2019年北京市初三一模数学-几何综合专题(教师版)
- 格式:docx
- 大小:756.99 KB
- 文档页数:19
2019一模几何综合专题一、旋转变换1.(2019通州一模27)如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD 于点F . (1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.2.(2019平谷一模27)在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.H O DBA3.(2019延庆一模27)已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H . (1)求证:ADB ACB ∠=∠;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.4.(2019密云一模27)已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE. (1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB ⊥交EB 延长线于点F.用等式表示线段EB 、DB 与AF 之间的数量关系并证明.图2D CBA图1A B CD5.(2019东城一模27)如图,在正方形ABCD中,E是边BC上一动点(不与点B,C重合),连接DE,点C 关于直线DE的对称点为Cʹ,连接ACʹ并延长交直线DE于点P,F是AC′中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP,BP,DP三条线段之间的数量关系,并证明.(3)连接ACACC′的面积最大值.PBA6.(2019房山一模27)已知:Rt △ABC 中,∠ACB =90°,AC =BC .(1) 如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示) ;(2) 如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE .①依题意补全图2;②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明.图1 图2ABA7.(2019门头沟一模27)如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F .(1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明; (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.图1 图2PPEECCBBOOAA8.(2019燕山一模27)如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .(1) ① 依题意补全图1;② 求证:∠EDC =∠BAD ; (2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为: ; ② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明①中的猜想.(一种方法即可)图1 D C B A 备用图 AB C D9.(2019丰台一模27)在△ABC中,∠ACB=90°,AC=BC,D为AB的中点,点E为AC延长线上一点,连接DE,过点D作DF⊥DE交CB的延长线于点F.(1)求证:BF= CE;(2)若CE=AC,用等式表示线段DF与AB的数量关系,并证明.10.(2019朝阳一模27)如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.11.(2019怀柔一模27)如图,等边△ABC中,P是AB上一点,过点P作PD⊥AC于点D,作PE⊥BC于点E,M是AB的中点,连接ME,MD.(1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB的数量关系,并加以证明;(3)求证:MD=ME.C二、轴对称变换12.(2019西城一模27)如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.13.(2019顺义一模27)已知:如图,在△ABC 中,AB >AC ,∠B =45°, 点D 是BC 边上一点,且AD=AC ,过点C 作CF ⊥AD 于点E ,与AB 交于点F . (1)若∠CAD =α,求∠BCF 的大小(用含α的式子表示); (2)求证:AC =FC ;(3)用等式直接表示线段BF 与DC 的数量关系.ABCDFE三、平移变换14.(2019石景山一模27)如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.B四、其它15.(2019海淀一模27)如图,在等腰直角△ABC中,90CA CD>),?°,D是线段AC上一点(2ABC连接BD,过点C作BD的垂线,交BD的延长线于点E,交BA的延长线于点F.(1)依题意补全图形;?,求ABDÐ的大小(用含α的式子表示);(3)若点G在线段CF上,CG BD=,连接DG.①判断DG与BC的位置关系并证明;②用等式表示DG,CG,AB之间的数量关系为.。
2019一模几何综合专题一、旋转变换1.(等边三角形+对称+旋转)(2019通州一模27)如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD(1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF、EF 之间的数量关系,并证明. 解:(1)连接AE . ∵点B 关于射线AD 的对称点为E ,∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三角形, ∴AB AC =,60BAC ACB ∠=∠=︒. ∴602EAC α∠=︒-,AE AC =. 1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦. ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=. ……………… 2分另解:借助圆. (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF . ……………… 3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠, ∴60ABC AFC ∠=∠=︒. ∴△FCG 是等边三角形.∴GF = FC . ……………… 4分 ∵ABC △是等边三角形,∴BC AC =,60ACB ∠=︒. ∴ACG BCF α∠=∠=.在△ACG 和△BCF 中,CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF .∴AG BF =. ……………… 5分 ∵点B 关于射线AD 的对称点为E , ∴BF EF =. ……………… 6分 ∴AF AG GF -=.∴AF EF CF -=. ……………… 7分另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF .2.(等边三角形+旋转)(2019平谷一模27)在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.解:(1)∠BCD=120°-α. ······························································(2)解:方法一:延长BA使AE=BC,连接DE. (2)由(1)知△ADC是等边三角形,∴AD=CD.∵∠DAB+∠DCB=∠DAB+∠DAE=180°,∴∠DAB=∠DAE.∴△ADE≌△CDB. (3)∴BD=BE.∴BD=AB+BC. (4)方法二:延长AB使AF=BC,连接CF. (2)∠BDC=∠ADE.∵∠ABC=120°,∴∠CBF=60°.∴△BCF是等边三角形.∴BC=CF.∵∠DCA=∠BCF=60°,∴∠DCA+∠ACB=∠BCF+∠ACB.即∠DCB=∠ACF.∵CA=CD,∴△ACF≌△DCB. (3)∴BD=AF.∴BD=AB+BC. (4)(3)AC,BD的数量关系是:AC ; (5)位置关系是:AC⊥BD于点P. (6)H O DBA3.(等边三角形+旋转)(2019延庆一模27).已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H . (1)求证:ADB ACB ∠=∠;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.解:(1)证明:∵∠ADC =60°,DA=DC∴△ADC 是等边三角形. ……1分 ∴∠DAC =60°,AD=AC . ∵∠ABC=120°,BD 平分∠ABC ∴∠ABD=∠DBC =60°.∴∠DAC =∠DBC =60° ∵∠AOD =∠BOC∠ADB=180°- ∠DAC -∠AOD∠ACB=180°- ∠DBC -∠BOC∴∠ADB=∠ACB ……3分(2)结论:DH=BH+BC ……4分 证明:在HD 上截取HE=HB ……5分∵AH ⊥BD∴∠AHB=∠AHE =90° ∵AH =AH∴△ABH ≌△AEH ∴AB=AE, ∠AEH=∠ABH =60° ……6分 ∴∠AED=180°-∠AEH=120° ∴∠ABC=∠AED=120° ∵AD=AC, ∠ADB=∠ACB ∴△ABC ≌△AED∴DE=BC ……7分 ∵DH=HE+ED∴DH=BH+BC ……8分4.(等边三角形+旋转)(2019密云一模27)已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE. (1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB ⊥交EB 延长线于点F.用等式表示线段EB 、DB 与AF 之间的数量关系并证明.27.(1)补全图形AD 与BE 的数量关系为AD=BE .................................2分(2)∵∠ACB=∠DCE= 60°, ∴∠ACD=∠BCE 又∵AC=BC,CD=CE ∴△ACD ≌△BCE∴AD=BE, ∠CBE=∠CAD=60°∴∠ABF=180°-∠ABC-∠CBE=60° 在Rt AFB ∆中,3AF AB = ∴BE+BD=3AB.................................7分图2D CBA图1A B CD DEBA5.(正方形+旋转+最值)(2019东城一模27)如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C 关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF .(1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接ACACC ′的面积最大值.解:(1)由对称可知 CD =C ′D ,∠CDE =∠C ′DE . 在正方形ABCD 中,AD =CD ,∠ADC =90°, ∴AD =C ′D .又∵F 为AC ′中点,∴DF ⊥AC ′,∠ADF =∠C ′DF .……………………………………………………1分∴∠FDP =∠FDC ′+∠EDC ′=12∠ADC =45°.…………………2分(2)结论:BP +DPAP .……………………………………………………3分 如图,作AP ′⊥AP 交PD 延长线于P ′, ∴∠P AP ′=90°.在正方形ABCD 中,DA =BA ,∠BAD =90°, ∴∠DAP ′=∠BAP .由(1)可知∠APD =45°, ∴∠P ′=45°.∴AP =AP ′……………………………………………………4分在△BAP 和△DAP ′中,BA DA BAP DAP AP AP =⎧⎪'∠=∠⎨⎪'=⎩,∴△BAP ≌△DAP ′(SAS )……………………………………………………5分 ∴BP =DP ′.P BAP BA∴DP+BP=PP′=.(3-1……………………………………………………7分P'B A6.(等腰直角三角形+旋转)(2019房山一模27).已知:Rt△ABC中,∠ACB=90°,AC=BC.(1) 如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.若∠BAD=α,求∠DBE的大小(用含α的式子表示) ;(2) 如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.①依题意补全图2;②用等式表示线段EA,EB和EC之间的数量关系,并证明.图1 图2解:(1)解: 依题意,∠CAB=45°,∵∠BAD=α,∴∠CAD=45α︒-.∵∠ACB=90°,BE⊥AD,∠ADC=∠BDE,∴∠DBE=∠CAD=45α︒-. …………………………………2分(2)解:①补全图形如图…………………………………4分②猜想:当D在BC边的延长线上时,EB - EAEC.…………………………………5分证明:过点C作CF⊥CE,交AD的延长线于点F.∵∠ACB=90°,∴∠ACF=∠BCE.∵CA=CB,∠CAF =∠CBE,∴△ACF≌△BCE.…………………………………6分∴AF=BE,CF=CE.∵∠ECF=90°,∴EFEC.即AF-EAEC.AB A∴7分7.(等腰直角三角形+旋转)(2019门头沟一模27). 如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F .(1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明; (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.图1 图227.(本小题满分7分)解:(1)补全图形(如图1); ……………………………… 1分证明:略. ……………………………………… 3分(2)线段OE ,OP 和OF 之间的数量关系是OF +OE =2OP . ……………………………… 4分证明:如图2,作PQ ⊥PO 交OB 于Q .∴ ∠2+∠3 = 90°,∠1+∠2 = 90°. ∴ ∠1=∠3.又∵ OC 平分∠AOB ,∠AOB =90°, ∴∠4 =∠5 = 45°. 又∵ ∠5 +∠6 = 90°, ∴∠6 = 45°,∴∠4 = ∠6 . ∴ PO = PQ .∴ △EPO ≌ △FPQ . ……………………… 5分 ∴ PE =PF ,OE = FQ .又∵OQ = OF +FQ = OF + OE .又∵ OQ =2OP ,∴OF + OE =2OP . ……………………… 6分(3)线段OE ,OP 和OF 之间的数量关系是OF - OE =2OP . ………………………… 7分PPEECCBBOOAA图2图18.(等腰直角三角形+旋转)(2019燕山一模27)如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .(1) ① 依题意补全图1;② 求证:∠EDC =∠BAD ; (2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为: ; ② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明①中的猜想.(一种方法即可)27.(1)①补全的图形如图的所示;………………………………1分②证明:∵∠ADE =∠B =90°,∴∠EDC +∠ADB =∠BAD +∠ADB =90°,∴∠EDC =∠BAD . ………………………………3分(2) ①CE =2BD . ………………………………4分②想法1:证明:如图,过点E 作EF ⊥BC ,交BC 延长线于点F ,∴∠F =90°.在△ADB 和△DEF 中,∠B =∠F =90°,∠EDC =∠BAD ,AD =DE , ∴△ADB ≌△DEF , ∴AB =DF ,BD =EF .图1 D C B A 备用图 A B CD AB ECD EA∵AB=BC,∴DF=BC,即DC+CF=BD+DC,∴CF=BD=EF,∴△CEF是等腰直角三角形,∴CECFBD.………………………………7分想法2:证明:在线段AB上取一点F,使得BF=BD,连接DF,∵∠B=90°,AB=BC,∴DFBD,∵AB=BC,BF=BD,∴AB-BF=BC-BD,即AF=DC.在△ADF和△DEC中,AF=DC,∠BAD=∠EDC,AD=DE,∴△ADF≌△DEC,∴CE=DFBD.………………………………7分∴AD=CF,∠BAD=∠BCF.∵AD=DE,∴DE=CF.∵∠EDC=∠BAD,∴∠EDC=∠BCF,∴DE∥CF,∴四边形DFCE为平行四边形,9.(等腰直角三角形+旋转)(2019丰台一模27)在△ABC 中,∠ACB =90°,AC =BC , D 为AB 的中点,点E 为AC 延长线上一点,连接DE ,过点D 作DF ⊥DE 交CB 的延长线于点F . (1)求证:BF= CE ;(2)若CE =AC ,用等式表示线段DF 与AB 的数量关系,并证明.解:(1)连接CD.在△ABC 中,∠ACB=90°,AC=BC ,D 为AB 中点,∴CD ⊥BD , CD=BD=DA. ...............1分∵DF ⊥DE , ∴∠BDF =∠CDE . ∵∠F =∠E ,∴△DBF ≌△DCE .∴BF=CE. ..................3分 (2)52DF AB =. ..................4分 理由如下:由(1)知△DBF ≌△DCE ,∴DF=DE. ..................5分 连接BE.∵CE=CA , ∴BA=BE.∴∠A=∠BEA=45°. ∴∠ABE=90°. 设AD=BD=a , ∴AB=BE=2a. ∴5DF DE a ==.∴52DF AB =. .........................7分FA EC DB10.(等腰直角三角形+旋转+解直角三角形)(2019朝阳一模27)如图,在Rt △ABC 中,∠A =90°,AB =AC ,将线段BC 绕点B 逆时针旋转α°(0<α<180),得到线段BD ,且AD ∥BC . (1)依题意补全图形;(2)求满足条件的α的值; (3)若AB =2,求AD 的长. 解:(1)满足条件的点D 有两个,补全图形如图1所示.………………………………………2分 (2)如图2,过点B 作BE ⊥D 1D 2于点E .由题意可知,BD 1=BD 2 =BC ,AE ∥BC . ∴∠AEB =90°.∵在Rt △ABC 中,∠BAC =90°,AB =AC , ∴∠EAB =∠ABC =45°.∴在Rt △ABE 中,22BE AB =,在Rt △ABC 中,22AB BC =. ∴11122BE BC BD ==.……………………………………………………………………4分∴∠D 1=∠D 2=30°. ∵D 1D 2∥BC ,∴30α=或150.……………………………………………………………………………5分(3)∵AB =2,∴2BE AE ==.∴D 1E = D 2E =6.∴AD 的长为62-或62+.………………………………………………………7分图1图2CFE CAB11.(等边三角形+旋转)(2019怀柔一模27)如图,等边△ABC 中,P 是AB 上一点,过点P 作PD ⊥AC 于点D ,作PE ⊥BC 于点E ,M 是AB 的中点,连接ME ,MD . (1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB 的数量关系,并加以证明; (3)求证:MD=ME .(1)补全图形如图:(2)线段BE ,AD 与AB 的数量关系是:AD+ BE=12AB . ∵△ABC 是等边三角形,∴∠A=∠B=60°. ∵PD ⊥AC ,PE ⊥BC ,∴∠APD=∠BPE=30°, ∴AD=AP ,AD=AP . ∴AD+ BE=(AP+ BP )=AB .………………………………3分(3)取BC 中点F ,连接MF .∴MF=AC .MF ∥AC . ∴∠MFB=∠ACB=60°.∴∠A=∠MFE=60°. ∵AM=AB ,AB=AC ,∴MF=MA . ∵EF+ BE=BC , ∴AD + BE=AB .∴EF=AD. ∴△MAD ≌△MFE (SAS ).∴MD=ME .…………………………………7分212121212121212121二、轴对称变换12.(正方形+对称)(2019西城一模27)如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.解:(1)证明:∵∠ABC=90°,BA=BC,∴∠BAC=∠ACB=45°.∵AB绕点A逆时针旋转90°得到AD,∴∠BAD=90°,AB=AD.∴∠DAF=∠BAD-∠BAC=45°.∴∠BAF=∠DAF.…………………………………………………………1分∵AF=AF,∴△BAF≌△DAF.∴FB=FD.…………………………………………………………………2分(2)①AH与BF的位置关系:AH⊥BF.……………………………………………3分证明:连接DC,如图.∵∠ABC+∠BAD=180°,∴AD∥BC.∵AB=BC=AD,∴四边形ABCD是平行四边形.∵∠ABC=90°,∴四边形ABCD是矩形.∴AB=DC,∠ADC=∠DCB=90°.∴∠ABH=∠DCE.∵BH=CE,∴△ABH≌△DCE.∴∠BAH=∠CDE.∵△BAF≌△DAF,∴∠ABF=∠ADF.∴∠BAH+∠ABF=∠CDE+∠ADF=∠ADC=90°.∴∠ANB=180°-(∠BAH+∠ABF)=90°.∴AH⊥BF.……………………………………………………………5分1.…………………………………………………………………………7分13.(等腰三角形+对称)(2019顺义一模27)已知:如图,在△ABC中,AB>AC,∠B=45°,点D是BC边上一点,且AD=AC,过点C作CF⊥AD于点E,与AB交于点F.(1)若∠CAD=α,求∠BCF的大小(用含α的式子表示);(2)求证:AC=FC;(3)用等式直接表示线段BF与DC的数量关系.解:(1)过点A作AG⊥BC于点G,…………………1分∴∠2+∠4=90°,∵AD=AC,∴∠1=∠2=12∠CAD=12α,…………………………2分∵CF⊥AD于点E,∴∠3+∠4=90°,∴∠3=∠2=12∠CAD=12α,…………………………3分即∠BCF=12α.(2)证明:∵∠B=45°,∴∠BAG=45°,………………………………………4分∵∠BAC=45°+∠1,∠AFC=45°+∠3,∴∠BAC=∠AFC,∴AC=FC.………………………………………………5分(3)DC.…………………………………7分AB CDFE4231GEFD CBA三、平移变换14.(等边三角形+平移)(2019石景山一模27). 如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.27.(1)补全的图形如图1所示. …………… 1分 (2)证明:Q △ABC 是等边三角形, ∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分 60ADE ACB ∴∠=∠=︒. 90GMD ∠=︒Q ,2DG DM DE ∴==. …………… 3分 DE BC AC ==Q , DG AC ∴=.AG CD ∴=. …………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =Q ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED Q 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠.Q ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =Q ,BEF BHF ∴△≌△. …………… 6分 BE BH CD AG ∴===. AB AC =Q ,AH CG ∴=.…………… 7分B图1图2四、其它15.(等腰直角三角形+全等)(2019海淀一模27)如图,在等腰直角△ABC 中,90ABC ?°,D 是线段AC 上一点(2CA CD > ),连接BD ,过点C 作BD 的垂线,交BD 的延长线于点E ,交BA 的延长线于点F .(1)依题意补全图形;(2)若ACE α?,求ABD Ð的大小(用含α的式子表示); (3)若点G 在线段CF 上,CG BD =,连接DG .①判断DG 与BC 的位置关系并证明;②用等式表示DG ,CG ,AB 之间的数量关系为 .(1)补全图形,如图.(2) 解:∵ AB =BC ,∠ABC =90°,∴ ∠BAC =∠BCA =45°.∵ ∠ACE =α, ∴ 45ECB α??.∵ CF ⊥BD 交BD 的延长线于点E , ∴ ∠BEF =90°. ∴ ∠F +∠ABD =90°. ∵ ∠F +∠ECB =90°, ∴45ABD ECB α???.(3)① DG 与BC 的位置关系:DG ⊥BC .证明:连接BG 交AC 于点M ,延长GD 交BC 于点H ,如图.∵ AB =BC ,∠ABD =∠ECB ,BD =CG , ∴ △ABD ≌△BCG . ∴ ∠CBG =∠BAD =45°. ∴ ∠ABG =∠CBG =∠BAC =45°. ∴ AM =BM ,∠AMB =90°. ∵ AD =BG , ∴ DM =GM .∴ ∠MGD =∠GDM =45°. ∴ ∠BHG =90° ∴ DG ⊥BC .H。
1(2019+++延庆+++一模)(1)∵∠ADC =60°,DA=DC ∴△ADC是等边三角形∴∠DAC =60°,AD=AC.∵∠ABC=120°,BD平分∠ABC ∴∠ABD=∠DBC=60°∴∠DAC =∠DBC =60°∵∠AOD =∠BOC ∠ADB=180°-∠DAC-∠AOD∠ACB=180°-∠DBC-∠BOC ∴∠ADB=∠ACB(2)结论:DH=BH+BC在HD上截取HE=HB∵AH⊥BD ∴∠AHB=∠AHE=90°∵AH =AH ∴△ABH≌△AEH ∴AB=AE,∠AEH=∠ABH=60°∴∠AED=180°-∠AEH=120°∴∠ABC=∠AED=120°∵AD=AC, ∠ADB=∠ACB ∴△ABC≌△AED ∴DE=BC ∵DH=HE+ED ∴DH=BH+BC2(2019+++房山+++一模)(1)解: 依题意,∠CAB=45°∵∠BAD=α∴∠CAD=45α︒-∵∠ACB=90°,BE⊥AD,∠ADC=∠BDE ∴∠DBE=∠CAD=45α︒-……………………………… 2分(2)解:①补全图形如图……………………… 4分②猜想:当D在BC边的延长线上时,EB-EA EC……………… 5分证明:过点C作CF⊥CE,交AD的延长线于点F.∵∠ACB=90°∴∠ACF=∠BCE∵CA=CB,∠CAF =∠CBE ∴△ACF≌△BCE………… 6分∴AF=BE,CF=CE ∵∠ECF=90°∴EF EC即AF -EA EC ∴EB -EA…………………… 7分3(2019+++通州+++一模)(1)连接AE∵点B关于射线AD的对称点为E∴AE=AB,BAF EAFα∠=∠=∵ABC △是等边三角形 ∴AB AC =,60BAC ACB ∠=∠=︒ ∴602EAC α∠=︒-,AE AC =………1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦ ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=……………2分另解:借助圆 (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF ……………3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠ ∴60ABC AFC ∠=∠=︒ ∴△FCG 是等边三角形 ∴GF =FC ……………… 4分 ∵ABC △是等边三角形 ∴BC AC =,60ACB ∠=︒∴ACG BCF α∠=∠= 在△ACG 和△BCF 中CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF∴AG BF =……………5分 ∵点B 关于射线AD 的对称点为E ∴BF EF =……………6分 ∴AF AG GF -= ∴AF EF CF -=………………7分 另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF4(2019+++平谷+++一模) (1)∠BCD =120°-α (2)解:方法一:延长BA 使AE=BC ,连接DE 由(1)知△ADC 是等边三角形 ∴AD=CD ∵∠DAB +∠DCB =∠DAB +∠DAE =180°∴∠DAB =∠DAE ∴△ADE ≌△CDB ∴BD=BE ∴BD=AB+BC 方法二:延长AB 使AF=BC ,连接CF∠BDC =∠ADE ∵∠ABC =120° ∴∠CBF =60°∴△BCF 是等边三角形 ∴BC=CF ∵∠DCA =∠BCF =60°∴∠DCA +∠ACB =∠BCF +∠ACB 即∠DCB =∠ACF ∵CA=CD ∴△ACF ≌△DCB ∴BD=AF ∴BD=AB+BC (3)AC ,BD 的数量关系是:2AC BD 位置关系是:AC ⊥BD 于点P5(2019+++门头沟+++一模)(1)补全图形(如图1)…………… 1分 证明:略………… 3分(2)线段OE ,OP 和OF 之间的数量关系是OF +OE OP …… 4分 证明:如图2,作PQ ⊥PO 交OB 于Q∴∠2+∠3=90°,∠1+∠2=90° ∴∠1=∠3 又∵OC 平分∠AOB ,∠AOB =90° ∴∠4=∠5=45°又∵∠5+∠6=90° ∴∠6=45° ∴∠4=∠6 ∴PO =PQ ∴△EPO ≌ △FPQ …………… 5分 ∴PE =PF ,OE =FQ 又∵OQ =OF +FQ =OF +OE又∵OQ ∴OF+OE …………… 6分(3)线段OE ,OP 和OF 之间的数量关系是OF- OE …………… 7分6(2019++石景山+++一模) (1)补全的图形如图1所示 (2)△ABC 是等边三角形∴AB BC CA ==,60ABC BCA CAB ∠=∠=∠=︒由平移可知ED ∥BC ,ED =BC ……… 2分60ADE ACB ∴∠=∠=︒ 90GMD ∠=︒ 2DG DM DE ∴==…… 3分DE BC AC == DG AC ∴= AG CD ∴=……… 4分(3)线段AH 与CG 的数量关系:AH = CG ……… 5分 如图2,连接BE ,EF,ED BC =ED ∥BC BEDC ∴四边形是平行四边形 BE CD CBE ADE ABC ∴=∠=∠=∠, GM ED 垂直平分EF DF ∴= DEF EDF ∴∠=∠ ED ∥BCBFE DEF BFH EDF ∴∠=∠∠=∠, BFE BFH ∴∠=∠BF BF = BEF BHF ∴△≌△………… 6分BE BH CD AG ∴===AB AC = AH CG ∴=……… 7分7(2019+++西城+++一模)D8(2019+++燕山+++一模)(1)①补全的图形如图的所示………1分 ②证明:∵∠ADE =∠B =90°∴∠EDC +∠ADB =∠BAD +∠ADB =90° ∴∠EDC =∠BAD ……………3分 (2)①CE BD ……………4分 ②想法1:如图,过点E 作EF ⊥BC ,交BC 延长线于点F ∴∠F =90° 在△ADB 和△DEF 中,∠B =∠F =90°,∠EDC =∠BAD ,AD =DE ∴△ADB ≌△DEF ∴AB =DF ,BD =EF ∵AB =BC ∴DF =BC 即DC +CF =BD +DC ∴CF =BD =EF ∴△CEF 是等腰直角三角形∴CECF BD ……………7分 想法2:证明:在线段AB 上取一点F ,使得BF =BD ,连接DF∵∠B =90°,AB =BC ∴DF BD ∵AB =BC ,BF =BD ∴AB -BF =BC -BD 即AF =DC 在△ADF 和△DEC 中AF =DC ,∠BAD =∠EDC ,AD =DE ∴△ADF ≌△DEC∴CE=DF BD ……………7分 想法3:证明:延长AB 到F ,使得BF =BD ,连接DF ,CF∵∠B =90°∴DF 在Rt △ABD 和Rt △CBF 中 ∠ABD =∠CBF =90°,AB =BC ,BD =BF ∴△ABD ≌△CBFFABECD∴AD=CF,∠BAD=∠BCF ∵AD=DE ∴DE=CF∵∠EDC=∠BAD ∴∠EDC=∠BCF ∴DE∥CF∴四边形DFCE为平行四边形∴CE=DF BD……………7分9(2019+++丰台+++一模)10(2019+++密云+++零模)(1)补全图形AD与BE的数量关系为AD=BE(2)∵∠ACB=∠DCE= 60°∴∠ACD=∠BCE 又∵AC=BC,CD=CE ∴△ACD≌△BCE ∴AD=BE, ∠CBE=∠CAD=60°∴∠ABF=180°-∠ABC-∠CBE=60°在Rt AFB∆中,AFAB=∴ABDB AH O DBA1已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD 相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H (1)求证:ADB ACB ∠=∠(2)判断线段BH ,DH ,BC 之间的数量关系;并证明 2已知:Rt △ABC 中,∠ACB =90°,AC =BC(1) 如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示)(2) 如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE . ①依题意补全图2 ②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明AA3如图,在等边ABC △中,点D 是线段BC 上一点.作射 线AD ,点B 关于射线AD 的对称点为E .连接CE 并 延长,交射线AD 于点F(1)设BAF α∠=,用α表示BCF ∠的度数(2)用等式表示线段AF 、CF 、EF 之间的数量关系, 并证明 4在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD 交AC 于P (1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示) (2)求AB ,BC ,BD 之间的数量关系 (3)当α=30°时,直接写出AC ,BD 的关系5如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转 中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F (1)根据题意补全图1,并证明PE = PF(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明 (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系6如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G (1)依题意补全图形 (2)求证:AG = CD(3)连接DF 并延长交AB 于点H ,用等 式表示线段AH 与CG 的数量关系,并证明PPEECCBBOOAADB A7如图,在△ABC 中,∠ABC =90°,BA=BC .将线段AB 绕点A 逆时针旋转90°得到线段AD ,E 是边BC 上的一动点,连接DE 交AC 于点F ,连接BF(1) 求证:FB=FD(2) 点H 在边BC 上,且BH=CE ,连接AH 交BF 于点N①判断AH 与BF 的位置关系,并证明你的结论②连接CN .若AB =2,请直接写出线段CN 长度的最小值8如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点 D 顺时针旋转90°得到线段DE ,连接EC(1) ① 依题意补全图1② 求证:∠EDC =∠BAD (2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为 ② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF .想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC .想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形.……请你参考上面的想法,帮助小方证明①中的猜想(一种方法即可)备用图AB C D 图1 D C B A9在ABC ∆中,090=∠ACB ,AC=BC ,D 为AB 的中点,点E 为AC 延长线上一点,连接DE ,过点D 作DF ⊥DE交CB 的延长线于点F(1)求证:BF=CE(2)若CE=AC ,用等式表示线段DF 与AB 的数量关系,并证明10已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE(1)依题意补全图1并判断AD 与BE 的数量关系(2)过点A 作AF EB ⊥交EB 延长线于点F ,用等式表示线段EB 、DB 与AF 之间的数量关系并证明图2D C BA 图1ABC D。
2019北京中考数学一模————————————————————————————————几何综合专题【2019东城一模】27.如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B,C 重合),连接DE ,点C 关于直线DE 的对称点为C ʹ,连接AC ʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF . (1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接ACACC ′的面积最大值.【2019西城一模】27.如图,在△ABC 中,∠ABC =90°,BA=BC .将线段AB 绕点A逆时针旋转90°得到线段AD ,E 是边BC 上的一动点,连接DE 交AC 于点F ,连接BF .(1) 求证:FB=FD ;(2) 点H 在边BC 上,且BH=CE ,连接AH 交BF 于点N .①判断AH 与BF 的位置关系,并证明你的结论; ②连接CN .若AB =2,请直接写出线段CN 长度的最小值.BA【2019海淀一模】27.如图,在等腰直角△中,°,是线段上一点( ),连接,过点作的垂线,交的延长线于点,交BA 的延长线于点F .(1)依题意补全图形;(2)若,求的大小(用含的式子表示); (3)若点在线段上,,连接DG .①判断DG 与BC 的位置关系并证明;②用等式表示,,之间的数量关系为 .【2019朝阳一模】27.如图,在Rt △ABC 中,∠A =90°,AB =AC ,将线段BC 绕点B 逆时针旋转a °(0<a <180),得到线段BD ,且AD ∥BC. (1)依题意补全图形; (2)求满足条件的a 的值; (3)若AB =2,求AD 的长.ABC 90ABC 薪D AC 2CA CD >BD C BD BD E ∠ACE =αABD αG CF CG BD =DG CG AB2019北京中考数学一模————————————————————————————————几何综合专题【2019丰台一模】【2019石景山一模】27.如图,在等边△ABC 中,D 为边AC 的延长线上一点,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.()CD AC <BA【2019门头沟一模】27.如图∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F . (1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明;(3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.图1 图2【2019房山一模】27.已知:Rt△ABC 中,∠ACB =90°,AC =BC .(1) 如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示) ; (2) 如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD上,连接CE . ①依题意补全图2;②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明.图1 图2PPEECCBBO OAAB AA2019北京中考数学一模————————————————————————————————几何综合专题【2019大兴一模】27.在Rt△ABC 中,∠ACB =90°,CA =CB .点D 为线段BC 上一个动点(点D 不与点B ,C 重合),连接AD ,点E 在射线AB 上,连接DE ,使得DE =DA .作点E 关于直线BC 的对称点F ,连接BF , DF .(1)依题意补全图形; (2)求证:∠CAD =∠BDF ;(3)用等式表示线段AB ,BD ,BF 之间的数量关系,并证明.【2019通州一模】27. 如图,在等边中,点是线段上一点.作射线,点关于射线的对称点为.连接 并延长,交射线于点. (1)设,用表示的度数;(2)用等式表示线段、、之间的数量关系,并证明.ABC △D BC AD B AD E CE AD F BAF a Ð=a BCF ∠AF CF EF【2019顺义一模】27.已知:如图,在△ABC 中,AB >AC ,∠B =45°, 点D 是BC 边上一点,且AD=AC ,过点C 作CF ⊥AD 于点E ,与AB 交于点F .(1)若∠CAD =α,求∠BCF 的大小(用含α的式子表示); (2)求证:AC =FC ;(3)用等式直接表示线段BF 与DC 的数量关系.【2019密云一模】27. 已知为等边三角形,点D 是线段AB 上一点(不与A、B 重合).将线段CD 绕点C 逆时针旋转得到线段CE.连结DE、BE. (1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作交EB 延长线于点F.用等式表示线段EB、DB 与AF 之间的数量关 系并证明.ABCDFEABC D 60°AF EB ^图2D CBA图1ABCD2019北京中考数学一模————————————————————————————————几何综合专题【2019延庆一模】27.已知:四边形ABCD 中,,,AD =CD ,对角线AC ,BD相交于点O ,且BD 平分∠ABC ,过点A 作,垂足为H . (1)求证:;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.【2019平谷一模】27.在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD交AC 于P .(1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示); (2)求AB ,BC ,BD 之间的数量关系; (3)当α=30°时,直接写出AC ,BD 的关系.120ABC Ð=°60ADC Ð=°AH BD ^ADB ACB Ð=ÐH O DC BA【2019燕山一模】 27.如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .(1) ① 依题意补全图1;② 求证:∠EDC =∠BAD ;(2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为: ;② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明①中的猜想.(一种方法即可)【2019怀柔一模】27. 如图,等边△ABC 中,P 是AB 上一点,过点P 作PD⊥AC 于点D,作PE⊥BC 于点E,M是AB 的中点,连接ME,MD.(1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB 的数量关系,并加以证明; (3)求证:MD=ME.D CBAC。
2019年北京市各区一模数学试题分类汇编——几何综合题(房山)27. 已知:Rt △ABC 中,∠ACB =90°,AC =BC .(1)如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示) ;(2)如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE . ①依题意补全图2;②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明.图1 图2B AA(门头沟)27.如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F . (1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明; (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.图1 图2(密云)27. 已知△ABC 为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60°得到线段CE .连结DE 、BE .(1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB 交EB 延长线于点F .用等式表示线段EB 、DB 与AF 之间的数量关系并证明.PPEECCBBOOAA图2D CBA图1A B CD(平谷)27.在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD 交AC 于P .(1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示); (2)求AB ,BC ,BD 之间的数量关系; (3)当α=30°时,直接写出AC ,BD 的关系.(石景山)27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC , 使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.DB A。
2019年北京市各区一模数学试题分类汇编——几何综合题(海淀)27.如图,在等腰直角△ABC 中,90ABC ?°,D 是线段AC 上一点(2CA CD > ),连接BD ,过点C 作BD 的垂线,交BD 的延长线于点E ,交BA 的延长线于点F . (1)依题意补全图形;(2)若ACE α?,求ABD Ð的大小(用含α的式子表示); (3)若点G 在线段CF 上,CG BD =,连接DG .①判断DG 与BC 的位置关系并证明;②用等式表示DG ,CG ,AB 之间的数量关系为 .(西城)27.如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.(东城)27.如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C 关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF . (1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接AC△ACC ′的面积最大值.PBA(朝阳)27.如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转a°(0<a<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的a的值;(3)若AB=2,求AD的长.(石景山)27.如图,在等边△ABC中,D为边AC的延长线上一点(),平移线段BC,CD AC使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.(1)依题意补全图形;(2)求证:AG = CD;(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.BD(丰台)27.在△ABC中,∠ACB=90°,AC=BC, D为AB的中点,点E为AC延长线上一点,连接DE,过点D作DF⊥DE交CB的延长线于点F.(1)求证:BF= CE;(2)若CE=AC,用等式表示线段DF与AB的数量关系,并证明.(房山)27. 已知:Rt △ABC 中,∠ACB =90°,AC =BC .(1)如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示) ;(2)如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE . ①依题意补全图2;②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明.图1 图2B AA(门头沟)27.如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F . (1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明; (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.图1 图2PPEECCBBOOAA(密云)27. 已知△ABC 为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60°得到线段CE .连结DE 、BE . (1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB 交EB 延长线于点F .用等式表示线段EB 、DB 与AF 之间的数量关系并证明.图2DCBA图1ABCD(平谷)27.在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.(通州)27.如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD 的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.(延庆)27.已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD 相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H . (1)求证:ADB ACB ∠=∠;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.H O DBA(燕山)27.如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .(1) ① 依题意补全图1;② 求证:∠EDC =∠BAD ;(2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为: ;② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明①中的猜想.(一种方法即可)备用图AB CD 图1D C B A(顺义)27.已知:如图,在△ABC 中,AB >AC ,∠B =45°, 点D 是BC 边上一点,且AD=AC ,过点C 作CF ⊥AD 于点E ,与AB 交于点F . (1)若∠CAD =α,求∠BCF 的大小(用含α的式子表示); (2)求证:AC =FC ;(3)用等式直接表示线段BF 与DC 的数量关系.ABCDFE(怀柔)27.如图,等边△ABC中,P是AB上一点,过点P作PD⊥AC于点D,作PE⊥BC于点E,M是AB的中点,连接ME,MD.(1)依题意补全图形;(2)用等式表示线段BE,AD与AB的数量关系,并加以证明;(3)求证:MD=ME.C。
1(2019.1+++昌平+++初三上+++期末)(1)①圆心O 的位置在线段AB 的中点,正确画出图②∵AE ⊥BD ∴△AEB 为直角三角形 ∵点O 为线段AB 的中点 ∴OE =OA =OB =r ∴点E 在⊙O 上 (2)①补全图形=AB证明如下: ∵AC =BC ,∠ACB =90° ∴∠BAC =∠CBA = 45° ∵BC BC =∴∠BEC =∠BAC = 45° ∵AE ⊥BD ∴∠BEA =90° ∴∠CEA =90°+ 45°= 135° ∵∠CEF =180°-∠CEB =135° ∴∠CEA =∠CEF ∵AE =EF ,∠CEA =∠CEF ,CE =C E ∴△CEA ≌△CEF ∴CF =CA ∵在等腰t ∆R ACB中,=AB∴=AB2(2019.1+++丰台+++初三上+++期末) (1)60° (2)1 (3)11AF BF n =- 证明:延长FE 至G ,使FG =FB 连接GB ,GC由(1)知,∠BFG=60° ∴△BFG 为等边三角形 ∴BF =BG ,∠FBG=∠FGB=60° ∵△ABC 是等边三角形 ∴AB=BC ,∠ABC=60° ∴∠ABF=∠CBG ∴△ABF ≌△CBG ∴∠BFA=∠BGC=120° ∴∠FGC=60° ∴∠FGC=∠BFG ∴FB ∥CG ∴AF AD FG DC = ∵1AD AC n = ∴11AF FG n =- ∴11AF BF n =-CAE BD F3(2019.1+++海淀+++初三上+++期末) (1)①证明:连接AD ,如图1∵点C 与点D 关于直线l 对称 ∴AC AD = ∵AB AC = ∴AB AC AD ==∴点B C D ,,在以A 为圆心,AB 为半径的圆上 ②12α(2)证法一: 证明:连接CE ,如图2 ∵=60α°∴1302BDC α∠==° ∵DE BD ⊥ ∴90CDE ∠=°60BDC -∠=° ∵点C 与点D 关于直线l 对称 ∴EC ED = ∴CDE △是等边三角形∴CD CE =,60DCE ∠=° ∵AB AC =,60BAC ∠=° ∴ABC △是等边三角形 ∴CA CB =,60ACB ∠=° ∵ACE DCE ACD ∠=∠+∠,BCD ACB ACD ∠=∠+∠ ∴ACE BCD ∠=∠ ∴ACE BCD △≌△ ∴AE BD = 证法二:证明:连接AD ,如图2 ∵点C 与点D 关于直线l 对称∴AD AC AE CD =,⊥ ∴12DAE DAC ∠=∠∵12DBC DAC ∠=∠∴DBC DAE ∠=∠∵AE CD ⊥,BD DE ⊥∴90BDC CDE DEA CDE ∠+∠=∠+∠=°∴BDC DEA ∠=∠ ∵60AB AC BAC =∠=,° ∴ABC △是等边三角形 ∴CA CB AD == ∴BCD △≌ADE △ ∴AE BD = (3)134(2019.1+++怀柔+++初三上+++期末) (1)补全图形,如图所示(2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°图2lD A 图1lE DA图2证明:如图,由平移可知,PQ=DC ∵四边形ABCD 是菱形,∠ADC=60° ∴AD=DC ,∠ADB =∠BDQ =30° ∴AD=PQ∵HQ=HD ∴∠HQD =∠HDQ =30° ∴∠ADB =∠DQH ,∠D HQ=120°∴△ADH ≌△PQH ∴AH =PH ,∠A HD =∠P HQ ∴∠A HD+∠DHP =∠P HQ+∠DHP ∴∠A HP=∠D HQ ∵∠D HQ=120° ∴∠A HP=120° (3)求解思路如下:由∠A HQ=141°,∠B HQ=60°解得∠A HB=81°a.在△ABH 中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°b.在△AHP 中,由∠A HP=120°,AH=PH ,解得∠PA H=30°c.在△ADB 中,由∠A DB=∠A BD= 30°,解得∠BAD =120° 由a 、b 、c 可得∠DAP =21°在△DAP 中,由∠A DP= 60°,∠DAP =21°,AD=1,可解△DAP ,从而求得DP 长5(2019.1+++通州+++初三上+++期末) (1)BF =(2)①依据题意补全图形 ②证明:如图,连接BF 、GB ∵四边形ABCD 是正方形∴AD =AB ,90ABC BAD ∠=∠=︒,AC 平分BAD ∠ ∴45BAC DAC ∠=∠=︒.在△ADF 和△ABF 中 AD AB DAC BAC AF AF =⎧⎪∠=∠⎨⎪=⎩,,,∴△ADF ≌△ABF ∴DF BF = ∵EF ⊥AC ,90ABC ∠=︒,点G 是AE 的中点 ∴AG EG BG FG === ∴点A 、F 、E 、B 在以点G 为圆心,AG 长为半径的圆上 ∵BF BF =,45BAC ∠=︒ ∴290BGF BAC ∠=∠=︒∴△BGF 是等腰直角三角形∴BF =∴DF =A BCDP HQ6(2019.1+++燕山+++初三上+++期末)(1) ① ∠BCE =35° ② AE =CE证明:过点B 作BG ⊥BE ,交AM 于点G∴∠GBE =∠GBC +∠2=90° ∵正方形ABCD ∴AB =BC ,∠ABC =∠1+∠GBC =90° ∴∠1=∠2 ∵∠ABC =∠CEA =90°,∠4=∠5 ∴△ABF ∽△CEF∴∠α=∠3 ∴在△ABG 和△CBE 中 ∠1=∠2,AB =BC ,∠α=∠3∴△ABG ≌△CBE ∴AG =CE ,BG =BE ∵在△BEG 中,∠GBE =90°,BG =BE ∴GE∴AE =AG +GE =CE(2) AE +CE7(2019.1+++房山+++初三上+++期末) (1)补全图形如图分(2)证明:∵AD 平分∠BAC∴∠BAD =∠CAD ∵FE ⊥AD , ∠ACF =90°∴∠CFH =∠CAD ∴∠BAD =∠CFH , 即∠(3)猜想: 222AB FD FB += 证明:连接AF∵EF 为AD 的垂直平分线 ∴AF=FD ,∠ ∴∠DAC +∠CAF =∠B +∠BAD ∵AD 是角平分线 ∴∠BAD =∠CAD ∴∠CAF =∠B ∴∠BAF =∠BAC +∠CAF =∠BAC +∠B =90° ∴222AB AF FB += ∴222+=AB FD FB8(2019.1+++门头沟+++初三上+++期末)(1)证明:如图1,∵∠ACB = 90°,AE⊥BD ∴∠ACB =∠AEB = 90°又∵∠1=∠2 ∴∠CAE =∠CBD(2)①补全图形如图2②EF BE =+证明:在AE上截取AM,使AM=BE又∵AC=CB,∠CAE =∠CBD ∴△ACM≌△BCE∴CM=CE,∠ACM=∠BCE 又∵∠ACB =∠ACM+∠MCB=90°∴∠MCE=∠BCE+∠MCB=90°∴.ME=又∵射线AE绕点A顺时针旋转45°,后得到AF,且∠AEF=90°∴EF=AE=AM+ME=BE9(2019.1+++朝阳+++初三上+++期末)图2 图110(2019.1+++西城+++初三上+++期末)11(2019.1+++大兴+++初三上+++期末) (1)补全的图形如图所示 (2)解:由题意可知,∠ECF=∠ACG=90° ∴∠FCG=∠ACE=α∵过点A 作AB 的垂线AD ∴∠BAD=90° ∵AB=BC,∠ABC =90° ∴∠ACB=∠CAD= 45° ∵∠ACG=90° ∴∠AGC=45° ∴∠AFC =α+45°(3)AE ,AF 与BC 之间的数量关系为2AE AF BC += 由(2)可知∠DAC=∠AGC=45° ∴CA=CG ∵∠ACE =∠GCF ,∠CAE =∠CGF ∴△ACE ≌△GCF ∴AE =FG 在Rt △ACG 中∴AG =∴AE AF +=∵AC = ∴2AE AF BC +=12(2019.1+++东城+++初三上+++期末)无答案27.解:(1)…………………………………………………………1分(2)∵点P 为线段DE 的中点 ∴DP =EP在△MPE 和△FPD 中 MP FP MPEFPD EP DP =⎧⎪∠=∠⎨⎪=⎩∴△MPE≌△FPD(SAS)…………………………………………………………2分∴DF=ME∵E为MN的中点∴MN=2ME∵MN=2MB∴MB=ME=D F.…………………………………………………………3分(3)结论:AM …………………………………………………………4分连接AF由(2)可知:△MPE≌△FPD∴∠DFP=∠EMP.∴DF∥ME.∴∠FDN=∠MND.在正方形ABCD中,AD=AB,∠BAD=90°又∵∠BMN=90°∴∠MBA+∠MNA=180°又∵∠MNA+∠MND=180°∴∠MBA=∠MND∴∠FDN =∠MBA …………………………………………………………5分 在△FAD 和△MAB 中 FD MB FDA MBA DA BA =⎧⎪∠=∠⎨⎪=⎩∴△F AD ≌△MAB (SAS ) ∴∠FAD =∠MAB FA =MA∴∠FAM =∠DAB =90°∴△FAM 为等腰直角三角形…………………………………………………………6分∴FM 又∵FM =2PM∴AM = …………………………………………………………7分13(2019.1+++平谷+++初三上+++期末)。
几何综合东城区27. 已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD的延长线于点H .(1)如图1,若60BAC ∠=︒①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.27. (1)①75B ∠=︒,45ACB ∠=︒;--------------------2分②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=︒,AD=2可得DE =1,AE = Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1.∴AC 1=.Rt △ACH 中,由30DAC ∠=︒,可得AH =; --------------4分(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH . 易证△ACH ≌△AFH . ∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =, ∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. --------------7分 西城区27.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图,当045α︒<<︒时, ①依题意补全图.②用等式表示NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α︒<<︒时,探究NCE ∠与BAM ∠之间的数量关系并加以证明. (3)当090α︒<<︒时,若边AD 的中点为F ,直接写出线段EF 长的最大值.CDBA图1备用图C DBAM【解析】(1)①补全的图形如图所示:NEMABD C②2NCE BAM ∠=∠.(2)1902MCE BAM ∠+∠=︒,连接CM ,NQMABDC EDAM DCM ∠=∠,DAQ ECQ ∠=∠,∴2NCE MCE DAQ ∠=∠=∠,∴12DCM NCE ∠=∠,∵BAM BCM ∠=∠,90BCM DCM ∠+∠=︒,∴1902NCE BAM ∠+∠=︒. (3)∵90CEA ∠=︒, ∴点E 在以AC 为直径的圆上,E∴max 1EF FO r =+= 海淀区27((27..解:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=,∴30OPE ∠=.∴30DPA OPE ∠=∠=.∴120EPD ∠=. ……………1分 ∵DP PE =,6DP PE +=, ∴30PDE∠=,3PD PE ==.∴cos30DF PD =⋅︒=∴2DE DF ==………………3分 (2)当M 点在射线OA上且满足OM =DMME的值不变,始终为1.理由如下: ………………4分当点P 与点M 不重合时,延长EP 到K 使得PK PD =. ∵,DPA OPE OPE KPA ∠=∠∠=∠, ∴KPA DPA ∠=∠. ∴KPM DPM ∠=∠. ∵PK PD =,PM 是公共边, ∴KPM △≌DPM △.∴MK MD =. ………………5分 作ML ⊥OE 于L ,MN ⊥EK 于N .∵60MO MOL =∠=, ∴sin 603ML MO =⋅=. ………………6分∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MK ME =. ∴ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立. ……………7分丰台区27.如图,Rt△ABC中,∠ACB = 90°,CA = CB,过点C在△ABC外作射线CE,且∠BCE = α,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.(1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA的度数;(3)当0°<α< 45°时,用等式表示线段AM,CN之间的数量关系,并证明.A BCE27.解:(1)如图;…………………1分(2)45°;…………………2分(3)结论:AM.…………………3分证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=α.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=12(180°-∠ACD)=12(180°-90°-α-α)=45°-α.∴∠5=∠2+∠3=α+45°-α=45°.…………………5分∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,∴∠G =90°=∠8. ∴在△BCN 和△CAG 中, ∠8=∠G , ∠7=∠6,BC =CA ,∴△BCN ≌△CAG .∴CN =AG . ∵Rt △AMG 中,∠G =90°,∠5=45°,∴AM .∴AM . …………………7分 (其他证法相应给分.)石景山区27.在正方形ABCD 中,M 是BC 边上一点,点P 在射线AM 上,将线段AP 绕点A 顺时针旋转90°得到线段AQ ,连接BP ,DQ . (1)依题意补全图1;(2)①连接DP ,若点P ,Q ,D 恰好在同一条直线上,求证:2222DP DQ AB +=; ②若点P ,Q ,C 恰好在同一条直线上,则BP 与AB 的数量关系为: .27.(1)补全图形如图1. ………………… 1分(2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分 证明:过点A 作AE ⊥PQ 于E ,连接BE AC ∴AE 是△PAQ 的垂线∵三△PAQ 是等腰直角三角形(已证) ∴AE 是等腰直角三角形PAQ 的垂线,角平分线 ∴∠AEP=90°,AE=PEC图1∵正方形ABCD∴∠ABC=90°∠ACB=∠BAC=45°∠AEP+∠ABC=180°∴A ,B,C,E四点共圆∴∠AEB=∠ACB=45°,∠CEB=∠BAC=45°∴∠AEB=∠CEB=45°∵BE=BE∴△ABE≌△PBE (SAS)∴BP=AB朝阳区27. 如图,在菱形ABCD中,∠DAB=60°,点E为AB边上一动点(与点A,B不重合),连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD于点F,G.(1)依题意补全图形;(2)若∠ACE=α,求∠AFC的大小(用含α的式子表示);(3)用等式表示线段AE、AF与CG之间的数量关系,并证明.27.(1)补全的图形如图所示.……………………………………1分(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°,∴∠DAC=∠BAC= 30°. ……………………………………………2分 ∴∠AGC=30°.∴∠AFC =α+30°. …………………………3分(3)用等式表示线段AE 、AF 与CG 之间的数量关系为CG AF AE 3=+.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG. …………………………………………………5分∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF ,∴△ACE ≌△GCF. ……………………………6分 ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠⋅= ∴AG =3CG . …………………………………………7分 即AF+AE =3CG .燕山区27.如图,抛物线)0(2>++=a c bx ax y 的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是 (2)抛物线221x y =对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是 (3)抛物线)0(3542>--=a a ax y 对应的碟宽在x 轴上,且AB =6. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (p x ,p y ),使得∠APB 为锐角,若有,请求出p y 的取值范围.若没有,请说明理由. ,备用图27.解:(1)MN 与AB 的关系是 MN ⊥AB ,MN=21AB…………………………………2′(2) m= 2 对应的碟宽是4…………………………………4′(3) ①由已知,抛物线必过(3,0),代入)0(3542>--=a a ax y准蝶形AMBABM得,03549=--a a31=a ∴抛物线的解析式是3312-=x y …………………………………5′ ② 由①知,3312-=x y 的对称轴上P (0,3),P (0,-3)时,∠APB 为直角, ∴在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,p y 的取值范围是33〉〈-p p y y 或…………………………………7′门头沟区27. 如图,在△ABC 中,AB =AC ,2A α∠=,点D 是BC 的中点,DE AB E ⊥于点,DF AC F ⊥于点.(1)EDB ∠=_________°;(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N .①根据条件补全图形;②写出DM 与DN 的数量关系并证明;③用等式表示线段BM CN 、与BC 之间的数量关系, (用含α的锐角三角函数表示)并写出解题思路.27.(本小题满分7分)(1) EDB α∠= ……………………………………………1分 (2)①补全图形正确 ……………………………………2分 ②数量关系:DM DN =…………………………………3分 ∵,AB AC BD DC == ∴DA 平分BAC ∠∵DE AB E ⊥于点,DF AC F ⊥于点∴DE DF = , MED NFD ∠=∠ ……………………4分BB∵2Aα∠=∴1802EDFα∠=︒-∵1802MDNα∠=︒-∴MDE NDF∠=∠∴MDE NDF△≌△……………………5分∴DM DN=③数量关系:sinBM CN BCα+=⋅……………………6分证明思路:a.由MDE NDF△≌△可得EM FN=b. 由AB AC=可得B C∠=∠,进而通过BDE CDF△≌△,可得BE CF=进而得到2BE BM CN=+c.过BDERt△可得sinBEBDα=,最终得到sinBM CN BCα+=⋅……………7分大兴区27.如图,在等腰直角△ABC中,∠CAB=90°,F是AB边上一点,作射线CF,过点B作BG⊥C F于点G,连接AG.(1)求证:∠ABG=∠ACF;(2)用等式表示线段C G,AG,BG之间的等量关系,并证明.27.(1)证明:∵∠CAB=90°.∵BG⊥CF于点G,∴∠BGF=∠CAB=90°.∵∠GFB=∠CFA. ………………………………………………1分∴∠ABG=∠ACF. ………………………………………………2分(2)CG+BG. …………………………………………………3分证明:在CG上截取CH=BG,连接AH,…………………………4分∵△ABC是等腰直角三角形,∴ ∠CAB =90°,AB =AC . ∵ ∠ABG =∠ACH .∴ △ABG ≌△ACH . …………………………………………………… 5分 ∴ AG =AH ,∠GAB =∠HAC . ∴ ∠GAH =90°.∴ 222AG AH GH +=.∴ GH. ………………………………………………………6分 ∴ CG =CH +GH+BG . ………………………………………7分 平谷区27.在△ABC 中,AB=AC ,CD ⊥BC 于点C ,交∠ABC 的平分线于点D ,AE 平分∠BAC 交BD 于点E ,过点E 作EF ∥BC 交AC 于点F ,连接DF . (1)补全图1;(2)如图1,当∠BAC =90°时,①求证:BE=DE ;②写出判断DF 与AB 的位置关系的思路(不用写出证明过程); (3)如图2,当∠BAC=α时,直接写出α,DF ,AE 的关系.27.解:(1)补全图1; (1)图1BB图2B(2)①延长AE ,交BC 于点H . ····· 2 ∵AB=AC , AE 平分∠BAC ,∴AH ⊥BC 于H ,BH=HC .∵CD ⊥BC 于点C , ∴EH ∥CD .∴BE=DE . (3)②延长FE ,交AB 于点G .由AB=AC ,得∠ABC =∠ACB . 由EF ∥BC ,得∠AGF =∠AFG . 得AG=AF .由等腰三角形三线合一得GE=E F . ·· 4 由∠GEB =∠FED ,可证△BEG ≌△DEF .可得∠ABE =∠FDE . (5)从而可证得DF ∥AB . ······· 6 (3)tan 2DF αAE . (7)怀柔区27.如图,在△ABC 中,∠A=90°,AB=AC ,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC. (1)依题意补全图形; (2)求∠ECD 的度数;(3)若∠CAE=7.5°,AD=1,将射线DA 绕点D 顺时针旋转60°交EC 的延长线于点F ,请写出求AF 长的思路.BBB27.(1)如图………………………………………………1分(2) ∵线段AD 绕点A 逆时针方向旋转90°,得到线段AE. ∴∠DAE=90°,AD=AE. ∴∠DAC+∠CAE =90°. ∵∠BAC=90°, ∴∠BAD+∠DAC =90°.∴∠BAD=∠CAE . …………………………………………………………………………2分 又∵AB=AC, ∴△ABD ≌△ACE. ∴∠B=∠ACE.∵△ABC 中,∠A=90°,AB=AC,∴∠B=∠ACB=∠ACE=45°. ∴∠ECD=∠ACB+∠ACE=90°. ……………………………………………………………4分(3)Ⅰ.连接DE,由于△ADE 为等腰直角三角形,所以可求DE=2;……………………5分 Ⅱ.由∠ADF=60°,∠CAE=7.5°,可求∠EDC 的度数和∠CDF 的度数,从而可知DF 的长; …………………………………………………………………………………………………6分Ⅲ.过点A 作AH ⊥DF 于点H ,在Rt △ADH 中, 由∠ADF=60°,AD=1可求AH 、DH 的长; Ⅳ. 由DF 、DH 的长可求HF 的长;Ⅴ. 在Rt △AHF 中, 由AH 和HF,利用勾股定理可求AF 的长.…………………………7分延庆区27.如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE 于点F ,连接FC .(1)求证:∠FBC =∠CDF .(2)作点C 关于直线DE 的对称点G ,连接CG ,FG .①依据题意补全图形;②用等式表示线段DF ,BF ,CG 之间的数量关系并加以证明.27.(1)证明:∵四边形ABCD 是正方形,∴∠DCB =90°. ∴∠CDF +∠E =90°. ∵BF ⊥DE ,∴∠FBC +∠E =90°. ∴∠FBC =∠CDF .……2分(2)①图1FDEC BA GFDECBA……3分②猜想:数量关系为:BF=DF+CG.证明:在BF上取点M使得BM=DF连接CM.∵四边形ABCD是正方形,∴BC=DC.∵∠FBC =∠CDF,BM=DF,∴△BMC≌△DFC.∴CM=CF,∠1=∠2.∴△MCF是等腰直角三角形.∴∠MCF =90°,∠4=45°.……5分∵点C与点G关于直线DE对称,∴CF=GF,∠5=∠6.∵BF⊥DE,∠4=45°,∴∠5=45°,∴∠CFG =90°,∴∠CFG=∠MCF,∴CM∥GF.∵CM=CF,CF=GF,∴CM=GF,∴四边形CGFM是平行四边形,∴CG=MF.∴BF=DF+CG.……7分顺义区27. 如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.(1)依题意补全图形;(2)求证:∠FAC=∠APF;(3)判断线段FM与PN的数量关系,并加以证明.27.(1)补全图如图所示. ………………………………………………………… 1分 (2)证明∵正方形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°, ∴∠PAH =45°-∠BAE . ∵FH ⊥AE .∴∠APF =45°+∠BAE . ∵BF=BE ,∴AF=AE ,∠BAF =∠BAE . ∴∠FAC =45°+∠BAF .∴∠FAC =∠APF .…………………………… 4分(3)判断:FM =PN . …………………………………… 5分 证明:过B 作BQ ∥MN 交CD 于点Q ,∴MN =BQ ,BQ ⊥AE . ∵正方形ABCD ,∴AB =BC ,∠ABC =∠BCD=90°. ∴∠BAE =∠CBQ . ∴△ABE ≌△BCQ . ∴AE =BQ . ∴AE =MN . ∵∠FAC =∠APF , ∴AF =FP . ∵AF=AE , ∴AE =FP . ∴FP =MN .∴FM =PN .…………………………………………………………… 8分。
201905初三数学一模试题整理:直线与双曲线的小综合(教师版)本题主要考察根据已知条件,分析、确定一次函数图象的变化情况,从运动与变化的角度,结合函数图象,观察、分析、发现与变量对应的数量关系的规律,考察函数思想、数形结合、分类与整合的数学思想.解决方法主要是要正确并准确的画图,借助图象(图形)的直观性,找出临界位置的点,将其坐标带入相应函数的表达式计算参数的值,进而得出参数的取值范围. 注意在写取值范围时,别将参数取值范围的大小写反.一、直线与双曲线综合----与面积有关的问题1.(2019西城一模第22题)在平面直角坐标系xOy 中,直线l :y x b =+与x 轴交于点A (2-,0),与y 轴交于点B .双曲线ky x=与直线l 交于P ,Q 两点,其中点P 的纵坐标大于点Q 的纵坐标. (1)求点B 的坐标;(2)当点P 的横坐标为2时,求k 的值; (3)连接PO ,记△POB 的面积为S ,若112S <<,直接写出k 的取值范围.答案:22.解:(1)∵直线l :y x b =+与x 轴交于点A (2-,0),∴02b =-+,解得2b =. …………………………………………………1分 ∵直线l :2y x =+与y 轴交于点B , 令0x =,则2y =,∴点B 的坐标为(0,2). …………………………………………………2分(2)∵点P 在直线l :2y x =+上,且点P 的横坐标为2,∴点P 的纵坐标为4. ∵点P 在双曲线ky x=上, ∴8k =. ………………………………………………………………………3分(3)314k -<<-或534k <<. …………………………………………………5分2.(2019密云一模第23题). 已知直线3y kx k =+ 与函数(0)my x x=> 交于A (3,2). (1)求k ,m 值.(2)若直线3y kx k =+与x 轴交于点P ,与y 轴交于点Q.点B 是y 轴上一点,且ABQ S ∆=2POQ S ∆.求点B 的纵坐标.答案:(1)由已知,直线3y kx k =+ 与函数(0)my x x=> 交于A (3,2). ∴ 3k+3k=2,23m = 解得13k =,m=6 .................................2分(2)由(1),13k =,故此直线表达式为113y x =+令x=0,则y=1;令y=0,则3x =-. ∴P(-3,0),Q(0,1).过点A 作AD ⊥y 轴,垂足为D. ∵ABQ S ∆=2POQ S ∆∴122BQ AD OP OQ ⨯⨯=⨯⨯ 即11323222BQ ⨯⨯=⨯⨯⨯ ∴BQ=2,∴B 点纵坐标为3或-1. .................................6分答案:(1)由题意可求:m = 2,n = -1.………………………………………………………………… 2分将(2,3),B (-6,-1)带入y kx b =+,得 32,16.k b k b =+⎧⎨-=-+⎩ 解得 1,22.k b ⎧=⎪⎨⎪=⎩ ∴ 直线的解析式为122y x =+. …………… 3分 (2)(-2,0)或(-6,0). …………………………………………………………………… 5分4.(2019顺义一模第23题)在平面直角坐标系xOy 中,直线26y x =-与双曲线ky x=(0≠k )的一个交点为A (m ,2),与x 轴交于点B ,与y 轴交于点C .(1)求点B 的坐标及k 的值;(2)若点P 在x 轴上,且∆APC 的面积为16,求点P 的坐标.答案:23.解:(1)令0y =,则260x -=,可得3x =,∴直线26y x =-与x 轴交点B 的坐标为(3,0),……………1分将A (m ,2),代入26y x =-,得4m =,将A (4,2),代入ky x=,得8k =,………………3分(2)过点A 作AM ⊥x 轴于点M ,∵A (4,2),C (0,-6),…………………………4分 ∴OC =6,AM =2, ∵1126422APC APB CPB S S S PB PB PB ∆∆∆=+==⨯⨯+⨯⨯=, ∵16APC S ∆=, ∴PB =4,∴1P (-1,0),2P (7,0) ……………………………………6分二、直线与双曲线综合----图象的上下左右位置关系问题1.(2019海淀一模第23题)在平面直角坐标系xOy 中,直线2y x=(1)求b 和m 的值;(2)将点B 向右平移到y 轴上,得到点C ,设点B 关于原点的对称点为D ,记线段BC 与AD 组成的图形为G .① 直接写出点C ,D 的坐标; ② 若双曲线ky x=与图形G 恰有一个公共点,结合函数图象,求k 的取值范围. 答案:(1)∵直线2y x b =+经过点A (1,m ),B (1-,1-),∴1b =.又∵直线2y x b =+经过点A (1,m ), ∴3m =.(2)①C (0,1-),D (1,1).②函数ky x=的图象经过点A 时,3k =.函数ky x=的图象经过点D 时,1k =,此时双曲线也经过点B , 结合图象可得k 值得范围是0113k k <<<≤或.2.(2019燕山一模第24题)如图,在平面直角坐标系xOy 中,直线l :1(0)y kx k =-≠与函数(0)my x x=>的图象交于点B (3,2). (1) 求k ,m 的值;(2) 将直线l 沿y 轴向上平移t 个单位后,与y 轴交于点C ,与函数(0)my x x=>的图象交于点D . ① 当t =2时,求线段CD 的长;②≤CD≤,结合函数图象,直接写出t 的取值范围.答案:(1) 将点A (3,2)的坐标分别代入1y kx =-和my x=中,得 0=k ×1-1, 23m =, ∴k =1,m =3×2=6. ………………………………2分(2) ① ∵直线1y x =-与y 轴交于点B (0,-1),∴当t =2时,C (0,1). ………………………………3分 此时直线解析式为1y x =+,代入函数6y x=中整理得, (1)6x x +=,解得13x =-(舍去),22x =, ∴D (2,3),∴CD=. ………………………………4分② 2≤ t ≤6. ………………………………6分在第一象限内,∠OAB =90°,(1)求k 的值;(2)已知点P 坐标为(a ,0),过点P 作直线OB 的垂线l ,点O ,A 关于直线l 的对称点分别为O ’,A ’,若线段O ’A’与反比例函数ky x=的图象有公共点,直接写出a 的取值范围. 23.(1)解:∵△OAB 的面积为2, ∴22k=.∴4k =.………………………………………………………………………2分(2)21a -≤≤-21a ≤≤ ………………………………………………………6分三、直线与双曲线综合----线段倍数关系问题1.(2019石景山一模第23题)如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线y =函数()0ky x x=<的图象于点D .①当1=-n 时,判断线段PD 与PC ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.答案:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6), ∴6k =-. …………… 1分∵直线2y mx =-与x 轴交于点B (-1,0), ∴2m =-. ……………………… 2分(2)①判断:PD =2PC .理由如下: ……… 3分当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2).∴PC =1,PD =2.∴PD =2PC . …………… 4分②10n -<≤或3n -≤. …………… 6分2.(2019通州一模第22题)如图,在平面直角坐标系xOy 中,直线2y x =与函数()0my x x=>的图象交于点A (1,2). (1)求m 的值;(2)过点A 作x 轴的平行线l ,直线2y x b =+与直线l 交于点B ,与函数()0my x x=>的图象交于点C ,与x 轴交于点D .①当点C 是线段BD 的中点时,求b 的值; ②当BC BD >时,直接写出b 的取值范围.答案:(1)把A (1,2)代入函数(0)my x x=>中, ∴21m =. ∴2m =. ……………… 1分(2)①过点C 作x 轴的垂线,交直线l 于点E ,交x 轴于点F .当点C 是线段BD 的中点时,1CE CF ==.∴点C 的纵坐标为1.……………… 2分 把1y =代入函数2y x=中,得2x =.∴点C 的坐标为(2,1). ……………… 3分 把C (2,1)代入函数2y x b =+中,得3b =-. ……………… 4分 ②3b >. ……………… 5分3.(2019丰台一模第23题)如图,在平面直角坐标系xOy 中,直线l :y =x +1与y 轴交于点A ,与函数xky =(x >0)的图象交于点B (2,a ). (1)求a 、k 的值; (2)点M 是函数xky =(x >0)图象上的一点,过点M 作平行于y 轴的直线,交直线l 于点P ,过点A 作平行于x 轴的直线交直线MP 于点N ,已知点M 的横坐标为m .①当23=m 时,求MP 的长; ②若MP ≥PN ,结合函数的图象, 直接写出m 的取值范围.答案:23.解:(1)由题意,得A (0,1) .∵直线l 过点B (2,a ),∴3a =. .................…..........1分∵反比例函数(0)k y x x=>的图象经过点B (2,3),∴6k =. .................…..........2分(2)①由题意,得335(,4),(,)222M P .∴32MP =; .................…..........4分 ②3062m m <≤≥或. .................…..........6分4.(2019大兴一模第23题)如图,在平面直角坐标系xOy 中,直线y=x 与函数y =kx(x <0)的图象交于点A(m ). (1)求m ,k 的值;(2)点P (x P ,y P )为直线y=x 上任意一点,将直线y=x 沿y 轴向上平移两个单位得到直线l ,过点P 作x 轴的垂线交直线l 于点C ,交函数y =kx(x < 0)的图象于点D . ①当x P = -1时,判断PC 与PD 的数量关系,并说明理由; ②若PC+PD ≤4时,结合函数图象,直接写出x P 的取值范围. 23.解:(1)∵直线y=x 经过点A (m )∴m =1分又∵函数y =kx(x <0)的图象经过点A ( ∴k =3 …………………………………………………………………2分 (2)①PC=PD ……………………………………………………………3分∵点P 为直线y =x 上一点,x p =-1, ∴y P =-1, ∴P (-1,-1)∵y =x 向上平移两个单位, ∴l :y =x +2∴C (-1,1) ……………………………………………………… 4分 把x =-1代入3y x=∴y =-3∴点D 的坐标为(-1,-3)∴PC=PD =2 ………………………………………………………… 5分 ②-3≤x P ≤-1 ……………………………………………………6分四、直线与双曲线综合----特殊三角线问题1.(2019东城一模第22题)在平面直角坐标系xOy 中,直线(0)y kx k =≠与双曲线y =8(0)x x> 交于点A(2,n )(1)求n 及k 的值;(2)点B 是y 轴正半轴上一点,且△OAB 是等腰三角形,请直接写出所有..符合条件的点B 坐标.答案:22.解:(1)点A (2,n )在双曲线8y x=上, ∴n =842= ………………………………………………………………1分 ∵点A (2,4)在直线y kx =上,∴k=2……………………………………………………………………2分(2)(0,8)(0,0,52)…………………………………5分五、直线与双曲线综合----整数点问题1.(2019延庆一模第22题)在平面直角坐标系xOy 中,函数ky x=(0x >)的图象经过边长为2的正方形OABC 的顶点B ,如图,直线1y mx m =++与k y x=(0x >)的图象交于点D (点D 在直线BC 的上方),与x轴交于点E .(1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记ky x=(0x >)的图象在点B ,D 之间 的部分与线段AB ,AE ,DE 围成的区域 (不含边界)为W . ①当12m =时,直接写出区域W 内的整点个数; ②若区域W 内恰有3个整点,结合函数图象, 求m 的取值范围.答案:(1)由题意可知:边长为2的正方形OABC 的顶点B 的坐标为(2,2)∵函数ky x=(0x >)的图象经过B (2,2) ∴ 4k =. ……2分(2)①2个 . ……3分 ②112m <≤. ……5分 2(2019平谷一模第21题)如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象经过点A ,作AC ⊥x 轴于点C . (1)求k 的值;(2)直线AB :()0y ax b a =+>图象经过点A 交x 轴于点B .横、纵坐标都是整数的点叫做整点.线段AB ,AC ,BC 围成的区域(不含边界)为W .①直线AB 经过()0,1时,直接写出区域W 内的整点个数; ②若区域W 内恰有1个整点,结合函数图象,求a 的取值范围.答案:(1)k =4; (1)(2)①1个; (2)②当直线AB 经过点A (2,﹣2),(0,1)时区域W 内恰有1个整点, ∴12a =. 当直线AB 经过点A (2,﹣2),(1,1)时区域W 内没有整点,∴a =1. (3)∴当112a ≤<时区域W 内恰有1个整点. · (5)3.(2019怀柔一模第23题)在平面直角坐标系xoy 中,直线y=kx+b (k<0),经过点(6,0),且与坐标轴围成的三角形的面积是9,与函数xm=y (0x >)的图象G 交于A ,B 两点. (1)求直线的表达式;(2)横、纵坐标都是整数的点叫作整点.记图像G 在点A 、B 之间的部分与线段AB 围成的区域(不含边界)为W.①当m=2时,直接写出区域W 内的整点的坐标 ;②若区域W 内恰有3个整数点,结合函数图象,求m 的取值范围.答案::如图,(1)设直线与y 轴的交点为C (0,b ),∵直线与两坐标轴围成的三角形的面积是9, ∴9621=⋅⨯b .3±=b . ∵k<0,∴3=b .∴直线y=kx+b 经过点(6,0)和(0,3)∴表达式为321-+=x y ………………………2分 (2)①(3,1)…………………………………4分②当x m=y 图象经过点(1,1)时,则m=1. 当xm=y 图象经过点(2,1)时,则m=2.所以,21<≤m ………………6分六、直线与双曲线综合----线段最小值问题1.(2019房山一模第23题)已知一次函数2y x =的图象与反比例函数x ky =(k ≠ 0) 在第一象限内的图象交于点A (1,m ). (1) 求反比例函数的表达式;(2) 点B 在反比例函数的图象上, 且点B 的横坐标为2.若在x 轴上存在一点M ,使MA +MB 的值最小,求点M 的坐标.答案:(1)∵A (1,m )在一次函数y =2x 的图象上∴m =2, ………………………………… 1分将A (1,2)代入反比例函数xky =得k =2 ∴反比例函数的表达式为x y 2=………………………………… 3分(2)作点A 关于x 轴的对称点A ',连接B A '交x 轴于点M ,此时MA +MB 最小 ………………………………… 4分 A 关于x 轴的对称点A '(1,-2), ∵B (2,1)………………………………… 5分………………………………… 6分。
顺义区2019届初三第一次统一练习数学试卷学校名称姓名准考证号考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将答题卡交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个.1.下面四个美术字中可以看作轴对称图形的是A.B.C.D.2.实数a b,在数轴上的位置如图所示,以下说法正确的是A.0+=a b B.0->a b C.0ab>D.b a<3.如左图所示,该几何体的主视图是DCBA4.如果一个多边形的内角和为720°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形5.已知点M(12-m,1-m)在第二象限,则m的取值范围是A.1>m B.12<m C.112<<m D.112-<<m6.如图,A 处在B 处的北偏东45°方向,A 处在C 处的北南偏西15°方向,则∠BAC 等于A .30°B .45°C .50°D .60°7.如图,随机闭合开关123S S S 、、中的两个,则灯泡发光的概率为A .34 B .23 C .13 D .128.如图,点A 、C 、E 、F 在直线l 上,且AC=2,EF=1,四边形ABCD ,EFGH ,EFNM 均为正方形,将正方形ABCD 沿直线l 向右平移,若起始位置为点C 与点E 重合,终止位置为点A 与点F 重合.设点C 平移的距离为x ,正方形ABCD 的边位于矩形MNGH 内部的长度为y ,则y 与x 的函数图象大致为321O yx321O yxx y O 123321O yx A B CD二、填空题(本题共16分,每小题2分)9.分解因式: 22344-+=a b ab b .10.已知:m 、n 为两个连续的整数,且11<<m n ,则+=m n . 11.已知320-+++=x y x y ,则⋅x y 的值为 .12.如图,等边三角形ABC 内接于⊙O ,点D 在⊙O 上,25∠=︒ABD ,则∠=BAD ︒.lABC DMH GNE F DOBAC13.下图是北京市2019年3月1日至20日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良.那么在这20天中空气质量优良天数比例是.14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为________.15.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为.16.利用二维码可以进行身份识别.某校建立了一个身份识别系统,图1是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为32102222a b c d⨯+⨯+⨯+⨯.如图1中的第一行数字从左到右依次为0,1,0,1,序号即为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.若想在图2中表示4班学生的识别图案,请问应该把标号为①、②、③、④的正方形中的(只填序号)涂成黑色.标杆竹竿图2图1④③②①FAB CED三、解答题(本题共68分,第17-22题,每小题5分,第23-26题, 每小题6分,第27、28题,每小题7分)解答应写出文字说明,演算步骤或证明过程.17.计算:()0123tan 30113π---+-o . 18.已知2330+-=x x ,求代数式336133x x x x x -+⎛⎫-÷- ⎪++⎝⎭的值 .19.下面是小明同学设计的“过直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线l 及直线l 外一点P .求作:直线PQ ,使得PQ ⊥l .作法:如图,① 在直线l 上取一点A ,以点P 为圆心,PA 长为半径画弧,与直线l 交于另一点B ;② 分别以A ,B 为圆心,PA 长为半径在直线l 下方画弧,两弧交于点Q ; ③ 作直线PQ .所以直线PQ 为所求作的直线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接PA ,PB ,QA ,QB . ∵PA =PB =QA =QB ,∴四边形APBQ 是菱形( )(填推理的依据). ∴PQ ⊥AB ( )(填推理的依据). 即PQ ⊥l .20.关于x 的一元二次方程2410x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为正整数,且该方程的根都是整数,求m 的值.PlBAPl21.已知:如图,四边形ABCD 是矩形,∠=∠ECD DBA ,90∠=︒CED ,⊥AF BD 于点F .(1)求证:四边形BCEF 是平行四边形; (2)若=4AB ,=3AD ,求EC 的长 .22.已知:如图,AB 是⊙O 的直径,点C 是⊙O 上一点,点P 在AB 的延长线上, 且∠A=∠P=30︒.(1)求证:PC 是⊙O 的切线;(2)连接BC ,若AB=4,求△PBC 的面积.23.在平面直角坐标系xOy 中,直线26y x =-与双曲线ky x=(0≠k )的一个交点为A (m ,2),与x 轴交于点B ,与y 轴交于点C .(1)求点B 的坐标及k 的值;(2)若点P 在x 轴上,且∆APC 的面积为16,求点P 的坐标.EFDABCC PBA O yxOCBA24.为了传承中华优秀传统文化,某校学生会组织了一次全校1200名学生参加的“汉字听写”大赛,并设成绩优胜奖.赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x /分 频数 频率 50≤x <60 10 0.10 60≤x <70 25 0.25 70≤x <80 30 b 80≤x <90 a 0.20 90≤x ≤100 150.15成绩在70≤x <80这一组的是:70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79请根据所给信息,解答下列问题: (1)a = ,b = ; (2)请补全频数分布直方图;(3)这次比赛成绩的中位数是 ;(4)若这次比赛成绩在78分以上(含78分)的学生获得优胜奖, 则该校参加这次比赛的1200名学生中获优胜奖的约有多少人?频数(人数)30102010005060708090成绩x /分25.有这样一个问题:探究函数12y x x =+-的图象与性质. 小亮根据学习函数的经验,对函数12y x x =+-的图象与性质进行了探究.下面是小亮的探究过程,请补充完整:(1)函数12y x x =+-中自变量x 的取值范围是 ; (2)下表是y 与x 的几组对应值. x…2-1-132 74 94 52 3456…y …94-43-12-12-94-25492m92163254…求m 的值 ;(3)在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:①该函数的图象是中心对称图形,对称中心的坐标是 ;②该函数的图象与过点(2,0)且平行于y 轴的直线越来越靠近而永不相交,该函数的图象还与直线 越来越靠近而永不相交.yx 1O26.在平面直角坐标系xOy 中,抛物线 2(3)3y mx m x =+--(0m >)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C , 4=AB ,点D 为抛物线的顶点. (1)求点A 和顶点D 的坐标;(2)将点D 向左平移4个单位长度,得到点E ,求直线BE 的表达式;(3)若抛物线26=-y ax 与线段DE 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知:如图,在△ABC 中,AB >AC ,∠B =45°, 点D 是BC 边上一点,且AD=AC ,过点C 作CF ⊥AD 于点E ,与AB 交于点F .(1)若∠CAD =α,求∠BCF 的大小(用含α的式子表示); (2)求证:AC =FC ;(3)用等式直接表示线段BF 与DC 的数量关系.AB CDF E yxO-1-2-3-4-5-6-75432164321-1-2-3-4-6-55628. 在平面直角坐标系xOy 中,A 、B 为平面内不重合的两个点,若Q 到A 、B 两点的距离相等,则称点Q 是线段AB 的“似中点”.(1)已知A (1,0),B (3,2),在点D (1,3)、E (2,1)、F (4,-2)、G (3,0)中, 线段AB 的“似中点”是点 ; (2)直线33=+y x 与x 轴交于点M ,与y 轴交于点N .①求在坐标轴上的线段MN 的“似中点”;②若⊙P 的半径为2,圆心P 为(t ,0),⊙P 上存在线段MN 的“似中点”,请直接写出t 的取值范围.顺义区2019届初三第一次统一练习数学参考答案及评分参考一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个... 题号 1 2 3 4 5 6 7 8 答案DDCBADBA二、填空题(本题共16分,每小题2分) 题号 91011 12 13 14 15 16 答案2(2)-b a b72-9555%或11201四丈五尺②三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分)17.计算:()0123tan 30113π---+-o.解:原式32331313=-⨯-+-………………………………………………………………4分232=- …………………………………………………………………………………5分18.已知2330+-=x x ,求代数式336133x x x x x -+⎛⎫-÷- ⎪++⎝⎭的值 . 解:∵2330+-=x x∴233x x +=………………………………………………………………………………2分336133x x x x x -+⎛⎫-÷- ⎪++⎝⎭33633x x x x x x -++=⋅--+………………………………………………………………………3分 363x x x x ++=-+()226963x x x x x x ++--=+293x x =+…………………………………………………………………………………4分3=…………………………………………………………………………………………5分19.(1)lPABQ………………………………………………………………2分(2)四条边都相等的四边形是菱形菱形的对角线互相垂直……………………………………………………………5分 20.解:(1)()1641420m m ∆=--=-+………………………………………………2分 ∵原方程有两个不相等的实数根,∴4200m -+>即5m <.………………………………………………………………3分 (2)符合条件的m 的正整数值是1,2,3,4, 当m =1时,该方程为240x x -=,根都是整数; 当m =2时,该方程为2410x x -+=,根不是整数; 当m =3时,该方程为2420x x -+=,根不是整数; 当m =4时,该方程为2430x x -+=,根都是整数;∴符合条件的m 的值为1,4. ……………………………………………………………5分21.(1)证明:∵四边形ABCD 是矩形,∴DC =AB ,DC ∥AB ,………………………………………………………………………1分 ∴1DBA ∠=∠.∵⊥AF BD 于点F ,90∠=︒CED , ∴90BFA CED ∠=∠=︒. 又∵∠=∠ECD DBA ,∴1ECD ∠=∠,△ECD ≌△FBA . ……………………………………2分 ∴EC ∥FB ,EC =BF .∴四边形BCEF 是平行四边形. ………………………………………3分(2)解:∵=4AB ,=3AD ,∴=5BD ,…………………………………………………………………4分易证△DAB ∽△AFB ,∴AB BFBD AB=, 可求16=5BF , ∴EC =BF 16=5.…………………………………………………………………5分22.(1)证明:连接OC , ∵OA=OC ,∴∠1=∠A ,又∵∠A=∠P=30︒.∴∠1=30︒,∠ACP =120°, ∴∠OCP =90°,∴PC 是⊙O 的切线.……………………………………………………3分 (2)解: ∵AB=4,∴OA=OB= OC=2, ∵∠OCP =90°,∠P=30︒,∴4OP =, 23PC =, ∴BP = OB ,1EFDABC1O A BPC∴12PBC OPC S S ∆∆=, ∵OPCS ∆=1232232⨯⨯=.∴3PBC S ∆= ………………………………………………5分23.解:(1)令0y =,则260x -=,可得3x =,∴直线26y x =-与x 轴交点B 的坐标为(3,0),……………1分将A (m ,2),代入26y x =-,得4m =,将A (4,2),代入ky x=,得8k =,………………3分 (2)过点A 作AM ⊥x 轴于点M ,∵A (4,2),C (0,-6),…………………………4分 ∴OC =6,AM =2, ∵1126422APC APB CPB S S S PB PB PB ∆∆∆=+==⨯⨯+⨯⨯=, ∵16APC S ∆=, ∴PB =4,∴1P (-1,0),2P (7,0) ……………………………………6分24. 解:(1)a =20,b =0.3 ;………………………………………2分 (2)20成绩x /分90807060500100201030 频数(人数)………………………………………………3分(3)75.5…………………………………………………………………………………………4分 (4)样本中成绩在78分以上的人数为40人,占样本人数的40%,获优胜奖的人数约为120040%480⨯=(人)………………………………………6分yxP 2P 1MOCB A25. 解:(1)2x ≠;………………………………………………………………………………1分 (2)4m = ; ……………………………………………………………………………2分 (3)yxO1…………………………………4分(4)①(2,2);……………………………………………………………………………5分②y x =.………………………………………………………………………………6分26. 解:(1)2(3)3y mx m x =+--与y 轴交于点C (0,-3),令0y =,则2(3)30mx m x +--=, 可得11x =-,23x m=………………………………………1分由于点A 在点B 左侧,0m >可知点A (-1,0),………2分 又∵4=AB ,∴点B (3,0),∴1m =∴点D (1,-4) ……………………………………………3分 (2)依题意可知点E (-3,-4), 设直线BE 的表达式为y kx b =+,yx-765-5-6-4-3-2-1123462345-6-5-4-3-2-1OB ADC E∴4303k b k b-=-+⎧⎨=+⎩232k b ⎧=⎪⎨⎪=-⎩ ∴直线BE 的表达式为223y x =-. ……………………4分(3)点D (1,-4),E (-3,-4)分别代入26=-y ax ,可得29a =,2a =,∴a 的取值范围为229a ≤<.……………………………6分27.解:(1)过点A 作AG ⊥BC 于点G ,…………………1分 ∴∠2+∠4=90°, ∵AD=AC ,∴∠1=∠2=12∠CAD =12α,…………………………2分 ∵CF ⊥AD 于点E , ∴∠3+∠4=90°,∴∠3=∠2=12∠CAD =12α,…………………………3分即∠BCF =12α.(2)证明: ∵∠B =45°,∴∠BAG =45°,………………………………………4分 ∵∠BAC =45°+∠1,∠AFC =45°+∠3, ∴∠BAC =∠AFC ,∴AC =FC .………………………………………………5分(3)2DC BF =. …………………………………7分28. 解:(1)D 、F ………………………………………………2分(2)①M (-1,0),N (0,3) ,MN =2, ∠MNO =30° 所求的点H 为MN 的垂直平分线与坐标轴的交点 当“似中点”1H 在x 轴上时,1H M =2,则1H 为(1,0)当“似中点”2H 在y 轴上时,N 2H =332,yxEDO-1-2-3-4-5-6543264321-1-2-3-4-6-556-74231GEFD CBAxyH2H 1P 2P 1NM765-5-6-4-3-2-11234612345-6-5-4-3-2-1O则O 2H =ON -N 2H =33, 2H 为(0,33) ∴1H 为(1,0),2H 为(0,33)…………………………5分 ②35t -≤≤……………………………………………………7分。
2019一模几何综合专题一、旋转变换1.(等边三角形+对称+旋转)(2019通州一模27)如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD(1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF、EF 之间的数量关系,并证明. 解:(1)连接AE . ∵点B 关于射线AD 的对称点为E ,∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三角形, ∴AB AC =,60BAC ACB ∠=∠=︒. ∴602EAC α∠=︒-,AE AC =. 1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦. ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=. ……………… 2分另解:借助圆. (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF . ……………… 3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠, ∴60ABC AFC ∠=∠=︒. ∴△FCG 是等边三角形.∴GF = FC . ……………… 4分 ∵ABC △是等边三角形,∴BC AC =,60ACB ∠=︒. ∴ACG BCF α∠=∠=.在△ACG 和△BCF 中,CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF .∴AG BF =. ……………… 5分 ∵点B 关于射线AD 的对称点为E , ∴BF EF =. ……………… 6分 ∴AF AG GF -=.∴AF EF CF -=. ……………… 7分另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF .2.(等边三角形+旋转)(2019平谷一模27)在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.解:(1)∠BCD=120°-α. ······························································(2)解:方法一:延长BA使AE=BC,连接DE. (2)由(1)知△ADC是等边三角形,∴AD=CD.∵∠DAB+∠DCB=∠DAB+∠DAE=180°,∴∠DAB=∠DAE.∴△ADE≌△CDB. (3)∴BD=BE.∴BD=AB+BC. (4)方法二:延长AB使AF=BC,连接CF. (2)∠BDC=∠ADE.∵∠ABC=120°,∴∠CBF=60°.∴△BCF是等边三角形.∴BC=CF.∵∠DCA=∠BCF=60°,∴∠DCA+∠ACB=∠BCF+∠ACB.即∠DCB=∠ACF.∵CA=CD,∴△ACF≌△DCB. (3)∴BD=AF.∴BD=AB+BC. (4)(3)AC,BD的数量关系是:AC ; (5)位置关系是:AC⊥BD于点P. (6)H O DCBA3.(等边三角形+旋转)(2019延庆一模27).已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H . (1)求证:ADB ACB ∠=∠;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.解:(1)证明:∵∠ADC =60°,DA=DC∴△ADC 是等边三角形. ……1分 ∴∠DAC =60°,AD=AC . ∵∠ABC=120°,BD 平分∠ABC ∴∠ABD=∠DBC =60°.∴∠DAC =∠DBC =60° ∵∠AOD =∠BOC∠ADB=180°- ∠DAC -∠AOD∠ACB=180°- ∠DBC -∠BOC∴∠ADB=∠ACB ……3分(2)结论:DH=BH+BC ……4分 证明:在HD 上截取HE=HB ……5分∵AH ⊥BD∴∠AHB=∠AHE =90° ∵AH =AH∴△ABH ≌△AEH ∴AB=AE, ∠AEH=∠ABH =60° ……6分 ∴∠AED=180°-∠AEH=120° ∴∠ABC=∠AED=120° ∵AD=AC, ∠ADB=∠ACB ∴△ABC ≌△AED∴DE=BC ……7分 ∵DH=HE+ED∴DH=BH+BC ……8分4.(等边三角形+旋转)(2019密云一模27)已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE. (1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB ⊥交EB 延长线于点F.用等式表示线段EB 、DB 与AF 之间的数量关系并证明.27.(1)补全图形AD 与BE 的数量关系为AD=BE .................................2分(2)∵∠ACB=∠DCE= 60°, ∴∠ACD=∠BCE 又∵AC=BC,CD=CE ∴△ACD ≌△BCE∴AD=BE, ∠CBE=∠CAD=60°∴∠ABF=180°-∠ABC-∠CBE=60° 在Rt AFB ∆中,32AF AB = ∴BE+BD=32AB.................................7分图2D CBA图1A B CD DEBA5.(正方形+旋转+最值)(2019东城一模27)如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C 关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF .(1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接ACACC ′的面积最大值.解:(1)由对称可知 CD =C ′D ,∠CDE =∠C ′DE . 在正方形ABCD 中,AD =CD ,∠ADC =90°, ∴AD =C ′D .又∵F 为AC ′中点,∴DF ⊥AC ′,∠ADF =∠C ′DF .……………………………………………………1分∴∠FDP =∠FDC ′+∠EDC ′=12∠ADC =45°.…………………2分(2)结论:BP +DPAP .……………………………………………………3分 如图,作AP ′⊥AP 交PD 延长线于P ′, ∴∠P AP ′=90°.在正方形ABCD 中,DA =BA ,∠BAD =90°, ∴∠DAP ′=∠BAP .由(1)可知∠APD =45°, ∴∠P ′=45°.∴AP =AP ′……………………………………………………4分在△BAP 和△DAP ′中,BA DA BAP DAP AP AP =⎧⎪'∠=∠⎨⎪'=⎩,∴△BAP ≌△DAP ′(SAS )……………………………………………………5分 ∴BP =DP ′.P BAP BA∴DP+BP=PP′=.(3-1……………………………………………………7分P'B A6.(等腰直角三角形+旋转)(2019房山一模27).已知:Rt△ABC中,∠ACB=90°,AC=BC.(1) 如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.若∠BAD=α,求∠DBE的大小(用含α的式子表示) ;(2) 如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.①依题意补全图2;②用等式表示线段EA,EB和EC之间的数量关系,并证明.图1 图2解:(1)解: 依题意,∠CAB=45°,∵∠BAD=α,∴∠CAD=45α︒-.∵∠ACB=90°,BE⊥AD,∠ADC=∠BDE,∴∠DBE=∠CAD=45α︒-. …………………………………2分(2)解:①补全图形如图…………………………………4分②猜想:当D在BC边的延长线上时,EB - EAEC.…………………………………5分证明:过点C作CF⊥CE,交AD的延长线于点F.∵∠ACB=90°,∴∠ACF=∠BCE.∵CA=CB,∠CAF =∠CBE,∴△ACF≌△BCE.…………………………………6分∴AF=BE,CF=CE.∵∠ECF=90°,∴EFEC.即AF-EAEC.AB A∴7分7.(等腰直角三角形+旋转)(2019门头沟一模27). 如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F .(1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明; (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.图1 图227.(本小题满分7分)解:(1)补全图形(如图1); ……………………………… 1分证明:略. ……………………………………… 3分(2)线段OE ,OP 和OF 之间的数量关系是OF +OE =2OP . ……………………………… 4分证明:如图2,作PQ ⊥PO 交OB 于Q .∴ ∠2+∠3 = 90°,∠1+∠2 = 90°. ∴ ∠1=∠3.又∵ OC 平分∠AOB ,∠AOB =90°, ∴∠4 =∠5 = 45°. 又∵ ∠5 +∠6 = 90°, ∴∠6 = 45°,∴∠4 = ∠6 . ∴ PO = PQ .∴ △EPO ≌ △FPQ . ……………………… 5分 ∴ PE =PF ,OE = FQ .又∵OQ = OF +FQ = OF + OE .又∵ OQ =2OP ,∴OF + OE =2OP . ……………………… 6分(3)线段OE ,OP 和OF 之间的数量关系是OF - OE =2OP . ………………………… 7分PPEECCBBOOAA图2图18.(等腰直角三角形+旋转)(2019燕山一模27)如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .(1) ① 依题意补全图1;② 求证:∠EDC =∠BAD ; (2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为: ; ② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明①中的猜想.(一种方法即可)27.(1)①补全的图形如图的所示;………………………………1分②证明:∵∠ADE =∠B =90°,∴∠EDC +∠ADB =∠BAD +∠ADB =90°,∴∠EDC =∠BAD . ………………………………3分(2) ①CE =2BD . ………………………………4分②想法1:证明:如图,过点E 作EF ⊥BC ,交BC 延长线于点F ,∴∠F =90°.在△ADB 和△DEF 中,∠B =∠F =90°,∠EDC =∠BAD ,AD =DE , ∴△ADB ≌△DEF , ∴AB =DF ,BD =EF .图1 D C B A 备用图 A B CD AB ECD EA。