集合与函数概念知识点总结1
- 格式:doc
- 大小:65.50 KB
- 文档页数:6
高中数学知识点归纳一、集合与函数概念。
1. 集合。
- 集合的定义:一些元素组成的总体。
- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。
- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。
- 真子集:A⊆ B且A≠ B,则A⊂neqq B。
- 集合相等:A = B当且仅当A⊆ B且B⊆ A。
- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
2. 函数及其表示。
- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。
- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。
二、基本初等函数(Ⅰ)1. 指数函数。
- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。
- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。
高一数学知识点:集合与函数概念一、集合的概念集合是数学中最基本的概念之一。
它是由确定的对象所组成的整体,这些对象被称为集合的元素。
集合可以用不同的方法来表示和描述,最常用的表示方法是列举法和描述法。
1.1 列举法集合的列举法是通过列举集合中的元素来表示集合的方法。
例如,集合A可以通过列举其中的元素来表示:A = {1, 2, 3, 4, 5}。
这意味着集合A包含了元素1、2、3、4和5。
1.2 描述法集合的描述法是通过描述元素所满足的条件来表示集合的方法。
例如,集合B可以通过描述其中的元素来表示:B = {x | x 是正整数,且 x < 10}。
这意味着集合B包含了所有小于10的正整数。
二、集合的运算集合之间可以进行多种运算,常见的有交集、并集、补集和差集。
2.1 交集交集是指两个集合中都包含的元素组成的集合。
用符号∩表示。
例如,设A = {1, 2, 3},B = {2, 3, 4},则A∩B = {2, 3}。
2.2 并集并集是指两个集合中所有元素组成的集合。
用符号∪表示。
例如,设A = {1, 2, 3},B = {2, 3, 4},则A∪B = {1, 2, 3, 4}。
2.3 补集补集是指某个全集中减去一个集合的元素所得到的集合。
用符号’表示。
例如,设全集U = {1, 2, 3, 4, 5},集合A = {1, 2, 3},则A’ = {4, 5}。
2.4 差集差集是指一个集合减去另一个集合的元素所得到的集合。
用符号-表示。
例如,设集合A = {1, 2, 3},B = {2, 3, 4},则A-B = {1}。
三、函数的概念函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数通常用f(x)的形式表示,其中x是定义域中的元素,f(x)是对应的值域中的元素。
函数的定义包括定义域、值域和对应关系三个要素。
3.1 定义域定义域是指函数中所有可能的输入值构成的集合。
01第⼀章:集合与函数概念知识点总结第⼀章:集合与函数概念本章知识结构图:本章知识点梳理:1、集合①空集:不含有任何元素的集合,记作Φ(1)集合的分类⑤有限集:含有有限个元素的集合;⽆限集:含有⽆穷多个元素的集合(2)集合元素的特性②有:确定性、互异性、⽆序性。
(3)常⽤数集的专⽤符号⑥:⾃然数集:N ,正整数集:N +或N*,整数集:Z ,有理数集:Q ,实数集:R 。
(4)集合的表⽰⽅法④:①列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合的⽅法;②描述法:把集合中元素的公共属性描述出来,写在⼤括号内表⽰集合的⽅法。
2、⼦集、交集、并集、补集(1)⼦集⑧定义:设集合A 与B ,如果集合A 中的任何⼀个元素都是集合B 的元素,那么集合A 叫做集合B 的⼦集记作B A ?(或A B );如果A 是B 的⼦集,并且B 中⾄少有⼀个元素不属于A ,那么集合A 叫做集合B 的真⼦集,记作B A≠(或A B ≠)(2)交集○14定义:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 、B 的交集,记作B A (如右图),即A x xB A ∈=|{ 且}B x ∈(3)并集○13定义:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 、B 的并集,记作A B ,即A a B A ∈={ 或}B a ∈(4)补集○15定义:设I 是⼀个集合,A 是I 的⼀个⼦集,由I 中所有不属于A的元素组成的集合,叫做I 中⼦集A 的补集(或余集),记作A C I ,即I x x A C I ∈=|{,且}A x ?如右图所⽰。
3、(1)函数的概念○16①设A 、B 是两个⾮空的数集,如果按照某种对应法则f ,对于集合A 中任何⼀个数x ,在集合B 中都有唯⼀确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的⼀个函数,记作:f A B →.②函数的三要素○17:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同⼀函数.(2)区间的概念○19及表⽰法①设,a b 是两个实数,且a b <,满⾜a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满⾜a x b<<的实数x 的集合叫做开区间,记做(,)a b ;满⾜a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满⾜,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以⼤于或等于b ,⽽后者必须a b <.(3)函数的表⽰⽅法○20表⽰函数的⽅法,常⽤的有解析法、列表法、图象法三种.解析法:就是⽤数学表达式表⽰两个变量之间的对应关系.列表法:就是列出表格来表⽰两个变量之间的对应关系.图象法:就是⽤图象表⽰两个变量之间的对应关系.(4)映射的概念○23①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何⼀个元素,在集合B 中都有唯⼀的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定⼀个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 4、函数的基本性质(1)函数的单调性○25函数为增函数,减函数减去⼀个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)函数的最⼤(⼩)值定义○26①⼀般地,设函数()y f x =的定义域为I ,如果存在实数M 满⾜:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最⼤值,记作m ax ()f x M =.②⼀般地,设函数()y f x =的定义域为I ,如果存在实数m 满⾜:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最⼩值,记作m a x ()f x m=.(3)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,⼀个偶函数与⼀个奇函数的积(或商)是奇函数. 5、函数的图象的作法(1)利⽤描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.(2)利⽤基本函数图象的变换作图:要准确记忆⼀次函数、⼆次函数、反⽐例函数、指数函数、对数函数、幂函数、三⾓函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k><=→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=→=伸缩 01,1,()()A A y f x y Af x <<>=→=缩伸③对称变换()()x y f x y f x =→=-轴()()y y f x y f x =→=-轴()()y f x y f x =→=--原点 1()()y xy f x y f x -==→=直线()(||)y y y y f x y f x =→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =→=保留轴上⽅图象将轴下⽅图象翻折上去知识点1:集合与元素知识点2:集合中元素的三个特性知识点3:元素与集合的两种关系知识点4:集合的三种表⽰法知识点5:有限集和⽆限集知识点6:特定集合的表⽰知识点7:Venn 图与数轴法表⽰集合知识点8:⼦集知识点9:集合相等知识点10:真⼦集知识点11:空集知识点12:集合的⼦集的数⽬知识点13:并集知识点14:交集知识点15:补集知识点16:函数的概念知识点17:函数的两个要素知识点18:函数的值域及其求法知识点19:区间的概念知识点20:函数的三种表达⽅法知识点21:函数图象知识点22、分段函数知识点23:映射的定义知识点24:增函数与减函数的定义知识点25:单调性与单调区间知识点26:函数的最⼤(⼩)值知识点27:奇函数与偶函数的概念知识点28:利⽤定义判断函数奇偶性的⼀般步骤知识点29:奇偶函数的图象的性质知识点30:奇偶函数的单调性部分知识点详细解释:知识点1:集合与元素1、元素:⼀般地,我们把研究对象统称为元素(element ),元素常⽤⼩写字母 c b a ,,表⽰。
高中数学第一章知识点总结高中数学第一章知识点总结,主要包括集合与函数概念等内容。
集合有关概念、集合的表示方法、集合的元素特性等;函数概念、函数的性质、函数的表示、函数的应用等。
高中数学第一章知识点总结一、集合与函数概念1. 集合集合是指由某些对象共同组成的一个群体,可以用小写拉丁字母表示,如 A、B、C 等。
集合的元素称为集合的成员或元素,集合的符号表示为{ }。
2. 函数函数是指一种特殊的关系,表示出一个变量与其他变量之间的关系。
函数可以用等式或不等式表示,函数的定义域、值域、取值范围等也是函数的重要概念。
二、集合间的基本关系1. 包含关系集合 A 包含于集合 B,记作 AB,表示 A 中的元素都是 B 中的元素,且 B 中的元素不一定是 A 中的元素。
2. 相等关系两个集合 A 和 B 相等,记作 A=B,表示 A 中的所有元素都与 B 中的所有元素相等。
3. 包含于关系集合 B 包含于集合 A,记作 BA,表示 A 中的元素都是 B 中的元素,且 B 中的元素不一定是 A 中的元素。
三、集合的分类1. 有限集有限集是指含有有限个元素的集合,例如,{1,2,3}、{a,b,c}等。
2. 无限集无限集是指含有无限个元素的集合,例如,{1,2,3,4,...}、{a,b,c,...}等。
3. 空集空集是指不含任何元素的集合,例如,{ }等。
四、集合间的基本关系1. 子集如果集合 A 中有任意一个元素,都包含于集合 B 中,那么集合A 就是集合B 的子集。
例如,{1,2,3}是{a,b,c}的子集。
2. 真子集如果集合 A 是集合 B 的子集,并且集合 B 不是空集,那么集合 A 就是集合 B 的真子集。
例如,{1,2,3}是{a,b,c}的真子集。
五、函数的性质1. 函数的定义域函数的定义域是指函数的自变量可能取值的集合,例如,f(x)=x^2 的定义域为 R。
2. 函数的值域函数的值域是指函数的因变量可能取值的集合,例如,f(x)=x^2 的值域为 R。
数学集合与函数知识点总结一、集合的基本概念1.1 集合的定义集合是指具有确定的特征和个数、可以确定归属关系的一组事物的总和。
集合中的元素可以是数字、字母、符号、实际事物或抽象概念等。
1.2 集合的表示方法集合可以用两种方式表示:列举法和描述法。
列举法是将集合的元素逐个列举出来,用大括号{}括起来表示;描述法是用适当的条件来表示集合的元素(x满足某个条件),一般用符号{}或者条件表达式表示。
1.3 集合的元素关系集合中的元素之间可以存在包含关系、相等关系和互不相交关系。
1.4 集合的运算常见的集合运算有并集、交集、差集、补集、直积等。
1.5 集合的基本性质集合的基本性质包括空集的唯一性、互补律、结合律、分配律、对称律等。
二、集合的性质和应用2.1 集合的性质集合的性质包括有限集合和无限集合、有穷集合和无穷集合、空集合和非空集合等。
2.2 集合的应用集合在数学和其他学科中都有很多应用,如概率论、图论、数理逻辑、离散数学等。
三、函数的基本概念3.1 函数的定义函数是一个元素集合到另一个元素集合的映射关系。
通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
3.2 函数的图像函数的图像是函数的自变量和因变量的对应关系在平面直角坐标系中的表示,常用图形表示。
3.3 函数的特性函数具有单值性、有限性、相等性等特性,其中单值性是指每个自变量在函数中对应一个确定的因变量。
3.4 函数的表示方法函数可以用解析式、图象或者映射表示。
3.5 函数的分类函数可以按照定义域、值域、解析式的形式来分类,常见的函数有多项式函数、指数函数、对数函数、三角函数等。
四、函数的性质和应用4.1 函数的性质函数的性质包括奇偶性、周期性、单调性、最值等。
4.2 函数的应用函数在数学和其他学科中有很多应用,可以用来描述现实生活中的变化规律,如物理学中的运动规律、经济学中的需求函数、生物学中的生长规律等。
五、数学集合与函数的综合应用5.1 集合与函数的关系集合与函数是数学中基本的概念,它们之间有着密切的关系。
集合与函数概念知识点总结一、集合的基本概念集合是数学中的一个基本概念,它是由一些确定的元素构成的整体。
集合中的元素可以是任意对象,可以是数字、字母、符号、词语等。
集合的表示方式有两种:列举法和描述法。
集合的元素之间没有顺序关系,每个元素在集合中只能出现一次。
1.1 集合的符号表示集合用大写字母表示,例如A、B、C等。
如果一个元素x属于集合A,则用x∈A 表示;如果一个元素y不属于集合A,则用y∉A表示。
1.2 集合的列举法集合的列举法是将集合的所有元素一一列举出来。
例如,集合A={1, 2, 3, 4}表示A是由元素1、2、3、4组成的集合。
1.3 集合的描述法集合的描述法是通过描述集合元素的共同特征来表示集合。
例如,集合A={x|x是正整数,x<5}表示A是由小于5的正整数组成的集合。
二、集合的运算集合之间可以进行多种运算,包括并集、交集、差集和补集。
2.1 并集两个集合A和B的并集,表示为A∪B,包含了A和B中的所有元素,且每个元素只出现一次。
2.2 交集两个集合A和B的交集,表示为A∩B,包含了同时属于A和B的所有元素。
2.3 差集两个集合A和B的差集,表示为A-B,包含了属于A但不属于B的所有元素。
2.4 补集对于给定的全集U,集合A相对于U的补集,表示为A’,包含了属于U但不属于A的所有元素。
三、函数的基本概念函数是数学中的一个重要概念,它描述了一个集合中的元素和另一个集合中的元素之间的对应关系。
函数可以看作是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
3.1 函数的符号表示函数用小写字母表示,例如f、g、h等。
如果集合A中的元素x经过函数f的映射得到了集合B中的元素y,则用f(x)=y表示。
3.2 定义域和值域函数的定义域是指函数中所有可能的输入值的集合,也就是函数的自变量的取值范围。
函数的值域是指函数中所有可能的输出值的集合,也就是函数的因变量的取值范围。
高一数学必修一知识点归纳总结集合与函数概念- 集合:包括集合的基本概念、元素与集合的关系、集合的表示方法、子集、并集、交集、补集等。
- 函数:函数的概念、定义域、值域、函数的表示方法、单调性、奇偶性、复合函数、反函数等。
不等式与不等式解法- 不等式的基本性质:包括不等式的基本性质、不等式的传递性、不等式的可加性等。
- 不等式的解法:包括一元一次不等式的解法、一元二次不等式的解法、绝对值不等式的解法、分式不等式的解法等。
函数的性质- 函数的单调性:包括函数单调性的定义、单调区间的确定、复合函数的单调性等。
- 函数的奇偶性:包括奇函数和偶函数的定义、性质、图像特征等。
- 函数的周期性:包括周期函数的定义、周期的计算、三角函数的周期性等。
三角函数- 三角函数的定义:包括正弦、余弦、正切等基本三角函数的定义。
- 三角函数的基本性质:包括三角函数的周期性、奇偶性、单调性等。
- 三角恒等式:包括和差化积、积化和差、倍角公式、半角公式等。
指数与对数- 指数函数:包括指数函数的定义、性质、图像、运算法则等。
- 对数函数:包括对数函数的定义、性质、图像、运算法则等。
- 指数与对数的运算:包括指数与对数的转换、对数运算法则等。
几何与坐标- 空间几何:包括空间直线、平面、空间向量等基本概念。
- 坐标系:包括直角坐标系、极坐标系、参数方程等。
解析几何- 直线与圆的方程:包括直线方程的一般式、斜截式、点斜式、圆的标准方程等。
- 椭圆、双曲线、抛物线:包括这些圆锥曲线的定义、标准方程、性质等。
函数的应用- 函数模型:包括函数在实际问题中的应用,如经济模型、物理模型等。
- 函数的最值问题:包括函数最值的求法、实际应用等。
这些知识点是高一数学必修一课程中的核心内容,掌握这些知识点对于后续数学学习至关重要。
在实际学习中,不仅要理解概念和性质,还要通过大量的练习来提高解题能力。
高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n −个真子集,有21n −个非空子集,它有22n −非空真子集.(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈ (1)AA A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅ 2()U AA U =逻辑语言1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
集合与函数概念知识点1. 集合的概念1.1 集合的定义集合是由一些明确的、互不相同的对象组成的整体,这些对象称为集合的元素。
1.2 集合的表示集合通常用大写字母表示,如 A, B, C 等。
集合中的元素用小写字母表示,如 a, b, c 等。
集合可以用大括号表示,例如 A = {a, b, c}。
2. 集合的分类2.1 有限集元素数量有限的集合称为有限集。
2.2 无限集元素数量无限的集合称为无限集。
2.3 空集不包含任何元素的集合称为空集,记作∅。
3. 集合间的关系3.1 子集如果集合 A 的所有元素都是集合 B 的元素,则 A 是 B 的子集,记作 A ⊆ B。
3.2 真子集如果集合 A 是集合 B 的子集,并且 A 和 B 不相等,则 A 是 B的真子集,记作 A ⊂ B。
3.3 并集集合 A 和集合 B 的所有元素组成的集合称为 A 和 B 的并集,记作A ∪ B。
3.4 交集集合 A 和集合 B 的公共元素组成的集合称为 A 和 B 的交集,记作A ∩ B。
3.5 差集集合 A 中不包含集合 B 元素的部分称为 A 和 B 的差集,记作 A - B。
4. 函数的概念4.1 函数的定义函数是一种特殊的关系,它将一个集合(定义域)中的每个元素映射到另一个集合(值域)中的唯一元素。
4.2 函数的表示函数通常用 f, g, h 等表示,元素 x 映射到元素 y 可以表示为y = f(x)。
5. 函数的分类5.1 一元函数定义域中只有一个变量的函数称为一元函数。
5.2 二元函数定义域中有两个变量的函数称为二元函数。
5.3 多元函数定义域中有多个变量的函数称为多元函数。
6. 函数的性质6.1 单射如果函数f: A → B 中,A 中的每个元素都有唯一的像,并且 B中的每个元素都是 A 中某个元素的像,则 f 是单射。
6.2 满射如果函数f: A → B 中,B 中的每个元素都是 A 中某个元素的像,则 f 是满射。
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个,
其中每一个对象叫。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元
素。
体现了集合中的元素的特性。
(2)任何一个给定的集合中,任何两个元素都是不同的
对象,相同的对象归入一个集合时,仅算一个元素。
体现了集合中的元素的特性。
(3)集合中的元素是平等的,没有先后顺序,因此判定
两个集合是否一样,仅需比较它们的元素是否一样,
不需考查排列顺序是否一样。
体现了集合中的元素
的特性。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队
员},B={1,2,3,4,5}
(7)实际问题中的函数的定义域还要保证实际问题有意义.
(又注意:求出不等式组的解集即为函数的定义域。
)
2.构成函数的三要素:定义域、对应关系和值域
再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所
以,如果两个函数的和完全
一致,即称这两个函数(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)
3.值域补充
(1)函数的值域取决于定义域和对应法则,不论采取什么方
法求函数的值域都应先考虑其定义域.
(2)应熟悉掌握一次函数、二次函数、指数、对数函
数及各三角函数的值域,它是求解复杂函数值域的
基础。
4. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)
中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,
叫做函数 y=f(x),(x ∈A)的图象.
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2) 画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对
应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:
1、直观的看出函数的性质;
2、利用数形结合的方法分析解题的思路。
提高解题的速度。
发现解题中的错误。
5.了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;
(3)区间的数轴表示.
6.什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B
中都有的元素y与之对应,那么就称对应f:A→B
为从集合A到集合B的一个。
说明:函数是一种特殊的映射,映射是一种特殊的对应,
①集合A、B及对应法则f是确定的;
②对应法则有“方向性”,即强调从集合A到集合B的对应,
它与从B到A的对应关系一般是不同的;
③对于映射f:A→B来说,则应满足:
(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;
(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;
(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
7.常用的函数表示法及各自的优点:
(1)图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;
函数图象既可以是连续的曲线,也可以是直线、折线、
离散的点等等,注意判断一个图形是否是函数图象的
依据;
(2 )解析法:必须注明函数的定义域;
(3)列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意:法:便于算出函数值。
法:便于查出函数值。
法:便于量出函数值
补充一:分段函数
在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,
不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数 如果y=f(u),(u ∈M),u=g(x),(x ∈A),则 y=f[g(x)]=F(x),(x ∈A) 称为f 、g 的复合函数。
例如: y=2sinX y=2cos(X2+1) 8.函数单调性 (1)增函数 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x1,x2,当x1<x2时,都有f(x1) f(x2),那么就说f(x)在区间D 上是增函数。
区间D 称为y=f(x)的单调增区间(清楚课本单调区间的概念) 如果对于区间D 上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1) f(x2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间. 注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2 必须是对于区间D 内的任意两个自变量x1,x2;当x1<x2时,总有 f(x1)<f(x2)或f(x1)>f(x2)。
(2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法:
1 任取x1,x2∈D ,且x1<x2;
2 作差f(x1)-f(x2);
3 变形(通常是因式分解和配方);
4 定号(即判断差f(x1)-f(x2)的正负);
5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降)_ 注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 9.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x ,都有 ,那么f(x)就叫做偶函数. (2)奇函数 一般地,对于函数f(x)的定义域内的任意一个x ,都有 ,那么f(x)就叫做奇函数. 注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,
也可能既是奇函数又是偶函数。
由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定
是定义域内的一个自变量(即定义域关于原点对称). (3)具有奇偶性的函数的图象的特征 偶函数的图象关于 对称;奇函数的图象关于 对称.
总结:利用定义判断函数奇偶性的格式步骤:
(1 )首先确定函数的定义域,并判断其定义域是否关于
对称;
(2 )确定与f(x)的关系;
(3 )作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是函数.
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对
称则函数是非奇非偶函数.若对称,(1)再根据定义判
定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根
据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出
f(x)
10.函数最大(小)值(1)利用二次函数的性质(配方法)求函数的最大(小)值
(2 )利用图象求函数的最大(小)值
(3 )利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间
[b,c]上单调递减则函数y=f(x)在x=b处有最大
值;
如果函数y=f(x)在区间[a,b]上单调递减,在区间
[b,c]上单调递增则函数y=f(x)在x=b处有最小值
f(b);。