【必备】最新2020年中考数学复习中考数学复习中考数学复习专题04 二次根式的运算(教师版)
- 格式:doc
- 大小:733.00 KB
- 文档页数:16
中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。
专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。
(或是说,表示非负数的算术平方根的式子,叫做二次根式)。
2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。
(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。
反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。
7.分母有理化的方法:分子分母同乘以分母的有理化因式。
8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。
如:①的有理化因式为,②的有理化因式为。
(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。
即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。
一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
备战2023年中考数学必刷真题考点分类专练(全国通用)专题04二次根式一.选择题(共15小题)1.(2022•苏州)下列运算正确的是()A.√(−7)2=−7B.6÷23=9C.2a+2b=2ab D.2a•3b=5ab【分析】直接利用二次根式的性质以及有理数的除法运算法则、合并同类项、单项式乘单项式,分别计算判断即可.【解析】A.√(−7)2=7,故此选项不合题意;B.6÷23=9,故此选项,符合题意;C.2a+2b,无法合并,故此选项不合题意;D.2a•3b=6ab,故此选项不合题意;故选:B.【点评】此题主要考查了二次根式的性质以及有理数的除法运算、合并同类项、单项式乘单项式,正确掌握相关运算法则是解题关键.2.(2022•云南)下列运算正确的是()A.√2+√3=√5B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a2【分析】根据二次根式的加减法判断A选项;根据零指数幂判断B选项;根据积的乘方判断C选项;根据同底数幂的除法判断D选项.【解析】A选项,√2和√3不是同类二次根式,不能合并,故该选项不符合题意;B选项,原式=1,故该选项不符合题意;C选项,原式=﹣8a3,故该选项符合题意;D选项,原式=a3,故该选项不符合题意;故选:C.【点评】本题考查了二次根式的加减法,零指数幂,幂的乘方与积的乘方,同底数幂的除法,掌握a0=1(a ≠0)是解题的关键.3.(2022•台州)无理数√6的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴2<√6<3.故选:B .【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.4.(2022•眉山)实数﹣2,0,√3,2中,为负数的是( )A .﹣2B .0C .√3D .2【分析】根据负数的定义,找出这四个数中的负数即可.【解析】∵﹣2<0∴负数是:﹣2,故选A .【点评】本题主要考查实的分类,区分正负,解题的关键是熟知实数的性质:负数小于零.5.(2022•株洲)在0、13、﹣1、√2这四个数中,最小的数是( ) A .0 B .13 C .﹣1 D .√2【分析】根据负数小于0,正数大于0比较实数的大小即可得出答案.【解析】∵﹣1<0<13<√2,∴最小的数是﹣1,故选:C .【点评】本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.6.(2022•江西)下列各数中,负数是( )A .﹣1B .0C .2D .√2 【分析】根据负数的定义即可得出答案.【解析】﹣1是负数,2,√2是正数,0既不是正数也不是负数,故选:A .【点评】本题考查了实数,掌握在正数前面添加“﹣”得到负数是解题的关键.7.(2022•金华)在﹣2,12,√3,2中,是无理数的是( ) A .﹣2 B .12 C .√3 D .2【分析】利用有理数,无理数的概念对每个选项进行判断即可得出结论.【解析】﹣2,12,2是有理数,√3是无理数, 故选:C .【点评】本题主要考查了有理数,无理数的意义,掌握上述概念并熟练应用是解题的关键.8.(2022•舟山)估计√6的值在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴√4<√6<√9,∴2<√6<3,故选:C .【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.9.(2022•安徽)下列为负数的是( )A .|﹣2|B .√3C .0D .﹣5【分析】根据实数的定义判断即可.【解析】A .|﹣2|=2,是正数,故本选项不合题意;B .√3是正数,故本选项不合题意;C .0既不是正数,也不是负数,故本选项不合题意;D .﹣5是负数,故本选项符合题意.故选:D .【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.10.(2022•凉山州)化简:√(−2)2=( )A .±2B .﹣2C .4D .2【分析】根据算术平方根的意义,即可解答.【解析】√(−2)2=√4=2,故选:D .【点评】本题考查了算术平方根,熟练掌握算术平方根的意义是解题的关键.11.(2022•泸州)−√4=()A.﹣2B.−12C.12D.2【分析】根据算术平方根的定义判断即可.【解析】−√4=−√22=−2.故选:A.【点评】本题考查了算术平方根,掌握算术平方根的定义是解答本题的关键.12.(2022•泸州)与2+√15最接近的整数是()A.4B.5C.6D.7【分析】估算无理数√15的大小,再确定√15更接近的整数,进而得出答案.【解析】∵3<√15<4,而15﹣9>16﹣15,∴√15更接近4,∴2+√15更接近6,故选:C.【点评】本题考查估算无理数的大小,理解算术平方根的定义以及数的大小关系是正确解答的前提.13.(2022•重庆)估计√3×(2√3+√5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【分析】先计算出原式得6+√15,再根据无理数的估算可得答案.【解析】原式=√3×2√3+√3×√5=6+√15,∵9<15<16,∴3<√15<4,∴9<6+√15<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.14.(2022•重庆)估计√54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【分析】用夹逼法估算无理数的大小即可得出答案.【解析】∵49<54<64,∴7<√54<8,∴3<√54−4<4,故选:D.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.15.(2022•天津)估计√29的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】估算确定出所求数的范围即可.【解析】∵25<29<36,∴5<√29<6,即5和6之间,故选:C.【点评】此题考查了估算无理数的大小,以及算术平方根,熟练掌握估算的方法是解本题的关键.二.填空题(共20小题)16.(2022•武汉)计算√(−2)2的结果是2.【分析】利用二次根式的性质计算即可.【解析】法一、√(−2)2=|﹣2|=2;法二、√(−2)2=√4=2.故答案为:2.【点评】本题考查了二次根式的性质,掌握“√a2=|a|”是解决本题的关键.17.(2022•常德)要使代数式有意义,则x的取值范围为x>4.√x−4【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解析】由题意得:x﹣4>0,解得:x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.18.(2022•天津)计算(√19+1)(√19−1)的结果等于18.【分析】根据平方差公式即可求出答案.【解析】原式=(√19)2﹣12=19﹣1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.19.(2022•新疆)若√x−3在实数范围内有意义,则实数x的取值范围为x≥3.【分析】根据二次根式的被开方数是非负数即可得出答案.【解析】∵x﹣3≥0,∴x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.20.(2022•杭州)计算:√4=2;(﹣2)2=4.【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解析】√4=2,(﹣2)2=4,故答案为:2,4.【点评】本题考查的是二次根式的化简、有理数的乘方,掌握二次根式的性质是解题的关键.21.(2022•泰安)计算:√8•√6−3√43=2√3.【分析】化简二次根式,然后先算乘法,再算减法.【解析】原式=√8×6−3×2√3 3=4√3−2√3=2√3,故答案为:2√3.【点评】本题考查二次根式的混合运算,理解二次根式的性质,准确化简二次根式是解题关键.22.(2022•云南)若√x+1有意义,则实数x的取值范围为x≥﹣1.【分析】根据二次根式的被开方数是非负数即可得出答案.【解析】∵x+1≥0,∴x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.23.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|−√(b−1)2+√(a−b)2=2.【分析】根据数轴可得:﹣1<a<0,1<b<2,然后即可得到a+1>0,b﹣1>0,a﹣b<0,从而可以将所求式子化简.【解析】由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|−√(b−1)2+√(a−b)2=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.24.(2022•滨州)若二次根式√x−5在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解析】要使二次根式√x−5在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.【点评】本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.25.(2022•扬州)若√x−1在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解析】若√x−1在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.26.(2022•邵阳)若√x−2有意义,则x 的取值范围是 x >2 .【分析】先根据二次根式及分式有意义的条件列出x 的不等式组,求出x 的取值范围即可. 【解析】∵√x−2有意义,∴{x −2≥0x −2≠0,解得x >0. 故答案为:x >2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.27.(2022•山西)计算:√18×√12的结果为 3 .【分析】按照二次根式的乘法法则计算即可.【解析】原式=√9=3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则√a ⋅√b =√ab .28.(2022•衡阳)计算:√2×√8= 4 .【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解析】原式=√2×8=√16=4.故答案为:4【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.29.(2022•随州)已知m 为正整数,若√189m 是整数,则根据√189m =√3×3×3×7m =3√3×7m 可知m 有最小值3×7=21.设n 为正整数,若√300n是大于1的整数,则n 的最小值为 3 ,最大值为 75 . 【分析】先将√300n 化简为10√3n ,可得n 最小为3,由√300n 是大于1的整数可得√300n 越小,300n 越小,则n 越大,当√300n =2时,即可求解. 【解析】∵√300n =√3×100n =10√3n ,且为整数, ∴n 最小为3, ∵√300n 是大于1的整数, ∴√300n 越小,300n 越小,则n 越大,当√300n =2时, 300n =4,∴n =75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.30.(2022•宿迁)满足√11≥k 的最大整数k 是 3 .【分析】根据无理数的估算分析解题.【解析】∵3<√11<4,且k ≤√11,∴最大整数k 是3.故答案为:3.【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.31.(2022•湘潭)四个数﹣1,0,12,√3中,为无理数的是 √3 . 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可解答.【解析】四个数﹣1,0,12,√3中,为无理数的是√3. 故答案为:√3.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽得到的数;以及像0.1010010001…等有这样规律的数.32.(2022•陕西)计算:3−√25= ﹣2 .【分析】首先利用算术平方根的定义化简,然后加减即可求解.【解析】原式=3﹣5=﹣2.故答案为:﹣2.【点评】本题主要考查了实数的运算,主要利用算术平方根的定义.33.(2022•重庆)|﹣2|+(3−√5)0= 3 .【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解析】原式=2+1=3.故答案为:3.【点评】本题考查实数的运算,熟练掌握实数的运算性质是解题关键.34.(2022•南充)若√8−x为整数,x为正整数,则x的值是4或7或8.【分析】利用二次根式的性质求得x的取值范围,利用算术平方根的意义解答即可.【解析】∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵√8−x为整数,∴√8−x=0或1或2,当√8−x=0时,x=8,当√8−x=1时,x=7,当√8−x=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【点评】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x的取值范围是解题的关键.35.(2022•连云港)写出一个在1到3之间的无理数:√2(符合条件即可).【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【解析】1到3之间的无理数如√2,√3,√5.答案不唯一.【点评】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.三.解答题(共9小题)36.(2022•武威)计算:√2×√3−√24.【分析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.【解析】原式=√6−2√6=−√6.【点评】本题考查了二次根式的混合运算,掌握√a•√b=√ab(a≥0,b≥0)是解题的关键.37.(2022•广元)计算:2sin60°﹣|√3−2|+(π−√10)0−√12+(−12)﹣2.【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可.【解析】原式=2×√32+√3−2+1﹣2√3+1(−12)2=√3+√3−2+1﹣2√3+4=3.【点评】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,掌握a ﹣p =1a p (a ≠0)是解题的关键.38.(2022•宿迁)计算:(12)﹣1+√12−4sin60°. 【分析】先计算(12)﹣1、√12,再代入sin60°算乘法,最后加减. 【解析】原式=2+2√3−4×√32=2+2√3−2√3=2.【点评】本题考查了实数的运算,掌握负整数指数幂的意义、二次根式的化简及特殊角的函数值是解决本题的关键.39.(2022•娄底)计算:(2022﹣π)0+(12)﹣1+|1−√3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减.【解析】原式=1+2+√3−1﹣2×√32=1+2+√3−1−√3=2.【点评】本题考查了实数的运算,掌握零指数幂、负整数指数幂、绝对值的意义及特殊角的函数值是解决本题的关键.40.(2022•台州)计算:√9+|﹣5|﹣22.【分析】先化简各式,然后再进行计算即可解答.【解析】√9+|﹣5|﹣22=3+5﹣4=8﹣4=4.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.41.(2022•新疆)计算:(﹣2)2+|−√3|−√25+(3−√3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案.【解析】原式=4+√3−5+1=√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.42.(2022•株洲)计算:(﹣1)2022+√9−2sin30°.【分析】根据有理数的乘方,算术平方根,特殊角的三角函数值计算即可.【解析】原式=1+3﹣2×1 2=1+3﹣1=3.【点评】本题考查了实数的运算,特殊角的三角函数值,掌握(﹣1)的偶次幂等于1,(﹣1)的奇次幂等于﹣1是解题的关键.43.(2022•怀化)计算:(3.14﹣π)0+|√2−1|+(12)﹣1−√8.【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可.【解析】原式=1+√2−1+2﹣2√2=2−√2.【点评】本题考查了实数的运算,零指数幂,绝对值,负整数指数幂,考查学生的运算能力,掌握a0=1(a≠0),a﹣p=1a p(a≠0)是解题的关键.44.(2022•遂宁)计算:tan30°+|1−√33|+(π−√33)0﹣(13)﹣1+√16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解析】tan30°+|1−√33|+(π−√33)0﹣(13)﹣1+√16=√33+1−√33+1﹣3+4=3.【点评】本题考查实数的运算、特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根,熟练掌握运算法则是解答本题的关键.。
专题04 二次根式的核心知识点精讲1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠21.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.22.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.92.(2023•青岛)下列计算正确的是()A.B.C.D.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.1.(2023•聊城)计算:(﹣3)÷=.2.(2023•山西)计算:的结果为.3.(2023•兰州)计算:.4.(2023•陕西)计算:.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3 4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣410.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为.12.(2023春•固镇县月考)计算=.13.(2023春•高安市期中)化简计算:=.14.(2023秋•高新区校级期中)计算:(1)×;(2).15.(2023秋•秦都区校级期中)计算:﹣×.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>43.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A.B.C.D.55.(2023秋•闵行区期中)计算:=.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.7.(2023春•中江县月考)已知的值是.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为.9.(2023春•宿豫区期末)计算的结果为.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).1.(2022•桂林)化简的结果是()A.2B.3C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 4.(2022•湖北)下列各式计算正确的是()A.B.C.D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.36.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是.9.(2022•武汉)计算的结果是.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.12.(2022•泰安)计算:•﹣3=.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.。
二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。
中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。
2023年中考数学总复习一轮讲练测()第一单元 数与式专题04二次根式(讲练)1.了解二次根式和最简二次根式的概念,知道二次根式a 中被开方数a 为非负数并且a 也是非负数.2.了解二次根式的加、减、乘、除运算法则并掌握二次根式的性质.3.能根据二次根式的运算法则及性质进行二次根式的加、减、乘、除和综合运算.1.(2021•杭州)下列计算正确的是( )A 2=B 2=-C 2±D 2=±2.(2022有意义,x 的取值范围是( ) A .5x B .5x ≠ C .5x > D .5x3.(2022有意义,x 的取值范围是( ) A .5x B .9x ≠ C .59x D .59x <4.(2022秋•上城区校级期中)实数a ,b ,c 在数轴上的对应点如图所示,化简||a b a -+-( )A.b c-+D.2a b ca b c++-C.222--B.c b5.(2022=;2(2)-=.6.(2021x的值可以是.(写出一个即可)7.(2021春•鹿城区校级期中)当3a==.8.(2021秋•鄞州区校级期末)已知3y,则xy的值为.9.(2021秋•诸暨市期末)如图1,以Rt ABC∆各边为边分别向外作等边三角形,编号为①、②、③,将②、①如图2所示依次叠在③上,已知四边形EMNB与四边形MPQN的面积分别为,则Rt ABC∆的斜边长AB=.10.(20201|-.11.(2022春•拱墅区期中)计算(1(2)12.(2022春•柯桥区月考)化简:(1;(2)22)+.13.(2022春•椒江区校级期中)阅读下列材料,并回答问题:把形如a +a a -、b 为有理数且0b >,m 为正整数且开方开不尽)的两个实数称为共轭实数.(1)请你举出一对共轭实数: 和 ;(2)-a 、b 的值;(3)若两个共轭实数的和是10,差的绝对值是,请求出这两个共轭实数.1.二次根式的有关概念:(1)二次根式:式子 叫做二次根式.(2)最简二次根式需满足两个条件:①被开方数 .②被开方数中 的因数或因式.2.二次根式的性质:(1)(a )2= (a ≥0).(2)a 2= =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0). (3)ab = (a ≥0,b ≥0).(4)ab = (a ≥0,b >0).二次根式的双重非负性是指它的被开方数与结果均为非负数.3.二次根式的运算:(1)二次根式加减法的实质是合并同类二次根式. (2)二次根式的乘法:a ·b = (a ≥0,b ≥0).(3)二次根式的除法:a b= (a ≥0,b >0). 运算结果中的二次根式,一般都要化成最简二次根式或整式.考点一、 二次根式中字母的取值范围例1.(2021春•长兴县月考)求下列二次根式中字母的取值范围:(1)√2k −1.(2)√1k+1.【变式训练】1.(2022春•安吉县期末)若√x是二次根式,则x的值可以是()A.1B.﹣1C.﹣2D.﹣3 2.(2022春•乐清市期末)当a=5时,二次根式√4+a的值是()A.3B.2C.1D.﹣1 3.(2022春•仙居县期中)下列的式子中是二次根式的是()A.√−1B.√3−πC.√83D.√3 4.(2022春•钱塘区期末)下列二次根式中字母a的取值范围是全体实数的是()A.√a B.√a−1C.√1a+1D.√(a−1)25.(2022秋•南湖区校级期中)已知y=√x−2+√2−x+4,y x的平方根是()A.16B.8C.±4D.±2考点二、二次根式的性质例2.(2021春•邗江区月考)计算:(1)已知实数a,b,c在数轴上的对应点如图所示,化简√a2+|c﹣a|+√(b−c)2;(2)已知x、y满足y=√x2−9+√9−x2+1x−3,求5x+6y的值.【变式训练】1.(2022秋•南湖区校级期中)下列计算正确的是()A.√(−2)2=±2B.√(−2)2=−2C.√−83=2D.√12=2√32.(2022春•金东区期中)下列计算正确的是()A.√9=±3B.√22+32=5C.√4=2D.√(−3)2=−33.(2022春•长兴县期中)二次根式√50的化简结果正确的是()A.5√2B.2√5C.10√5D.5√104.(2022秋•海曙区校级期中)已知数a,b,c在数轴上的位置如图所示,化简:√a2−|a+c|−√(c−b)2−|−b|的结果是()A.2c﹣2b B.﹣2c C.﹣2a﹣2c D.05.(2022•谷城县二模)计算:√(1−√2)2=.6.(2022•钱塘区二模)已知√(3+a)2=−3−a ,则a 的取值范围 . 考点三 、二次根式的运算例3.(2022春•滨江区校级期中)计算:(1)√12−√43;(2)(√5−√3)2+(√5+√3)(√5−√3). 【变式训练】1.(2022春•鹿城区校级期中)下列计算正确的是( )A .√3√2=√62B .√(−2)2=−2C .(√2)2=4D .√4916=2342.(2022春•婺城区期末)下列计算正确的是( )A .3+√3=3√3B .2√3+√3=3√3C .2√3−√3=2D .√3+√2=√53.(2022春•长兴县月考)已知a =2020×2022﹣2020×2021,b =√20232−4×2022,c =√20212−1,则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .b <c <a4.(2022春•长兴县月考)(√6+√5)2021×(√6−√5)2022= .5.(2022•江北区开学)若a +6√3=(m +n √3)2,当a ,m ,n 均为正整数时,则√a 的值为 .6.(2022春•富阳区期中)计算:(1)√8×√18;(2)(7+4√3)(7−4√3)+(√5−1)2.7.(2022春•南湖区校级期中)计算:(1)12√12−√27−9√13 (2)(√15−4)2021×(√15+4)2022考点四 、二次根式的化简求值及应用例4.(2022春•拱墅区期中)已知a =√7+√6,b =√7−√6,试求:(1)ab ;(2)a 2+b 2﹣5+2ab .1.(2022•瑞安市校级三模)当a =√3+1时,代数式(a ﹣1)2﹣2a +2的值为 .2.(2022春•东阳市期末)设a =√7+√6,b =√7−√6,则a 2021b 2022的值是 .3.(2022春•拱墅区期中)已知a=√7+√6,b=√7−√6,试求:(1)ab;(2)a2+b2﹣5+2ab.4.(2022春•义乌市月考)小芳在解决问题:已知a=2+√3,求2a2﹣8a+1的值.他是这样分析与解的:a=12+√3=2−√3(2+√3)(2−√3)=2−√3,∴a=2−√3,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:√2+1+√3+√2+√4+√3+⋯+√2022+√2021.(2)若a=1√2−1.①求4a2﹣8a﹣1的值;②求3a3﹣12a2+9a﹣12的值.5.(2022春•余杭区期中)如图是一张等腰直角三角形彩色纸,AC=BC=20√2cm.要裁出几张宽度相等的长方形纸条,宽度都为5√2cm,用这些纸条为一幅正方形照片EFGH镶边(纸条不重叠).图1和图2是两种不同裁法的示意图.(1)求两种裁法最多能得到的长方形纸条的条数;(2)分别计算两种裁法得到长方形纸条的总长度;(3)这两种裁法中,被镶边的正方形照片EFGH的最大面积为多少?。
专题04 二次根式的运算≥0)叫做二次根式。
(或是说,表示非负数的算术平方根的式子,叫做二次根式)。
2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质:(1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积,a (a >0) a -(a <0)0 (a =0);即=·(a≥0,b ≥0)。
(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a ≥0,b>0)。
反之, ())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。
7.分母有理化的方法:分子分母同乘以分母的有理化因式。
8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。
如:①的有理化因式为,②的有理化因式为。
(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。
即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。
一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
【例题1】(2019湖南常德)下列运算正确的是( ) A .+=B .=3C .=﹣2D .=【答案】D【解析】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.根据二次根式的加减法对A 进行判断;根据二次根式的性质对B 、C 进行判断;根据分母有理化和二次根式的性质对D 进行判断.A.原式=+2,所以A 选项错误;B.原式=2,所以B 选项错误;C.原式=2,所以C 选项错误;D.原式==,所以D 选项正确.【例题2】(2019•山东威海)计算(﹣3)0+﹣(﹣)﹣1的结果是( )A .1+B .1+2C .D .1+4【答案】D【解析】分别根据零次幂、二次根式的性质以及负指数幂化简即可求解. 原式=1+=1+.【例题3】(2019•山东省滨州市 )计算:(﹣)﹣2﹣|﹣2|+÷= .【答案】2+4.【解析】根据二次根式的混合计算解答即可. 原式=,故答案为:2+4.【例题4】(2019•广东)先化简,再求值:4-x x -x 2-x 1-2-x x22÷⎪⎭⎫ ⎝⎛ ,其中x =2. 【答案】1+2.【解析】原式=x-1x-222x -xx -4÷ 专题典型题考法及解析=x-1x-2×()()()x2x-2x x-1+=x2x+当x =2,原式=222+=2222+=1+2.一、选择题1.(2019•四川省达州市)下列判断正确的是()A .<0.5 B.若ab=0,则a=b=0C.= D.3a可以表示边长为a的等边三角形的周长【答案】D.【解析】根据实数的大小比较法则、二次根式的乘除法法则、列代数式的一般步骤判断即可.A.2<<3,∴<<1,本选项错误;B.若ab=0,则a=0或b=0或a=b=0,本选项错误;C.当a ≥0,b>0时,=,本选项错误;D.3a可以表示边长为a的等边三角形的周长,本选项正确。
2.(2019•湖北省随州市)“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于-,设x=-,易知>,故x>0,由x2=(-)2=3++3--2=2,解得x=,即-=.根据以上方法,化简+-后的结果为()A. B. C. D.【答案】D【解析】设x=-,且>,专题典型训练题∴x<0,∴x2=6-3-2+6+3,∴x2=12-2×3=6,∴x=,∵=5-2,∴原式=5-2-=5-33.(2019•山东省济宁市)下列计算正确的是()A.=﹣3 B.=C.=±6 D.﹣=﹣0.6【答案】D.【解析】直接利用二次根式的性质以及立方根的性质分析得出答案.A.=3,故此选项错误;B.=﹣,故此选项错误;C.=6,故此选项错误;D.﹣=﹣0.6,正确.4.(2019•广东)化简24的结果是A.﹣4 B.4 C.±4 D.2【答案】Ba2 .【解析】公式a5.(2019•甘肃)使得式子有意义的x的取值范围是()A.x≥4 B.x>4 C.x≤4 D.x<4【答案】D【分析】直接利用二次根式有意义的条件分析得出答案.使得式子有意义,则:4﹣x>0,解得:x<4,即x的取值范围是:x<4.6.(2019•甘肃庆阳)下列整数中,与最接近的整数是()A.3 B.4 C.5 D.6【答案】A.【解析】由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离, ∴与最接近的是3.7.(2019•山东省聊城市)下列各式不成立的是( )A .﹣=B .=2C .=+=5D .=﹣【答案】C .【解析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可. ﹣=3﹣=,A 选项成立,不符合题意; ==2,B 选项成立,不符合题意; ==,C 选项不成立,符合题意; ==﹣,D 选项成立,不符合题意。
8.(2019湖南益阳)下列运算正确的是( )A .=﹣2B .(2)2=6C .+=D .×=【答案】D【解析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可. A.=2,故本选项错误; B.=12,故本选项错误; C.与不是同类二次根式,不能合并,故本选项错误;D.根据二次根式乘法运算的法则知本选项正确.9.(2019•云南)要使21+x 有意义,则x 的取值范围为( )A .x ≤0B .x ≥-1C .x ≥0D .x ≤-1【答案】B .【解析】根据二次根式有意义的条件即可求解.要使21+x 有意义,则被开方数1+x 要为非负数,即01≥+x ,∴1-≥x ,故选B .10.(2019•湖北省荆门市)﹣的倒数的平方是( )A .2B .C .﹣2D .﹣【答案】B .【解析】根据倒数,平方的定义以及二次根式的性质化简即可. ﹣的倒数的平方为:.二、填空题11.(2019•江苏扬州)计算:(﹣2)2018(+2)2019的结果是 . 【答案】+2. 【解析】先根据积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后利用平方差公式计算. 原式=[(﹣2)(+2)]2018•(+2)=(5﹣4)2018•(+2)=+2故答案为+2.12.(2019•四川省绵阳市)单项式x -|a -1|y 与2x y 是同类项,则a b =______.【答案】1【解析】由题意知-|a -1|=≥0,∴a =1,b =1,则a b =(1)1=1,故答案为:1.13.(2019贵州遵义)计算 20-53的结果是【答案】5【解析】552-5320-53==14.(2019•南京)计算﹣的结果是 .【答案】0【解析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.原式=2﹣2=0.15.(2019宁夏)计算:11()222--+-= .【答案】2-【解析】11()2222222--+-=-+-=-.16.(2019•广东广州)代数式有意义时,x 应满足的条件是 .【答案】x >8.【解析】直接利用分式、二次根式的定义求出x的取值范围.代数式有意义时,x﹣8>0,解得:x>8.故答案为:x>8.-=.17.(2019江苏镇江)计算:123【答案】3.【解析】本题考查了二次根式的加减运算,解答时应先化简二次根式,然后合并同类二次根,-=23-3=3,因此本题答案为3.因为12318.(2019•山东临沂)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=________.【答案】±10【解析】利用题中四次方根的定义求解.∵=10,∴m4=104,∴m=±10.故答案为:±1019.(2019•湖南益阳)观察下列等式:2=(2-1)2,①3-22=(3-2)2,②5-62=(4-3)2,③7-12…请你根据以上规律,写出第6个等式.【答案】13-2=(-)2.【解析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(-)2(n≥1的整数).写出第6个等式为13-2=(-)2.故答案为13-2=(-)2.20.(2019山东枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算: +++…+, 其结果为 .【答案】2018.【解析】根据题意找出规律,根据二次根式的性质计算即可. +++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=201821.(2019•山东青岛)计算:﹣()0= .【答案】2+1.【解析】根据二次根式混合运算的法则计算即可.﹣()0=2+2﹣1=2+1三、解答题 22.(2019•湖北省仙桃市)计算:(﹣2)2﹣|﹣3|+×+(﹣6)0【答案】6【解析】先计算乘方、取绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得。
原式=4﹣3+4+1=6。
23.(2019贵州遵义)计算2sin60°+31-8--1-2-3)(+【答案】3【解析】sin60°=323-22-3=38-=-2,代入求值即可2sin60°+-133-2-1--8+() =322-3-1--2⨯++()()=3 24.(2019年陕西省)计算:221(3)3520()2----++ .【答案】见解析。