第十一章多重多元回归分析
- 格式:ppt
- 大小:234.00 KB
- 文档页数:12
十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
多元回归分析法介绍和具体应用Y=β0+β1X1+β2X2+...+βpXp+ε其中,Y是依变量,X1,X2,...,Xp是自变量,β0,β1,β2,...,βp 是回归系数,ε是误差项。
1.收集数据:收集与研究对象相关的自变量和依变量数据。
2.建立模型:根据理论分析或经验,选择合适的自变量,并构建线性回归模型。
3.估计回归系数:利用最小二乘法等方法,估计模型中的回归系数。
4.检验回归模型的显著性:通过计算F统计量或t统计量,判断回归模型是否显著。
5.判断自变量的重要性:利用回归系数的显著性检验或变量的贡献度等指标,判断自变量对依变量的重要性。
6.检查模型的拟合度:通过分析残差、检验回归模型的假设条件等方法,检查模型的拟合度。
7.利用模型进行预测和推断:利用已建立的回归模型,进行依变量的预测和自变量的推断。
1.经济学:多元回归分析可用于研究宏观经济指标与影响因素之间的关系,如利率与货币供应量、GDP与投资、通胀率与产出等。
2.金融学:多元回归分析可用于分析影响股价、汇率、利率等金融变量的因素,帮助投资者制定合理的投资策略。
3.市场营销:多元回归分析可用于研究产品销售量与产品特征、价格、广告投入等之间的关系,为市场营销决策提供依据。
4.生物学:多元回归分析可用于研究生物学变量与环境因素之间的关系,如物种多样性与温度、植物生长与土壤养分等。
5.医学:多元回归分析可用于研究疾病发生与影响因素之间的关系,如心脏病与高血压、肥胖与糖尿病等。
6.社会科学:多元回归分析可用于研究社会科学变量与社会因素之间的关系,如教育水平与收入、犯罪率与失业率等。
总之,多元回归分析是一种重要的统计分析方法,可用于研究多个自变量对一个依变量的影响,并在各个领域中发挥重要作用,为决策提供科学依据。
在实际应用中,需要注意合理选择自变量、遵守回归模型的假设条件,并进行适当的模型检验和解释。
第11章多重线性回归分析思考与练习参考答案一、最佳选择题1.逐步回归分析中,若增加自变量的个数,则(D)。
A.回归平方和与残差平方和均增大B.回归平方和与残差平方和均减小C.总平方和与回归平方和均增大D.回归平方和增大,残差平方和减小E.总平方和与回归平方和均减小2.下面关于自变量筛选的统计学标准中错误的是(E)。
A.残差平方和(SS残差)缩小B.确定系数(R)增大2C.残差的均方(MS残差)缩小D.调整确定系数(Rad)增大2E.Cp统计量增大3.多重线性回归分析中,能直接反映自变量解释因变量变异百分比的指标为(C)。
A.复相关系数B.简单相关系数C.确定系数D.偏回归系数E.偏相关系数4.多重线性回归分析中的共线性是指(E)。
A.Y关于各个自变量的回归系数相同B.Y关于各个自变量的回归系数与截距都相同C.Y变量与各个自变量的相关系数相同D.Y与自变量间有较高的复相关E.自变量间有较高的相关性5.多重线性回归分析中,若对某一自变量的值加上一个不为零的常数K,则有(D)。
A.截距和该偏回归系数值均不变B.该偏回归系数值为原有偏回归系数值的K 倍C.该偏回归系数值会改变,但无规律D.截距改变,但所有偏回归系数值均不改变E.所有偏回归系数值均不会改变二、思考题1.多重线性回归分析的用途有哪些?答:多重线性回归在生物医学研究中有广泛的应用,归纳起来,可以包括以下几个方面:定量地建立一个反应变量与多个解释变量之间的线性关系,筛选危险因素,通过较易测量的变量估计不易测量的变量,通过解释变量预测反应变量,通过反应变量控制解释变量。
2.多重线性回归模型中偏回归系数的含义是什么?答:偏回归系数的含义是:在控制其他自变量的水平不变的情况下,该自变量每改变一个单位,反应变量平均改变的单位数。
3.请解释用于多重线性回归参数估计的最小二乘法的含义。
答:最小二乘法的含义是:残差的平方和达到最小。
4.如何判断和处理多重共线性?答:如果自变量之间存在较强的相关,则存在多重共线性。
一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
多元回归分析的基础知识多元回归分析是统计学中常用的一种分析方法,用于研究多个自变量对一个因变量的影响程度及相关性。
在实际应用中,多元回归分析可以帮助我们理解各个自变量对因变量的影响,进而进行预测和决策。
本文将介绍多元回归分析的基础知识,包括多元回归模型、回归系数的解释、模型的拟合度检验以及多重共线性等内容。
### 1. 多元回归模型多元回归模型是描述多个自变量与一个因变量之间关系的数学模型。
一般形式如下:$$Y = β_0 + β_1X_1 + β_2X_2 + ... + β_kX_k + ε$$其中,$Y$表示因变量,$X_1, X_2, ..., X_k$表示自变量,$β_0, β_1, β_2, ..., β_k$表示回归系数,$ε$表示误差。
回归系数$β_i$表示自变量$X_i$对因变量$Y$的影响程度,$β_0$表示截距项。
### 2. 回归系数的解释在多元回归分析中,回归系数$β_i$的符号表示自变量$X_i$与因变量$Y$之间的正负关系,而系数的大小则表示了两者之间的强弱关系。
当$β_i$为正时,表示$X_i$增加时$Y$也会增加;当$β_i$为负时,表示$X_i$增加时$Y$会减少。
此外,回归系数的显著性检验可以帮助我们判断自变量对因变量的影响是否显著。
一般来说,当$p$值小于显著性水平(通常取0.05)时,我们可以拒绝原假设,认为回归系数显著不为0,即自变量对因变量的影响是显著的。
### 3. 模型的拟合度检验在多元回归分析中,我们通常使用$R^2$来衡量模型的拟合度。
$R^2$取值范围在0到1之间,表示因变量$Y$的变异中被自变量$X_1, X_2, ..., X_k$解释的比例。
$R^2$越接近1,说明模型拟合度越好,自变量对因变量的解释能力越强。
除了$R^2$之外,我们还可以通过调整$R^2$、残差分析等指标来评估模型的拟合度。
调整$R^2$考虑了自变量个数对模型拟合度的影响,残差分析则可以帮助我们检验模型的假设是否成立。