在平行四边形ABCD 中, AB <BC .(1)利用尺规作图,在 BC 边上确定点 E,使点 E 到边 AB , AD 的距离相等(不写作法,保留作图痕迹);(2)若 BC=8, CD=5 ,则 CE= 3.考点:作图—复杂作图;平行四边形的性质.分析:(1)根据角平分线上的点到角的两边距离相等知作出∠ A 的平分线即可;(2)根据平行四边形的性质可知 AB=CD=5 ,AD ∥ BC,再根据角平分线的性质和平行线的性质得到∠ BAE= ∠ BEA ,再根据等腰三角形的性质和线段的和差关系即可求解.解答:解:( 1)如图所示: E 点即为所求.(2)∵四边形 ABCD 是平行四边形,∴AB=CD=5 , AD ∥ BC ,∴∠ DAE= ∠ AEB ,∵AE 是∠ A 的平分线,∴∠ DAE= ∠ BAE ,∴∠ BAE= ∠BEA ,∴BE=BA=5 ,∴CE=BC ﹣ BE=3 .故答案为:3.点评:考查了作图﹣复杂作图,关键是作一个角的角平分线,同时考查了平行四边形的性质,角平分线的性质,平行线的性质和等腰三角形的性质的知识点.14.( 6 分)( 2015?珠海)某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:(1)求本次抽样人数有多少人?(2)补全条形统计图;(3)该校九年级共有 600 名学生,估计九年级最喜欢跳绳项目的学生有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据喜欢跑步的人数是 5,所占的百分比是 10%,即可求得总人数;(2)根据百分比的意义喜欢篮球的人数,作图即可;(3)利用总人数乘以对应的百分比即可求解.解答:解:( 1)本次抽样的人数:5÷10%=50 (人);(2)喜欢篮球的人数: 50×40%=20 (人),如图所示:;(3)九年级最喜欢跳绳项目的学生有600×=180 (人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.15.( 6 分)( 2015?珠海)白溪镇 2012 年有绿地面积 57.5 公顷,该镇近几年不断增加绿地面积, 2014 年达到 82.8 公顷.(1)求该镇 2012 至 2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015 年该镇绿地面积能否达到100 公顷?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014 年的绿地面积,根据2014 年的绿地面积达到 82.8 公顷建立方程求出x 的值即可;(2)根据( 1)求出的年增长率就可以求出结论.解答:解:( 1)设绿地面积的年平均增长率为x,根据意,得57.5( 1+x )2=82.8解得: x1=0.2, x2=﹣ 2.2(不合题意,舍去)答:增长率为20% ;(2)由题意,得82.8( 1+0.2) =99.36 万元答: 2015 年该镇绿地面积不能达到100 公顷.点评:本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.四、解答题(二)(本大题共 4 小题,每小题7 分,共 28 分)16.( 7 分)( 2015?珠海)如图,某塔观光层的最外沿点 E 为蹦极项目的起跳点.已知点E离塔的中轴线AB 的距离 OE 为 10 米,塔高 AB 为 123 米(AB 垂直地面BC),在地面 C 处测得点 E 的仰角α=45 °,从点 C 沿 CB 方向前行40 米到达 D 点,在 D 处测得塔尖 A 的仰角β=60 °,求点 E 离地面的高度EF.(结果精确到 1 米,参考数据≈1.4,≈1.7)考点:解直角三角形的应用-仰角俯角问题.分析:在直角△ ABD 中,利用三角函数求得中,利用三角函数求得EF 的长.BD的长,则CF 的长即可求得,然后在直角△ CEF解答:解:在直角△ ABD 中, BD===41 (米),则 DF=BD ﹣ OE=41﹣ 10(米),CF=DF+CD=41﹣10+40=41+30 (米),则在直角△CEF 中, EF=CF?tanα=41+30 ≈41×1.7+30≈99.7≈100(米).答:点 E 离地面的高度EF 是 100 米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.217.( 7 分)( 2015?珠海)已知抛物线 y=ax +bx+3 的对称轴是直线x=1.(1)求证: 2a+b=0;2(2)若关于x 的方程 ax +bx ﹣8=0 的一个根为4,求方程的另一个根.考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x 轴的交点.分析:(1)直接利用对称轴公式代入求出即可;(2)根据( 1)中所求,再将 x=4 代入方程求出 a, b 的值,进而解方程得出即可.解答:(1)证明:∵对称轴是直线 x=1= ﹣,∴2a+b=0 ;2(2)解:∵ ax +bx ﹣8=0 的一个根为4,∴16a+4b ﹣ 8=0,∵2a+b=0 ,∴b= ﹣ 2a,∴16a﹣ 8a﹣8=0 ,解得: a=1,则 b=﹣ 2,22∴ax +bx ﹣ 8=0为: x ﹣2x﹣ 8=0,则( x﹣ 4)( x+2) =0,解得: x1=4, x2=﹣ 2,故方程的另一个根为:﹣ 2.点评:此题主要考查了二次函数的性质以及一元二次方程的解法等知识,得出a, b 的值是解题关键.18.( 7 分)( 2015?珠海)如图,在平面直角坐标系中,矩形OABC 的顶点 A , C 分别在 x 轴, y 轴上,函数y=的图象过点P( 4, 3)和矩形的顶点B( m, n)( 0< m< 4).(1)求 k 的值;(2)连接 PA, PB,若△ABP 的面积为 6,求直线 BP 的解析式.2015 年中考真题考点:反比例函数与一次函数的交点问题.分析:(1)把 P( 4, 3)代入 y=,即可求出k 的值;(2)由函数 y=的图象过点B( m,n),得出 mn=12.根据△ ABP 的面积为 6 列出方程n(4﹣ m) =6,将 mn=12 代入,化简得 4n﹣ 12=12,解方程求出 n=6,再求出 m=2,那么点B( 2, 6).设直线 BP 的解析式为 y=ax+b ,将 B( 2, 6),P( 4,3)代入,利用待定系数法即可求出直线BP 的解析式.解答:解:( 1)∵函数 y=的图象过点P( 4, 3),∴k=4 ×3=12;(2)∵函数y=的图象过点B( m, n),∴m n=12 .∵△ ABP 的面积为6, P( 4,3), 0< m< 4,∴n(4﹣ m) =6,∴4n﹣ 12=12,解得 n=6 ,∴m=2 ,∴点 B (2, 6).设直线 BP 的解析式为y=ax+b ,∵B ( 2,6), P(4, 3),∴,解得,∴直线BP 的解析式为y=﹣x+9.点评:本题考查了反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征,待定系数法求一次函数与反比例函数的解析式,三角形的面积,正确求出 B 点坐标是解题的关键.2015 年中考真题19.( 7 分)( 2015?珠海)已知△ ABC , AB=AC ,将△ ABC 沿 BC 方向平移得到△DEF .(1)如图 1,连接 BD , AF ,则 BD = AF (填“>”、“<”或“=”);(2)如图 2,M 为 AB 边上一点,过 M 作 BC 的平行线 MN 分别交边 AC ,DE ,DF 于点 G,H,N,连接 BH , GF,求证: BH=GF .考点:全等三角形的判定与性质;等腰三角形的性质;平移的性质.分析:(1)根据等腰三角形的性质,可得∠ABC 与∠ ACB 的关系,根据平移的性质,可得AC与DF 的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得 GM 与 HN 的关系, BM 与 FN 的关系,根据全等三角形的判定与性质,可得答案.解答:(1)解:由 AB=AC ,得∠ ABC=ACB .由△ ABC 沿 BC 方向平移得到△DEF,得DF=AC ,∠ DFE= ∠ ACB .在△ ABF 和△ DBF 中,,△A BF ≌△ DBF ( SAS),BD=AF ,故答案为: BD=AF ;(2)证明:如图:,MN ∥ BF ,△AMG ∽△ ABC ,△DHN ∽△ DEF ,=,,∴MG=HN , MB=NF .在△ BMH 和△FNG 中,2015 年中考真题,△BMH ≌△ FNG ( SAS),∴BH=FG .点评:本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质.五、解答题(三)(本大题共 3 小题,每小题9 分,共27 分)20.( 9 分)( 2015?珠海)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形: 4x+10y+y=5即2(2x+5y)+y=5③把方程①带入③得: 2×3+y=5 ,∴ y= ﹣ 1把 y= ﹣ 1 代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知 x, y 满足方程组.2 2(i)求 x +4y 的值;(ii )求+的值.考点:解二元一次方程组.专题:阅读型;整体思想.分析:(1)模仿小军的“整体代换”法,求出方程组的解即可;(2)方程组整理后,模仿小军的“整体代换”法,求出所求式子的值即可.解答:解:( 1)把方程②变形: 3( 3x﹣ 2y) +2y=19 ③,把① 代入③得: 15+2y=19 ,即 y=2,把 y=2 代入①得: x=3 ,则方程组的解为;2222(2)( i)由①得: 3( x+4y ) =47+2xy,即 x +4y=③ ,2015 年中考真题把③ 代入 ② 得: 2×=36 ﹣ xy ,解得: xy=2 ,22则 x +4y =17;( i i )∵ x 2+4y 2=17,222∴( x+2y )=x +4y +4xy=17+8=25 ,∴ x +2y=5 或 x+2y= ﹣ 5,则 += =± .点评:此题考查了解二元一次方程组,弄清阅读材料中的“整体代入 ”方法是解本题的关键.21.( 9 分)( 2015?珠海)五边形 ABCDE 中,∠ EAB= ∠ ABC= ∠ BCD=90 °, AB=BC ,且满足以点 B 为圆心, AB 长为半径的圆弧 AC 与边 DE 相切于点 F ,连接 BE ,BD .( 1)如图 1,求∠ EBD 的度数;( 2)如图 2,连接 AC ,分别与 BE ,BD 相交于点 G ,H ,若 AB=1 ,∠DBC=15 °,求 AG ?HC 的值.考点:切线的性质;相似三角形的判定与性质. 分析:( 1)如图 1,连接 BF ,由 DE 与⊙ B 相切于点 F ,得到 BF ⊥ DE ,通过 R t △ BAE ≌R t △ BEF ,得到∠ 1=∠2,同理∠ 3=∠ 4,于是结论可得;(2)如图 2,连接 BF 并延长交CD 的延长线于 P ,由 △ ABE ≌△ PBC ,得到 PB=BE= ,求出 PF=,通过 △AEG ∽△ CHD ,列比例式即可得到结果.解答:解:( 1)如图 1,连接 BF , ∵DE 与⊙ B 相切于点 F , ∴ B F ⊥ DE ,在 R t △ BAE 与 R t △ BEF 中,,∴R t △ BAE ≌ R t △ BEF , ∴∠ 1=∠ 2, 同理∠ 3=∠4, ∵∠ ABC=90 °,∴∠ 2+∠ 3=45°,即∠ EBD=45 °;(2)如图 2,连接 BF 并延长交CD 的延长线于P,∵∠ 4=15°,由( 1)知,∠ 3=∠ 4=15°,∴∠ 1=∠ 2=30°,∠ PBC=30 °,∵∠ EAB= ∠PCB=90 °, AB=1 ,∴AE=,BE=,在△ ABE 与△ PBC 中,,∴△ ABE ≌△ PBC,∴PB=BE=,∴PF=,∵∠ P=60°,∴DF=2 ﹣,∴CD=DF=2 ﹣,∵∠ EAG= ∠ DCH=45 °,∠AGE= ∠ BDC=75 °,∴△ AEG ∽△ CHD ,∴,∴AG ?CH=CD ?AE ,∴AG ?CH=CD ?AE= ( 2﹣) ? =.点评:本题考查了切线的性质,全等三角形的判定和性质,相似三角形的判定和性质,画出辅助线构造全等三角形是解题的关键.22.( 9 分)( 2015?珠海)如图,折叠矩形OABC 的一边 BC ,使点 C 落在 OA 边的点 D 处,已知折痕 BE=5,且 =,以 O 为原点, OA 所在的直线为x 轴建立如图所示的平面直角坐标系,抛物线l: y=﹣2x + x+c 经过点 E,且与 AB 边相交于点 F.(1)求证:△ ABD ∽△ ODE ;(2)若 M 是 BE 的中点,连接 MF ,求证: MF⊥ BD ;(3)P 是线段 BC 上一点,点 Q 在抛物线 l 上,且始终满足 PD⊥ DQ ,在点 P 运动过程中,能否使得 PD=DQ ?若能,求出所有符合条件的Q 点坐标;若不能,请说明理由.考点:二次函数综合题.分析:(1)由折叠和矩形的性质可知∠EDB= ∠ BCE=90 °,可证得∠ EDO= ∠ DBA ,可证明△ABD ∽△ ODE ;(2)由条件可求得OD 、 OE 的长,可求得抛物线解析式,结合(1)由相似三角形的性质可求得 DA 、AB ,可求得 F 点坐标,可得到BF=DF ,又由直角三角形的性质可得MD=MB可证得 MF 为线段 BD 的垂直平分线,可证得结论;(3)过 D 作 x 轴的垂线交BC 于点 G,设抛物线与x 轴的两个交点分别为M 、 N,可求得DM=DN=DG ,可知点M 、 N 为满足条件的点Q,可求得Q 点坐标.,解答:(1)证明:∵四边形 ABCO 为矩形,且由折叠的性质可知∴∠ BDE= ∠BCE=90 °,∵∠ BAD=90 °,∴∠ EDO+ ∠ BDA= ∠ BDA+ ∠ DAB=90 °,△ BCE ≌△ BDE ,∴∠ EDO= ∠ DBA ,且∠ EOD= ∠ BAD=90 °,∴△ ABD ∽△ ODE ;(2)证明:∵ = ,∴设 OD=4x ,OE=3x ,则 DE=5x ,∴C E=DE=5x ,。
2015年广东珠海中考数学一、选择题(共5小题;共25分)的倒数是A. C. D.2. 计算的结果为A. B. C. D.3. 一元二次方程的根的情况是A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况4. 一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是5. 如图,在中,直径垂直于弦,若,则的度数是A. B. C. D.二、填空题(共5小题;共25分)6. 若分式有意义,则应满足.7. 不等式组的解集是.8. 填空:,则①处;②处.9. 用半径为,圆心角为的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为.10. 如图,在中,已知,,,依次连接的三边中点,得,再依次连接的三边中点得,,则的周长为.三、解答题(共12小题;共156分)11. 计算:.12. 先化简,再求值:,其中.13. 如图,在平行四边形中,.(1)利用尺规作图,在边上确定点,使点到边,的距离相等(不写作法,保留作图痕迹);(2)若,,则.14. 某校体育社团在校内开展“最喜欢的体育项目(四项选一项)” 调查,对九年级学生进行随机抽样,并将收集的数据绘制成如下两幅不完整的统计图.请结合统计图解答下列问题:(1)求本次抽样人数有多少人?(2)补全条形统计图;(3)该校九年级共有名学生,估计九年级最喜欢跳绳项目的学生有多少人?15. 白溪镇 2012 年有绿地面积公顷,该镇近几年不断增加绿地面积,2014 年达到公顷.(1)求该镇 2012 年至 2014 年绿地面积的年平均增长率;(2)若年增长率保持不变,2015 年该镇绿地面积能否达到公顷?16. 如图,某塔观光层的最外沿点为蹦极项目的起跳点.已知点离塔的中轴线的距离为米,塔高为米(垂直地面),在地面处测得点的仰角,从点沿方向前行米到达点,在处测得塔尖的仰角为,求点离地面的高度.(结果精确到米,参考数据,)17. 已知抛物线的对称轴是直线.(1)求证:;(2)若关于的方程的一个根为,求方程的另一个根.18. 如图,在平面直角坐标系中,矩形的顶点,分别在轴,轴上,函数的图象过点和矩形的顶点.(1)求的值;(2)连接,,若的面积为,求直线的解析式.19. 已知,,将沿方向平移得到.(1)如图 1,连接,,则(填“ ”,“ ”或“ ”号);(2)如图 2,为边上一点,过作的平行线分别交边,,于点,,,连接,.求证:.20. 阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程变形:,即把方程代入得,.把代入得,,方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知,满足方程组(i)求的值;(ii)求的值.21. 五边形中,,,且满足以点为圆心,长为半径的圆弧与边相切于点,连接,.(1)如图 1,求的度数;(2)如图2,连接,分别与,相交于点,,若,,求的值.22. 如图,折叠矩形的一边,使点落在边的点处,已知折痕,且,以为原点,所在的直线为轴建立如图所示的平面直角坐标系,抛物线经过点,且与边相交于点.(1)求证:;(2)若是的中点,连接,求证:;(3)是线段上一动点,点在抛物线上,且始终满足,在点运动过程中,能否使得 ?若能,求出所有符合条件的点坐标;若不能,请说明理由.答案第一部分1. A2. A3. B4. D5. D第二部分6.8. ,9.【解析】设底面圆的半径为.扇形的弧长等于圆锥底面的周长,则有,所以.10.【解析】的周长为周长的一半;的周长为周长的一半;;的周长为周长的一半.第三部分11.12.当时,.13. (1)(2)【解析】为的角平分线,可得,所以.14. (1)(人).答:本次抽样调查人数有人.(2)(3)(人).答:估计九年级学生中最喜欢跳绳活动的人数约为人.15. (1)设 2012 至 2014 年绿地面积的年平均增长率为.根据题意解得答:2012 至 2014 年绿地面积的年平均增长率为.(2).所以不能达到.16. 在中,,,.,.答:离地面的高度约为米.17. (1)由抛物线的对称轴为得,,.(2)因为抛物线与有相同对称轴,且的一个根为.的另一个根满足..18. (1)把代入得到.(2)矩形的面积为,的面积为.,在函数的图象上,,,,点.设直线,得解得所以直线解析式为.19. (1)(2),,.,.20. (1)将方程变形得把方程代入得,.把代入方程得.方程组的解为(2)(i)由方程得,由方程得代入得,,.(ii),把代入得.,,.21. (1)连接.,,,().,同理可证:,,即.(2)...分别延长,并相交于,则,,,,,,.,.,,即.22. (1)由折叠知,.(2)设,则,,.由可得,,于是,解得.抛物线经过点,.将点的横坐标代入,求得点的坐标为;,..,是的中点,.是线段的中垂线,故.(3)能.令,求得抛物线与轴交点坐标为,.①当轴时,由于,,故点的坐标为或时,是以为直角顶点的等腰直角三角形.②当不垂直轴时,分别过,作轴的垂线,垂足分别为,,则不与重合,从而不与重合,即.,,.,,与不全等.,另一侧同理.综合①,②所有满足题设的点的坐标为或.。
2015年广东省初中毕业生学业考试数学一、选择题 1.21 1 A.2B. 2C.D.-22【答案】A.【解析】由绝对值的意义可得,答案为 A 。
2.据国家统计局网站 2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573000用科学记数法表示为A. 1.3573 106B.1.3573 107C. 1.3573 108D.1.3573 109【答案】B.【解析】科学记数法的表示形式为 aX10n 的形式,其中1W |齐10, n 为整数•确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13 573 000=1.3573 107 ; 3.一组数据2, 6, 5, 2, 4,则这组数据的中位数是 A.2B.4C.5D.6【答案】B.【解析】由小到大排列,得:2, 2, 4, 5, 6,所以,中位数为 4,选B 。
4.如图,直线 a // b ,/仁75 °,/ 2=35°,则/ 3的度数是 A.75 ° B.55 ° C.40 °D.35 ° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻 的两个内角之和,所以,75°=/ 2+Z 3,所以,/ 3 = 40°,选 G 5.下列所述图形中,既是中心对称图形,又是轴对称图形的是 A.矩形 B.平行四边形 C.正五边形【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.( 4x)2【答案】D.【解析】原式=(-4)2x 2 = 16x 2 7.在0, 2, ( 3)0 , 5这四个数中,最大的数是D.正三角形A. 8x 22 2 2B.8xC. 16xD.16xA.0B.2C. ( 3)0D. 5【答案】B.【解析】(—3) 0= 1,所以,最大的数为2,选B。
2015年广东省中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)1. (2015年广东3分)2-=【 】A.2B.2-C.12D.12- 【答案】A. 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣错误!未找到引用源。
到原点的距离是2错误!未找到引用源。
,所以,22-=.故选A.2. (2015年广东3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为【 】A. 61.357310⨯B. 71.357310⨯C. 81.357310⨯D. 91.357310⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵13 573 000一共8位,∴713573000 1.357310=⨯. 故选B.3. (2015年广东3分)一组数据2,6,5,2,4,则这组数据的中位数是【 】A.2B. 4C. 5D. 6 【答案】B. 【考点】中位数.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).因此,∵将这组数据重新排序为2,2,4,5,6,∴中位数是按从小到大排列后第3个数为:4.故选B.4(2015年广东3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是【 】A. 75°B. 55°C. 40°D. 35° 【答案】C.【考点】平行线的性质;三角形外角性质.【分析】如答图,∵a ∥b ,∴∠1=∠4.∵∠1=75°,∴∠4=75°.根据“三角形的一个外角等于与它不相邻的两个内角之和”得∠4=∠2+∠3,∵∠2=35°,∴∠3=40°. 故选C.5. (2015年广东3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是【 】A. 矩形B. 平行四边形C. 正五边形D. 正三角形 【答案】A.【考点】轴对称图形和中心对称图形.【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 因此,既是轴对称图形,又是中心对称图形的是矩形. 故选A.6. (2015年广东3分)2(4)x -=【 】A. 28x -B. 28xC. 216x -D. 216x 【答案】D.【考点】幂的乘方和积的乘方.【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积”的积的乘方法则得()()22224416-=-=x x x .故选D.7. (2015年广东3分)在0,2,0(3)-,5-这四个数中,最大的数是【 】A. 0B. 2C. 0(3)-D. 5- 【答案】B.【考点】零指数幂;有理数的大小比较. 【分析】∵()031-=,∴根据有理数“正数大于0,0大于负数,两个负数相比,绝对值大的反而小”的大小比较法则,得()053-<0<-<2.∴最大的数是2. 故选B.8. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】A. 2a ≥B. 2a ≤C. 2a >D. 2a < 【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a .故选C.9. (2015年广东3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为【 】A.6B.7C. 8D. 9 【答案】D.【考点】正方形的性质;扇形的计算.【分析】∵扇形DAB 的弧长»DB 等于正方形两边长的和6+=BC CD ,扇形DAB 的半径为正方形的边长3,∴16392=⋅⋅=扇形DAB S . 或由变形前后面积不变得:339==⨯=正方形扇形ABCD DAB S S . 故选D.10. (2015年广东3分)如图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B. C. D.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象. 【分析】根据题意,有AE =BF =CG ,且正三角形ABC 的边长为2,∴2===-BE CF AG x . ∴△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,2==-,AE x AG x ,∴()13224=⋅⋅⋅=-V AEG S AE AG sinA x x . ∴()2333333323442=-=-⋅-=-+V V ABC AEG y S S x x x x . ∴其图象为开口向上的二次函数. 故选D.二、填空题(本大题6小题,每小题4分,共24分)11. (2015年广东4分)正五边形的外角和等于 ▲ (度). 【答案】360.【考点】多边形外角性质.【分析】根据“n 边形的外角和都等于360度”的性质,正五边形的外角和等于360度.12. (2015年广东4分)如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 ▲ .【答案】6.【考点】菱形的性质;等边三角形的判定和性质. 【分析】∵四边形ABCD 是菱形,∴AB =B C =6.∵∠ABC =60°,∴△ABC 为等边三角形,∴AC =AB =B C =6.13. (2015年广东4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x ,解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .14. (2015年广东4分)若两个相似三角形的周长比为2:3,则它们的面积比是 ▲ . 【答案】4:9.【考点】相似三角形的性质.【分析】∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比2:3.又∵相似三角形的面积比等于相似比的平方,∴这两个相似三角形的它们的面积比是4:9.15. (2015年广东4分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 ▲ . 【答案】1221. 【考点】探索规律题(数字的变化类).【分析】观察得该组数的排列规律为:分母为奇数,分子为自然数,第n 个数为21+nn ,所以,第10个数是1012210121=⨯+.16. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ▲ .【答案】4.【考点】等底同高三角形面积的性质;转换思想和数形结合思想的应用.【分析】如答图,各三角形面积分别记为①②③④⑤⑥,∵△ABC 三边的中线AD ,BE ,CF 的公共点G ,∴AG =2GD . ∴①=②,③=⑥,④=⑤,①+②=2③,④+⑤=2⑥. ∵12=△ABC S ,∴12=①+②+③+④+⑤+⑥. ∴1222=①+②④+⑤①+②++④+⑤+, ∴()12312422=⇒+=⇒+=2②2⑤2②++2⑤+②⑤②⑤,即图中阴影部分面积是4. 三、解答题(一)(本大题3小题,每小题6分,共18分)17. (2015年广东6分)解方程:2320x x -+=. 【答案】解:(1)(2)0--=x x ,∴10-=x 或20-=x . ∴11=x ,22=x .【考点】因式分解法解一元二次方程.【分析】因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想). 18. (2015年广东6分)先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【答案】解:原式=11(1)(1)1-⋅=+-+x x x x x x .当21=+x 时,原式=1112122112===+-+x . 【考点】分式的化简;二次根式化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x 的值,进行二次根式化简. 19. (2015年广东6分)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【答案】解:(1)作图如答图所示,AD 为所作.(2)在Rt △ABD 中,AD =4,tan ∠BAD =34=BD AD , ∴344=BD ,解得BD =3. ∵BC =5,∴DC =AD ﹣BD =5﹣3=2.【考点】尺规作图(基本作图);解直角三角形的应用;锐角三角函数定义. 【分析】(1)①以点A 为圆心画弧交BC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 长为半径画弧,两交于点G ; ③连接AG ,即为BC 边的垂线MN ,交BC 于点D .(2)在Rt △ABD 中,根据正切函数定义求出BD 的长,从而由BC 的长,根据等量减等量差相等求出DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. (2015年广东7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】解:(1)补全树状图如答图:(2)∵由(1)树状图可知,小明同学两次抽到卡片上的数字之积的情况有9种:1,2,3,2,4,6,3,6,9,数字之积是奇数的情况有4种:1,3,3,9,∵小明同学两次抽到卡片上的数字之积是奇数的概率是4 9 .【考点】画树状图法;概率.【分析】(1)根据题意补全树状图.(2)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21.(2015年广东7分)如题图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【答案】解:(1)∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB .由折叠的性质可知,AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF . ∴∠AFG =∠B .又∵AG =AG ,∴△ABG ≌△AFG (HL ). (2)∵△ABG ≌△AFG ,∴BG =FG .设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3+x ,在∆Rt CEG 中,由勾股定理,得2223(6)(3)+-=+x x ,解得2=x , ∴BG =2.【考点】折叠问题;正方形的性质;折叠对称的性质;全等三角形的判定和性质;勾股定理;方程思想的应用.【分析】(1)根据正方形和折叠对称的性质,应用HL 即可证明△ABG ≌△AFG (HL ).(2)根据全等三角形的性质,得到BG =FG ,设BG =FG =x ,将GC 和EG 用x 的代数式表示,从而在∆Rt CEG 中应用勾股定理列方程求解即可.22. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A型号的计算a台,得3040(70)2500+-≥a a,解得30≥a.答:最少需要购进A型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A,B型号的计算器的销售价格分别是x元,y元,等量关系为:“销售5 台A型号和1台B型号计算器的利润76元”和“销售6台A型号和3台B型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A型号的计算a台,不等量关系为:“购进A,B两种型号计算器共70台的资金不多于2500元”.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(2015年广东9分)如图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.【答案】解:(1)∵A(1,3),∴OB=1,AB=3.又∵AB=3BD,∴BD=1. ∴D(1,1).∵反比例函数=kyx (0≠k,0>x)的图象经过点D,∴111=⨯=k.(2)由(1)知反比例函数的解析式为1=yx,解方程组31=⎧⎪⎨=⎪⎩y xyx,得333⎧=⎪⎨⎪=⎩xy或333⎧=-⎪⎨⎪=-⎩xy(舍去),∴点C 的坐标为(33,3). (3)如答图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为=+y kx b ,则3331⎧+=⎪⎨⎪-+=⎩k b k b ,解得233232⎧=-⎪⎨=-⎪⎩k b , ∴直线CE 的解析式为(233)232=-+-y x .当x =0时,y =232-,∴点M 的坐标为(0,232-).【考点】反比例函数和一次函数综合问题;曲线上点的坐标与方程的关系;待定系数法的应用;轴对称的应用(最短距离问题);方程思想的应用.【分析】(1)求出点D 的坐标,即可根据点在曲线上点的坐标满足方程的关系,求出k 的值.(2)由于点C 是反比例函数1=y x的图象和直线3=y x 的交点,二者联立即可求得点C 的坐标. (3)根据轴对称的应用,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.24. (2015年广东9分)⊙O 是△ABC 的外接圆,AB 是直径,过»BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1)如题图1;若D 是线段OP 的中点,求∠BAC 的度数;(2)如题图2,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3)如题图3,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥AB.【答案】解:(1)∵AB 为⊙O 直径,点P 是»BC的中点,∴PG ⊥BC ,即∠ODB =90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.25.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN 的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°.∴sin15°=FC NC.又∵NC=x,sin15°=624-,∴624-=FC x.∴NE=DF=62224-+x.∴点N到AD的距离为62224-+x cm.(3)∵NC=x,sin75°=FNNC,且sin75°=624+∴624+=FN x,∵PD=CP=2,∴PF=6224-+x.∴16262116262(26)(22)(26)2(2)()2442244 +--+=+-+--⨯-+y x x x x x x〃即22673222384---=++y x x . ∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---. 【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.。
2015年广东省初中毕业生学业考试数学参考答案一、选择题: 题号 12345678910答案A B B C A D B C D D二、填空题: 题号 11 12 13 14 1516 答案3606X =24∶92110 4三、解答题(一) 17. 解:(x-1)(x-2)=0 ∴x-1=0或x-2=0 ∴ 1x 1=,22=x 18. 解:原式=()()⎪⎪⎭⎫ ⎝⎛-+--÷-+111111x x x x x x =()()111-÷-+x xx x x =()()x x x x x 111-∙-+ =11+x当12-=x 时,原式=221121=+- 19. 解:(1)如图所示,MN 为所作:(2)在Rt △ABD 中, tan ∠BAD =43=AD BD ∴434=BD 解得BD=3 ABCM DN∴ DC=BC-BD=2 四、解答题(二)20. 解:(1)如图,补全树状图:(2)从图可知,所有可能的 结果有9种,其中两次抽到卡片上的数字之积 是奇数的结果有4种, ∴ P(积为奇数)=9421. 证明:(1)∵四边形ABCD 是正方形 ∴∠B=∠D=90°,AB=AD 由轴对称的性质可知, ∠AFE=∠D=90°,AF=AD ∴∠AFG=∠B=90°,AF=AB 又AG=AG∴△ABG ≌△AFG (HL ) 解:(2)∵△ABG ≌△AFG ∴ BG=FG设BG=FG=x ,则CG=6-x 由勾股定理,得 ∵ E 是CD 的中点 ()()222363+=-+x x∴ EF=CE=DE=3; 解得 x=2 ∴ GE=3+x ∴ BG=222.解:(1)设A 、B 两种型号计算器的销售价格分别是x 元和y 元。
开 始第一次第二次 12 3 2 2 2 3 3 311 1 AB CDEFG根据题意,得()()()()1204033067640305=-+-=-+-y x y x解得 x=42, y=56答:A 、B 两种型号计算器的销售价格分别是42元、56元。
2015年广东省初中毕业生学业考试数 学一、选择题 1. 2-=A.2B.2-C.12D.12-【答案】A.2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 【答案】B.3. 一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6 【答案】B.4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35° 【答案】C.5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形【答案】A. 6. 2(4)x -= A.28x -B.28xC.216x -D.216x【答案】D.7. 在0,2,0(3)-,5-这四个数中,最大的数是A.0B.2C.0(3)-D.5-【答案】B.8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是 A.2a ≥ B.2a ≤ C.2a > D.2a < 【答案】C.9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D.【略析】显然弧长为6,半径为3,则16392S =⨯⨯=扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D. 二、填空题11. 正五边形的外角和等于 (度). 【答案】360.12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 .【答案】6.13. 分式方程321x x=+的解是 .【答案】2x =.14. 若两个相似三角形的周长比为2:3,则它们的面积比是 . 【答案】4:9.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.【答案】1021. 16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.【答案】4. 【略析】由中线性质,可得AG =2GD ,则11212111222232326B G FCGE AB GA B D A B CS S SS S ===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.三、解答题(一)17. 解方程:2320x x -+=. 【答案】解:(1)(2)0x x --=∴10x -=或20x -= ∴11x =,22x =18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【答案】解:原式=1(1)(1)x x x x x -⋅+-=11x + 当21x =+时,原式=122211=-+.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【答案】(1) 如图所示,MN 为所作;(2) 在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =AD ﹣BD =5﹣3=2.四、解答题(二)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 如题21图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延 长交BC 于点G ,连接AG .(1) 求证:△ABG ≌△AFG ; (2) 求BG 的长.【答案】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB , 由折叠的性质可知AD =AF ,∠AFE =∠D =90°, ∴∠AFG =90°,AB =AF , ∴∠AFG =∠B , 又AG =AG ,∴△ABG ≌△AFG ; (2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6x -, ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润 120元.(1) 求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2) 商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的 计算器多少台?【答案】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元; (2) 设最少需要购进A 型号的计算a 台,得3040(70)2500a a +-≥解得30x ≥答:最少需要购进A 型号的计算器30台.五、解答题(三)23. 如题23图,反比例函数ky x =(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D.(1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.【答案】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD , ∴BD =1, ∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y xy x =⎧⎪⎨=⎪⎩,得333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩(舍去), ∴点C 的坐标为(33,3); (3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则3331k b k b ⎧+=⎪⎨⎪-+=⎩,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-, 当x =0时,y =232-, ∴点M 的坐标为(0,232-).24. ⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.【答案】(1) ∵AB为⊙O直径,BP PC=,∴PG⊥BC,即∠ODB=90°,∵D为OP的中点,∴OD=1122OP OB=,∴cos∠BOD=12 ODOB=,∴∠BOD=60°,∵AB为⊙O直径,∴∠ACB=90°,∴∠ACB=∠ODB,∴AC∥PG,∴∠BAC=∠BOD=60°;(2) 由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK,∴CK=BP,∠OPB=∠CKD,∵∠AOG=∠BOP,∴AG=BP,∴AG=CK∵OP=OB,∴∠OPB=∠OBP,又∠G=∠OBP,∴AG∥CK,∴四边形AGCK是平行四边形;(3) ∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB∵∠G=∠OPB,∴PB∥AG,∴DH∥AG,∴∠OAG=∠OHD,∵OA=OG,∴∠OAG=∠G,∴∠ODH=∠OHD,∴OD=OH,又∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP,∴∠OHP=∠ODB=90°,∴PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】(1) 26;22;(2) 如图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°,∴sin15°=FCNC,又NC=x,∴624FC x-=,∴NE=DF=62224x-+.∴点N到AD的距离为62224x-+cm;(3) ∵sin75°=FNNC,∴624FN x+=,∵PD=CP=2,∴PF=6224x-+,∴162621162(26)(22)(26)2(2)244224y x x x x x +--=+-+--⨯-+·62()4x + 即22673222384y x x ---=++, 当732242628x --=--⨯=732262---时,y 有最大值为6673102304246+---.。
2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.(3分)|﹣2|=()A.2 B.﹣2 C .D .考点:难易度:绝对值M113 容易题.分析:根据一个负数的绝对值是其相反数得|﹣2|=2.故答案为A.解答:A.点评:此题考查了去绝对值符号,要求学生掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109考点:难易度:科学记数法M11C 容易题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以13 573 000用科学记数法表示为:1.3573×107故答案为B解答:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的取值范围以及n的大小与正负.3.(3分)一组数据2,6,5,2,4,则这组数据的中位数是()A.2 B.4 C.5 D.6考点:中位数、众数M214难易度:容易题.分析:根据中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数先把数据由小到大排列为:2,2,4,5,6,共有奇数个数所以这组数据的中位数是4.故答案为B解答:B.点评:本题为基本计算题,要求学生掌握中位数的求法,第一步先将数据排序,第1页(共19页)第2页(共19页)第二步判断数据个数的奇偶性,第三步,计算(偶数取中间两位的平均值,奇数直接去中间一位即可),特别注意要排序防止计算失误。
2015年广东省中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)1.(2015年广东3分)2-=【】A.2B.2-C.12D.12-【答案】A.【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣错误!未找到引用源。
到原点的距离是2错误!未找到引用源。
,所以,22-=.故选A.2.(2015年广东3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为【】A.61.357310⨯ B.71.357310⨯ C.81.357310⨯ D.91.357310⨯【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵13 573 000一共8位,∴713573000 1.357310=⨯.故选B.3.(2015年广东3分)一组数据2,6,5,2,4,则这组数据的中位数是【】A.2B. 4C. 5D. 6【答案】B.【考点】中位数.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).因此,∵将这组数据重新排序为2,2,4,5,6,∴中位数是按从小到大排列后第3个数为:4. 故选B.4(2015年广东3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是【 】A. 75°B. 55°C. 40°D. 35° 【答案】C.【考点】平行线的性质;三角形外角性质.【分析】如答图,∵a ∥b ,∴∠1=∠4.∵∠1=75°,∴∠4=75°.根据“三角形的一个外角等于与它不相邻的两个内角之和”得∠4=∠2+∠3,∵∠2=35°,∴∠3=40°. 故选C.5. (2015年广东3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是【 】A. 矩形B. 平行四边形C. 正五边形D. 正三角形 【答案】A.【考点】轴对称图形和中心对称图形.【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 因此,既是轴对称图形,又是中心对称图形的是矩形. 故选A.6. (2015年广东3分)2(4)x -=【 】A. 28x -B. 28xC. 216x -D. 216x 【答案】D.【考点】幂的乘方和积的乘方.【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积” 的积的乘方法则得()()22224416-=-=x x x .故选D.7. (2015年广东3分)在0,2,0(3)-,5-这四个数中,最大的数是【 】A. 0B. 2C. 0(3)-D. 5- 【答案】B.【考点】零指数幂;有理数的大小比较. 【分析】∵()031-=,∴根据有理数“正数大于0,0大于负数,两个负数相比,绝对值大的反而小”的大小比较法则,得()053-<0<-<2.∴最大的数是2. 故选B.8. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】A. 2a ≥B. 2a ≤C. 2a >D. 2a < 【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a .故选C.9. (2015年广东3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为【 】A.6B.7C. 8D. 9 【答案】D.【考点】正方形的性质;扇形的计算.【分析】∵扇形DAB 的弧长»DB等于正方形两边长的和6+=BC CD ,扇形DAB 的半径为正方形的边长3,∴16392=⋅⋅=扇形DAB S . 或由变形前后面积不变得:339==⨯=正方形扇形ABCD DAB S S . 故选D.10. (2015年广东3分)如图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B. C. D.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象. 【分析】根据题意,有AE =BF =CG ,且正三角形ABC 的边长为2,∴2===-BE CF AG x . ∴△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,2==-,AE x AG x ,∴()13224=⋅⋅⋅=-V AEG S AE AG sinA x x . ∴()2333333323442=-=-⋅-=-+V V ABC AEG y S S x x x x . ∴其图象为开口向上的二次函数. 故选D.二、填空题(本大题6小题,每小题4分,共24分)11. (2015年广东4分)正五边形的外角和等于 ▲ (度). 【答案】360.【考点】多边形外角性质.【分析】根据“n 边形的外角和都等于360度”的性质,正五边形的外角和等于360度.12. (2015年广东4分)如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 ▲ .【答案】6.【考点】菱形的性质;等边三角形的判定和性质. 【分析】∵四边形ABCD 是菱形,∴AB =B C =6.∵∠ABC =60°,∴△ABC 为等边三角形,∴AC =AB =B C =6.13. (2015年广东4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x ,解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .14. (2015年广东4分)若两个相似三角形的周长比为2:3,则它们的面积比是 ▲ . 【答案】4:9.【考点】相似三角形的性质.【分析】∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比2:3.又∵相似三角形的面积比等于相似比的平方,∴这两个相似三角形的它们的面积比是4:9.15. (2015年广东4分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 ▲ .【答案】1221. 【考点】探索规律题(数字的变化类).【分析】观察得该组数的排列规律为:分母为奇数,分子为自然数,第n 个数为21+nn ,所以,第10个数是1012210121=⨯+.16. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ▲ .【答案】4.【考点】等底同高三角形面积的性质;转换思想和数形结合思想的应用.【分析】如答图,各三角形面积分别记为①②③④⑤⑥,∵△ABC 三边的中线AD ,BE ,CF 的公共点G ,∴AG =2GD . ∴①=②,③=⑥,④=⑤,①+②=2③,④+⑤=2⑥. ∵12=△ABC S ,∴12=①+②+③+④+⑤+⑥. ∴1222=①+②④+⑤①+②++④+⑤+, ∴()12312422=⇒+=⇒+=2②2⑤2②++2⑤+②⑤②⑤,即图中阴影部分面积是4. 三、解答题(一)(本大题3小题,每小题6分,共18分)17. (2015年广东6分)解方程:2320x x -+=. 【答案】解:(1)(2)0--=x x ,∴10-=x 或20-=x . ∴11=x ,22=x .【考点】因式分解法解一元二次方程.【分析】因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想). 18. (2015年广东6分)先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【答案】解:原式=11(1)(1)1-⋅=+-+x x x x x x . 当21=+x 时,原式=1112122112===+-+x . 【考点】分式的化简;二次根式化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x 的值,进行二次根式化简. 19. (2015年广东6分)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【答案】解:(1)作图如答图所示,AD 为所作.(2)在Rt △ABD 中,AD =4,tan ∠BAD =34=BD AD , ∴344=BD ,解得BD =3. ∵BC =5,∴DC =AD ﹣BD =5﹣3=2.【考点】尺规作图(基本作图);解直角三角形的应用;锐角三角函数定义. 【分析】(1)①以点A为圆心画弧交BC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两交于点G;③连接AG,即为BC边的垂线MN,交BC于点D.(2)在Rt△ABD中,根据正切函数定义求出BD的长,从而由BC的长,根据等量减等量差相等求出DC的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(2015年广东7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】解:(1)补全树状图如答图:(2)∵由(1)树状图可知,小明同学两次抽到卡片上的数字之积的情况有9种:1,2,3,2,4,6,3,6,9,数字之积是奇数的情况有4种:1,3,3,9,∵小明同学两次抽到卡片上的数字之积是奇数的概率是4 9 .【考点】画树状图法;概率.【分析】(1)根据题意补全树状图.(2)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21. (2015年广东7分)如题图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延长交BC 于点G ,连接AG . (1)求证:△ABG ≌△AFG ; (2)求BG 的长.【答案】解:(1)∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB .由折叠的性质可知,AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF . ∴∠AFG =∠B .又∵AG =AG ,∴△ABG ≌△AFG (HL ). (2)∵△ABG ≌△AFG ,∴BG =FG .设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3+x ,在∆Rt CEG 中,由勾股定理,得2223(6)(3)+-=+x x ,解得2=x , ∴BG =2.【考点】折叠问题;正方形的性质;折叠对称的性质;全等三角形的判定和性质;勾股定理;方程思想的应用.【分析】(1)根据正方形和折叠对称的性质,应用HL 即可证明△ABG ≌△AFG (HL ).(2)根据全等三角形的性质,得到BG =FG ,设BG =FG =x ,将GC 和EG 用x 的代数式表示,从而在∆Rt CEG 中应用勾股定理列方程求解即可.22. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元. (2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.五、解答题(三)(本大题3小题,每小题9分,共27分)23. (2015年广东9分)如图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标.【答案】解:(1)∵A (1,3),∴OB =1,AB =3.又∵AB =3BD ,∴BD =1. ∴D (1,1). ∵反比例函数=k y x(0≠k ,0>x )的图象经过点D ,∴111=⨯=k . (2)由(1)知反比例函数的解析式为1=y x , 解方程组31=⎧⎪⎨=⎪⎩y x y x ,得333⎧=⎪⎨⎪=⎩x y 或333⎧=-⎪⎨⎪=-⎩x y (舍去), ∴点C 的坐标为(33,3). (3)如答图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为=+y kx b ,则3331⎧+=⎪⎨⎪-+=⎩k b k b ,解得233232⎧=-⎪⎨=-⎪⎩k b , ∴直线CE 的解析式为(233)232=-+-y x .当x =0时,y =232-,∴点M 的坐标为(0,232-).【考点】反比例函数和一次函数综合问题;曲线上点的坐标与方程的关系;待定系数法的应用;轴对称的应用(最短距离问题);方程思想的应用.【分析】(1)求出点D 的坐标,即可根据点在曲线上点的坐标满足方程的关系,求出k 的值.(2)由于点C 是反比例函数1=y x的图象和直线3=y x 的交点,二者联立即可求得点C 的坐标. (3)根据轴对称的应用,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.24.(2015年广东9分)⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC 于点D,连接AG,CP,P B.(1)如题图1;若D是线段OP的中点,求∠BAC的度数;(2)如题图2,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如题图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.【答案】解:(1)∵AB为⊙O直径,点P是»BC的中点,∴PG⊥BC,即∠ODB=90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.25.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B 的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°.∴sin15°=FC NC.又∵NC=x,sin15°=624-,∴624-=FC x.∴NE =DF =62224-+x . ∴点N 到AD的距离为62224-+x cm .(3)∵NC =x ,sin 75°=FN NC,且sin 75°=624+∴624+=FN x , ∵PD =CP =2,∴PF =6224-+x . ∴16262116262(26)(22)(26)2(2)()2442244+--+=+-+--⨯-+y x x x x x x · 即22673222384---=++y x x . ∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---. 【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.。
2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.(3分)(2015•广东)|2|(-= )A .2B .2-C .12D .12- 2.(3分)(2015•广东)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A .61.357310⨯B .71.357310⨯C .81.357310⨯D .91.357310⨯3.(3分)(2015•广东)一组数据2,6,5,2,4,则这组数据的中位数是()A .2B .4C .5D .64.(3分)(2015•广东)如图,直线//a b ,175∠=︒,235∠=︒,则3∠的度数是( )A .75︒B .55︒C .40︒D .35︒5.(3分)(2015•广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A .矩形B .平行四边形C .正五边形D .正三角形6.(3分)(2015•广东)2(4)(x -= )A .28x -B .28xC .216x -D .216x7.(3分)(2015•广东)在0,2,0(3)-,5-这四个数中,最大的数是( )A .0B .2C .0(3)-D .5-8.(3分)(2015•广东)若关于x 的方程2904x x a +-+=有两个不相等的实数根, 则实数a 的取值范围是( )A .2aB .2aC .2a >D .2a <9.(3分)(2015•广东)如图, 某数学兴趣小组将边长为 3 的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽 略铁丝的粗细) ,则所得扇形DAB 的面积为( )A . 6B . 7C . 8D . 910.(3分)(2015•广东)如图,已知正ABC ∆的边长为2,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE BF CG ==,设EFG ∆的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )A .B .C .D .二、填空题:本大题6小题,每小题4分,共24分。
2015年广东省珠海市中考数学试卷
一、选择题(本大题共5小题,每小题3分,共15分)
1.(3分)(2015•珠海)的倒数是()
A.B.C.2D.﹣2
2.(3分)(2015•珠海)计算﹣3a2×a3的结果为()
A.﹣3a5B.3a6C.﹣3a6D.3a5
3.(3分)(2015•珠海)一元二次方程x2+x+=0的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定根的情况
4.(3分)(2015•珠海)一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()
A.B.C.D.
5.(3分)(2015•珠海)如图,在⊙O中,直径CD垂直于弦AB,若⊙C=25°,则⊙BOD的度数是()
A.25°B.30°C.40°D.50°
二、填空题(本大题共5小题,每小题4分,共20分)
6.(4分)(2015•珠海)若分式有意义,则x应满足.
7.(4分)(2015•珠海)不等式组的解集是.
8.(4分)(2015•珠海)填空:x2+10x+=(x+)2.
9.(4分)(2015•珠海)用半径为12cm,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.
10.(4分)(2015•珠海)如图,在⊙A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接⊙A1B1C1三边中点,得⊙A2B2C2,再依次连接⊙A2B2C2的三边中点得⊙A3B3C3,…,则⊙A5B5C5的周长为.
三、解答题(一)(共5小题,每小题6分,共30分)
11.(6分)(2015•珠海)计算:﹣12﹣2+50+|﹣3|.
12.(6分)(2015•珠海)先化简,再求值:(﹣)÷,其中x=.
13.(6分)(2015•珠海)如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE=.
14.(6分)(2015•珠海)某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统
计图解答下列问题:
(1)求本次抽样人数有多少人?
(2)补全条形统计图;
(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?。