强化练习(1)--实数、二次根式
- 格式:doc
- 大小:348.00 KB
- 文档页数:4
专题2.2实数与二次根式目录实数的基本概念 (1)实数的混合运算 (3)求实数的整数或小数部分 (3)判断二次根式 (7)二次根式有意义的条件 (8)二次根式的非负性 (9)判断最简二次根式 (11)二次根式化简 (12)二次根式的乘除运算 (14)同类二次根式 (16)同类二次根式求参数 (17)二次根式的加减运算 (18)二次根式比较大小 (20)简单分母有理化 (22)二次根式的加减乘除混合运算 (25)实数的基本概念【例1】下列说法正确的是()A.0.08的立方根是0.2B2C.0的倒数是0D.1 是1的绝对值【解答】解:A 选项,30.20.008 ,故该选项不符合题意;B 4 ,4的平方根是2 ,故该选项符合题意;C 选项,0没有倒数,故该选项不符合题意;D 选项,1是1 的绝对值,绝对值具有非负性,故该选项不符合题意;故选:B .【变式训练1】下列说法正确的是()A .0没有平方根B .1的立方根是1CD .的相反数是【解答】解:A 、因为0的平方根是0,所以原说法错误,故本选项不符合题意;B 、因为1的立方根是1,所以原说法错误,故本选项不符合题意;C 的倒数是2,所以原说法错误,故本选项不符合题意;D 、 的相反数是 ,所以原说法正确,故本选项符合题意.故选:D .【变式训练2】下列结论正确的是()A .2 的倒数是2B .64的平方根是8C .16的立方根为4D .算术平方根是本身的数为0和1【解答】解:A .2 的倒数是12,故此选项不合题意;B .64的平方根是8 ,故此选项不合题意;C .16的立方根为,故此选项不合题意;D .算术平方根是本身的数为0和1,故此选项正确.故选:D .【变式训练3】下列说法中,正确的是()A .24 的算术平方根是4B .64 的立方根是4C .任意一个有理数都有两个平方根D 【解答】解:A 、2416 ∵,负数没有算术平方根,故不符合题意;B 、64 的立方根是4 ,故符合题意;C 、0只有一个平方根,负数没有平方根,故不符合题意;D故选:B .实数的混合运算【例20221(2)(2)(2n .0221(2)(2)(2n .9144 8 .【变式训练1】计算:20(2)|(3 .【解答】解:原式451 .【变式训练2】计算:2022211(|2|3 .【解答】解:原式192 10 .【变式训练3】计算:21|4|(3【解答】解:原式49211 .求实数的整数或小数部分【例31的整数部分是m ,小数部分是n n 的值是()A .2B .1C .2D .1【解答】解:479 ∵,23 ,112 ,1m ,112n ,n2)22 .故选:C .【变式训练1的整数部分为a ,小数部分为b ,则2(a b )A1B 1C 2D 2【解答】解:因为 23 ,的整数部分是2,小数部分是2) ,即2a ,2b ,所以2422a b 故选:C .【变式训练2】设的整数部分是a b ,(a b )A 4B .7C .6D .3【解答】解:91016 ∵,161725 ,34 ,45 ,3a ,4b ,a b 34 7 .故选:B.()【变式训练3】实数2A.4B.5C.6D.7【解答】解:161725∵,45,,6272的整数部分是6,故选:C.【例4,于是可以用1的12小数部分.请解答下列问题:(15,小数部分是;(2)如果3 的小数部分为a,5b,求a【解答】解:(1) ,,56,的整数部分为5,小数部分为5故答案为:55;(2)23∵,,5363a ,的小数部分352∵,12,21,3545 3b ,231a .【变式训练1】已知a 的立方根是2,b 的整数部分,c 是9的平方根,求a b c 的算术平方根.【解答】解:a ∵的立方根是2,8a ,91316 ∵,34 ,3b ,c ∵是9的平方根,3c ,当3c 时,83314a b c ;当3c 时,8338a b c ,算术平方根为答:a b c .【变式训练2】已知21a 的平方根为3 ,31a b 的立方根为2,(1)求6a b 的算术平方根;(2)若c 的整数部分,求23a b c 的平方根.【解答】解:(1)21a ∵的平方根为3 ,31a b 的立方根为2,219a ,318a b ,解得5a ,6b ,636a b ,36∵6 ,6a b 的算术平方根是6;(2)34 ∵,的整数部分为3,即3c ,由(1)得5a ,6b ,231018325a b c ,而25的平方根为5 ,23a b c 的平方根5 .【变式训练3】已知21a 的平方根是3 ,31a b 的算术平方根是4,c 的整数部分,求2a b c 的平方根.【解答】解:21a ∵的平方根是3 ,219a ,解得:5a ,31a b ∵的算术平方根是4,3116a b ,即15116b ,解得:2b ,c ∵的整数部分,34 ,3c ,252235436a b c ,2a b c 的平方根是.【例5】下列的式子中是二次根式的是()A B C D 【解答】解:A .被开方数是负数,不是二次根式,故本选项不符合题意;B .被开方数是负数,不是二次根式,故本选项不符合题意;C .根指数是3不是2,不是二次根式,故本选项不符合题意;D.是二次根式,故本选项符合题意;故选:D.()【变式训练1】下列式子中,一定是二次根式的是A B C Da 时,它无意义,故本选项不符合题意;【解答】解:A、当0B、当1a 时,它无意义,故本选项不符合题意;a 时,它无意义,故本选项不符合题意.C、当1D、是二次根式,故本选项符合题意.故选:D.()【变式训练2】下列各式中,一定是二次根式的是A.B C D【解答】解:A、B是三次根式,故本选项不符合题意;C、当0D、由于30,则它无意义,故本选项不符合题意.故选:A.()【变式训练3】下列各式是二次根式的是A B C D无意义,故此选项不符合题意;【解答】解:A中被开方数20B、20是二次根式,故此选项符合题意;a∵,211aa 时,C、当0D故选:B.二次根式有意义的条件【例6x的取值范围是()A .4xB .4xC .4xD .4x【解答】解:∵40x ,解得:4x .故选:C .【变式训练1有意义,则x 的取值范围是1x .【解答】解:由题意得:10x ,解得,1x ,故答案是:1x .【变式训练2a 的取值范围是()A .1a B .1a C .1a D .1a 【解答】解:由题意得:10a ,1a ,故选:B .【变式训练3,则a 的取值范围是()A .3a B .3a C .3a D .3a 【解答】解:由题意可知:30a ,3a .故选:D .二次根式的非负性【例7】若x ,y 30y ,则x y 的值为()A .7B .1C .7D .1【解答】解:40x ∵,40x ,4x ,3y ,431x y .故选:D .【变式训练1】已知x 、y 为实数,且3y ,则x y 的值是()A .2022B .2025C .2027D .2030【解答】解:20220x ∵,20220x ,20220x ,2022x ,3y ,202232025x y ,故选:B .【变式训练2】若实数x ,y 满足1y ,则x y 的值是()A .1B .6C .4D .6【解答】解:50x ∵,50x ,5x ,5x ,5x ,1y ,5(1)516x y ,故选:D .【变式训练3】已知|2020|a a ,则244040a 的值为()A .8084B .6063C .4042D .2021【解答】解:由题意得,20210a ,解得,2021a ,原式变形为:2020a a ,2020 ,220212020a ,24420208084a ,222440404040808440408084a ,故选:A.判断最简二次根式一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.【例8】下列二次根式是最简二次根式的是()C DA B【解答】解:2,故此选项不合题意;B ,故此选项不合题意;3C是最简二次根式,故此选项符合题意.故选:D.()【变式训练1】下列根式中,为最简二次根式的是B C DA【解答】解:A选项,原式 ,故该选项不符合题意;BC选项,原式 ,故该选项不符合题意;D选项,原式故选:B.()【变式训练2】下列各式是最简二次根式的是C DA B【解答】解:A是最简二次根式,故该选项符合题意;B选项,原式 ,故该选项不符合题意;C选项,原式|1|,故该选项不符合题意;aD选项,原式故选:A.()【变式训练3】下列根式中属于最简二次根式的是A BC D【解答】解:A是最简二次根式,故该选项符合题意;B选项,原式2,故该选项不符合题意;2C选项,原式 ,故该选项不符合题意;D选项,原式故选:A.二次根式化简【例9】把下列二次根式化简最简二次根式:(1(2(3;(4.【解答】解:(1) ;(2;(32(4 .【变式训练1】把下列二次根式化成最简二次根式(1(2(3【解答】解:(1) ;(2(3【变式训练2】把下列各式化为最简二次根式.(1)(2【解答】解:(1)6;(2【变式训练3】把下列二次根式化为最简二次根式:(1;(2;;(3)3(4;(5)a,b,c均大于0).;【解答】解:(1)原式;(2)原式(3)原式3;(4)原式(5)原式4二次根式的乘除运算【例10 的结果是()A B C.1D.1221 .故选:C.()【变式训练1】下列计算错误的是A B2 C2D【解答】解:A A不符合题意;B2,故B不符合题意;C2 ,故C符合题意;D,故D不符合题意;3故选:C.()【变式训练2A B.2C.3D.42 ,故选:B.()【变式训练3】下列各式计算正确的是A8 B3 C.210D.2(3【解答】解:A、原式 ,故A不符合题意.B、原式3,故B符合题意.C、原式5 ,故C不符合题意.D、原式3 ,故D不符合题意.故选:B.【例11】计算:|2|.【解答】解:|2(2222.【变式训练1【解答】解:原式1 352 152 .【变式训练2】计算:.【解答】解:原式 5210.【变式训练3【解答】解:原式45 352同类二次根式【例12是同类二次根式的是()ABCDA不符合题意;不是同类二次根式,所以选项B不符合题意;C符合题意;D不符合题意;故选:C.【变式训练1合并的是()ABCD【解答】解:AB合并,故此选项符合题意;CD故选:B.【变式训练2,中与是同类二次根式的有( )A.1个B.2个C.3个D.4个,10是同类二次根式,共2个,故选:B.同类二次根式求参数【例13可以合并,则x可能是()A.4B.5C.6D.8x ,此时不可以合并,故此【解答】解:A、当4选项不符合题意;B、当5x 时,不可以合并,故此选项不符合题意;x 4C、当6,此时D、当8x 时, 可以合并,故此选项符合题意.故选:D.【变式训练1能合并,则x的值为()A.0.5B.1C.2D.2.5【解答】解:∵能合并,.2143x xx .解得2故选:C.【变式训练2是同类二次根式,则(m ) A.2021B.2023C.2D.1【解答】解:根据题意得20232m ,2021m .故选:A .【变式训练3是同类二次根式,则a 的值为()A .2B .4C .1D .1【解答】解:由题意,得:123a ,解得1a ,故选:D .二次根式的加减运算二次根式的加减法则:二次根式加减时,先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.被开方数相同的最简二次根式,称为“同类二次根式”【例14 的值为()A B .0C D .0 ,故选:B .【变式训练1 的结果是()A B .C .D .故选:B .【变式训练2 ,则(a b c )A .1B .5C .2D .5,所以3a ,3b ,1c ,因此1a b c ,故选:A .【变式训练3】计算 ()A.B.C .9D.【解答】解:原式 ,故选:B .【例15】计算:(1)1) ;(2)|2| .【解答】解:(1)1)22 ;(2)|2|224 【变式训练1】计算:.【解答】解:.【变式训练2.33.【变式训练3】计算:(1 ;(2)(31);(4【解答】解:(1)原式32242(2)原式35(3)原式42422 ;(4)原式1154.二次根式比较大小【例16】比较大小:.【解答】解:2254100 ,216580 ,10080 ∵,故答案为: .【变式训练1】比较大小: (填“ ”、“ ”或“ ”号).【解答】解:161825 ∵,45 ,45 ,54 ,2 ∵,故答案为: .【变式训练2】比较大小: 1.41;121(填“ ”或“ ”)【解答】解: 1.412 1.9881 ∵,1.41 ;23 ∵,112 ,1 .故答案为: , .【变式训练3】比较大小:321 (选填“ ”、“ ”、“ ”).【解答】解:3(1)2312 52,162425 ∵,45 ,50 ,502 ,312,故答案为: .简单分母有理化(1)定义:化去分母中根号的变形叫做分母有理化;(2)方法:将分子和分母都乘分母的有理化因式.二次根式的化简技巧:(1)当被开方数是整数时,应先将它分解因数;(2)当被开方数是小数或带分数时,应先将小数化成分数或带分数化成假分数的形式;(3)当被开方数是整数或分数的和差时,应先将这个和差的结果求出.【例17()A .5B C D .15,故选:A .【变式训练1】把分母有理化后得()A .4bB .CD2bb .故选:D .【例18的结果是13.【解答】解:原式13 .故答案为:1 3.【变式训练17【解答】解:原式22(2432(2437故答案为:7【变式训练2【解答】解:原式.故答案为【变式训练3】分母有理化12.【解答】解:原式12.故答案为:12.【例19】在初、高中阶段,要求二次根式化简的最终结果中分母不含有根号,也就是说当分母中有无理数时,要将其化为有理数,实现分母有理化,比如:(1(21)12试试看,将下列各式进行化简:(1;(2;(3.【解答】解:(1;(21;(3)原式1 (1)31 2 .【变式训练1这样的式子,其实我们还可以将其进一步化简:;3;1.像这样,把代数式中分母化为有理数过程叫做分母有理化.化简:(1;(2n 为正整数);(3)求【解答】解:(1)原式;(2)原式;(3)原式1 1 .二次根式的加减乘除混合运算先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
八年级数学二次根式拓展提高之恒等变形(实数)拔高练习试卷简介:全卷共三个大题,第一题是填空(7道,每道5分);第二题是计算(3道,每道5分);第三题是解答(4道,每道10分),满分120分,测试时间30分钟。
本套试卷有一定的难度系数,包含了根式的意义及其与绝对值、完全平方式的综合运用,同学们可以在做题过程中回顾课本,加深对根式的理解。
学习建议:本讲内容是在课本基础上的拔高训练,深入地剖析了根式,需要同学们更加深入地理解根式的意义,也要熟悉其与绝对值、完全平方式的综合运用。
虽然题目有些难度,但万变不离其宗,大家可以在做这部分题的时候多回顾课本,真正做到理解最基本的知识点。
一、填空题(共7道,每道5分)1.化简:=______.答案:6解题思路:被开方数必须大于等于零,∴,即.又,∴a-1=0 ∴a=1 代入所求式子,答案为6.易错点:忽略了被开方数是大于等于零这一隐含条件试题难度:三颗星知识点:二次根式有意义的条件2.若有意义,则a-b=______.答案:0解题思路:若使有意义,需满足2ab-b-a2-b2≥0,即-(a-b)2≥0∴(a-b)2≤0 又(a-b)2≥0 ∴(a-b)2=0 ∴a-b=0易错点:没有掌握被开方数必须大于等于零这一条件试题难度:二颗星知识点:二次根式有意义的条件3.已知,若axy-3x=y,则a=______.答案:解题思路:算术平方根和完全平方式都是大于等于零的,而二者之和等于零,所以二者分别等于零,故可得出x=,y=3.然后代入axy-3x=y,可得a=.易错点:求不出x、y的值试题难度:三颗星知识点:二次根式有意义的条件4.若,则3x+4y=______.答案:-7解题思路:若使式子式子有意义,须满足,可得x=-2,y=∴3x+4y=-7. 易错点:求不出x、y的值试题难度:三颗星知识点:分式有意义的条件5.若x<0,则=______,=______.答案:-x;x解题思路:一个数先平方再开方,等于它的绝对值;一个数先立方再开立方,等于它本身. 易错点:一个数先平方再开平方等于它的绝对值,而非它本身.试题难度:二颗星知识点:二次根式的性质与化简6.设m>n>0,m²+n²=4mn,则的值等于___.答案:解题思路:将m²+n²=4mn左边同时加减2mn,即可求得m+n、m-n的值,然后代入求解. 易错点:没有看出所求式子和已知式子的联系;符号正负判断错误.试题难度:四颗星知识点:二次根式的混合运算7.若,则x2+4x-5=______;若,则x2+2x-1=______.答案:2001;2010解题思路:先将所求式子变形为完全平方式的形式,然后代入求解.易错点:直接代入导致计算错误试题难度:三颗星知识点:二次根式的混合运算二、计算题(共3道,每道5分)1.已知b<0<a,化简:|a-b|答案:-b解题思路:一个数先平方再开方等于它的绝对值;正数的绝对值等于它本身,负数的绝对值等于它的相反数.易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:绝对值2.化简:答案:2解题思路:一个数先平方再开方等于它的绝对值;一个数先开方再平方等于它本身.易错点:混淆了先平方再开方和先开方再平方的结果.试题难度:三颗星知识点:二次根式的性质与化简3.当1<x<4时,化简:答案:3解题思路:观察得知,被开方数是完全平方式,利用一个数先平方再开方等于它的绝对值进行解题.易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:二次根式的性质与化简三、解答题(共7道,每道10分)1.如果式子化简的结果为2x-3,求x的取值范围.答案:=|x-1|+|x-2|=2x-3,∴x-1≥0且x-2≥0. 解得x≥2解题思路:由x的系数判断绝对值符号内数的正负易错点:由化简结果不知道怎么判断x的范围试题难度:四颗星知识点:绝对值2.已知|a|=5,且ab>0,求a+b的值.答案:∵,∴|b|=3 ∴b=±3 而|a|=5 ∴a=±5 又ab>0,∴ab同号,即当a=5时,b=3;当a=-5时,b=-3 ∴答案为8或-8解题思路:两数想乘,同号得正、异号得负易错点:漏掉了a、b同时为负的情况试题难度:三颗星知识点:绝对值3.已知a2+12ab+9b2的算术平方根.答案:=∵a<0,b<0 ∴原式=-2a-3b解题思路:4a2+12ab+9b2是一个完全平方式,利用一个数先平方再开方等于它的绝对值进行解题易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:绝对值4.已知,求的值.答案:∵,∴a>0 ∴-2=1 ∴=3∴解题思路:先判断出a>0,再利用完全平方和与完全平方差的转换进行解题易错点:没有判断出a与0的大小关系试题难度:四颗星知识点:完全平方公式5.一个数的平方根是a2+b2和4a-6b+13,求这个数.答案:由已知,可得a2+b2+4a-6b+13=0,即(a+2)2+(b-3)2=0 ∴a=-2、b=3 ∴a2+b2=13 ∴这个数为169.解题思路:一个数的两个平方根互为相反数易错点:答案错误:所求的是这个数而不是它的平方根试题难度:四颗星知识点:二次根式的应用6.设a是一个无理数,且a、b满足ab+a-b=1,求b.答案:∵ab+a-b=1 ∴b(a-1)=1-a 又∵a为无理数∴a-1也是无理数,即a-1≠0 ∴b=1 解题思路:将a看作已知数、b看作未知数,然后移项求解易错点:找不到突破口试题难度:三颗星知识点:解一元一次方程7.数轴上,表示1、的对应点分别为A、B,点B关于点A的对称点为点C,求点C所表示的数.答案:如图,∵AC=AB=,∴OC=OA-AC=1-()=.解题思路:点B、点C关于点A对称,那么AC=AB.易错点:找不到点C所代表的数试题难度:四颗星知识点:数轴。
实数的运算练习一(1)3823250+- (2)48512739+- (3) 101252403--(4)2)32)(347(-+ (5)20)21(821)73(4--⨯++(6)102006)21()23()1(-+--- (7)10)21()2006(312-+---+(8)02)36(2218)3(----+-- (9)326⨯(10)4327-⨯ (11)2)13(- (13)36(12)22)52()2511(- (14)75.0125.204112484--+-(15)1215.09002.0+ (16)250580⨯-⨯(17)3721⨯ (18))25)(51(-+ (19)2)313(-(20)892334⨯÷ (21)20032002)23()23(+⋅-(22)75.04216122118+-+ (23)3333222271912105+-⨯---(24)753131234+- (25)3122112--(26)5145203-+ (27)48122+(28)325092-+ (29)2)231(-实数的运算练习二(1)3181083315275--+(2)7581312325.0---+(3)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-5.0431381448 (4)()1471627527223+-+(5)⎪⎪⎭⎫ ⎝⎛-+-67.123256133223(6)()326125.021322--⎪⎪⎭⎫ ⎝⎛-+(7)344273125242965++-+(8)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+121580325.12712(9)))((36163--⋅-;(10)63312⋅⋅(11))(102132531-⋅⋅(12)z y x 10010101⋅⋅-(13)20245-(14)14425081010⨯⨯..(15)521312321⨯÷ (16))(ba b b a 1223÷⋅.213⨯(17)91448⨯⨯(18)1575⨯(19)105⨯(20)0.524⨯(21)222610-(22)122718÷⨯(23)253353+-+(24)2753273-+(25)()223131-++(26)111535⎛⎫÷+ ⎪⎝⎭(27)11315822218-++(28)()12754827-+-实数的运算练习三(1)22332332-+--(2)338251196--+---(3)()()3233110.25 2.891864--+--(4)93712548+-(5)24126+- (6)()2623-⨯(7)3032÷⨯(8)6151+(9))22(28+-—2(10)=-2)3.0((11)=-2)52((12)=∙y xy 82(13)=∙2712(14)3393aa a a -+(15))169()144(-⨯-(16)22531-(17)5102421⨯-(18)n m 218(19)21437⎪⎪⎭⎫⎝⎛-(20)225241⎪⎪⎭⎫⎝⎛--(21))459(43332-⨯(22)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(23)2484554+-+(24)2332326-- (25)21418122-+-(26)3)154276485(÷+- (27)x xx x 3)1246(÷-(28)21)2()12(18---+++(29)0)13(27132--+-二次根式的混合运算一.解答题(共30小题)1.计算:(1)|﹣1|+(﹣2)2+(7﹣π)0﹣()﹣1 (2)÷﹣×+.2.(1)计算:( ﹣2)0﹣|+|×(﹣);(2)化简:(1+)+(2x﹣)3.化简:(1);(2)(x+y)2﹣(x﹣y)2.4.(1)计算:(2).5.化简或解方程组:(1)(2).6.(1)计算;(2)分解因式(x+2)(x+4)+x2﹣4.7.化简:(1);(2).8.(1)计算(2)解不等式组.9.计算:(1)(2).10.计算:(1)5+﹣7;(2).11.化简下列各式:(1);(2).12.(1)计算:;(2)化简:.13.(1)计算:﹣+(﹣π)0 (2)化简:(﹣)•.14.计算:(1)(2).5.(1)﹣72+2×(﹣3)2+(﹣6)÷(﹣)2 (2)2﹣6﹣()﹣1.16.计算与化简(1)(2).17.计算:(1);(2).18.计算:(1)(2).(8)(1)计算×(﹣);(2)计算()÷.20.计算:(1)(2)(3)(4).21.(1)(2).22.计算:(1)(2﹣)×;(2)(+)÷.23.(1)计算:|﹣2|﹣(2﹣)0+(﹣)﹣2;(2)化简:;(3)计算:(x+2)(x﹣2)+x(3﹣x)24.计算:(1)(2).25.计算:(1);(2).26.计算:(1)(﹣1)2﹣|2﹣3|﹣(﹣)3;(2)(a3x4﹣0.9ax3)÷ax3.27.计算与化简:(1)(2)(﹣3a 3)2•a 3﹣(5a 3)3+(﹣4a )2•a7(3)(a+1)2﹣2(a+1)(a ﹣1)+3(a ﹣1)2(4)28.计算: (1)(2).29.解下列各题: (1)解方程组:(2)化简:.30.化简: (1)(2)1、下列各式中不是二次根式的是 ( )(A )12+x (B )4- (C )0 (D )()2b a -2、下列运算正确的是 ( )(A )x x x 32=+ (B )12223=- (C )2+5=25 (D ) x b a x b x a )(-=-3、下列二次根式中与24是同类二次根式的是( )(A ) 18 (B )30 (C ) 48 (D ) 54 4、化简200320022323)()(+∙-的结果为( )(A) –1 (B)23- (C)23+ (D) 23-- 5、22)(-化简的结果是( )(A) –2 (B) 2 (C) ±2 (D) 4 6、使代数式8a a -+有意义的a 的范围是( )(A )0>a (B )0<a (C )0=a (D )不存在7、若x x x x -∙-=--32)3)(2(成立。
八年级数学上册第十一章实数和二次根式专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列各数中是无理数的有()-43π,3.1415926,2.010101(相邻两个0之间有1个1),0.11176.0102030405060732A.3个B.4个C.5个D.6个2、计算:÷=()A.4 B.5 C.6 D.83、有下列说法:①无理数是无限小数,无限小数是无理数;②无理数包括正无理数、0和负无理数.其中正确的有()A.0个B.1个C.2个D.3个4、下列说法中,正确的是( )A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C .正实数包括正有理数和正无理数D .实数可以分为正实数和负实数两类5在实数范围内有意义,则x 的取值范围为( ) A .x >0 B .x ≥0 C .x ≠0 D .x ≥0且x ≠162的绝对值是( )A .2B 2CD .17、下列计算正确的是( )A 3+=B 1=C 4=D .2(3=-8、下列二次根式中能与)A B C D9、下列实数:3,0,12,0.35,其中最小的实数是( )A .3B .0C .D .0.35 10、下列说法中正确的有( )个. ① 负数没有平方根,但负数有立方根.②49的平方根是23,827的立方根是23. ③如果23(2)x =- ,那么x =-2. ④算术平方根等于立方根的数只有1.A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1的结果是________.2、已知2215a a +=,则1a a +的值是_____________.3、在实数7.5-415π,22⎛ ⎝⎭中,设有a 个有理数,b =________.4、已知实数1,42π-________个.5、当0x >= _________________. 三、解答题(5小题,每小题10分,共计50分)1、阅读下面的文字,解答问题.,而无理数是无限不循环小数,,于,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,1,•将这个数减去其整数部分,差就是小数部分.请解答:已知其中x 是整数,且0<y<1,求x-y 的相反数.2、计算:()()201π3-+-3、已知a b 的小数部分,|c |,求a -b +c 的值.4、我们知道,任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果0mx n +=,其中m 、n 为有理数,x 为无理数,那么m=0且n=0.(1)如果(230a b -+=,其中a 、b 为有理数,那么a= ,b= ;(2)如果((219a b -=,其中a 、b 为有理数,求2a b -的平方根;(3)若x ,y 是有理数,满足()(3219x y y --=+x y -的算术平方根.(1)(2)(2--参考答案-一、单选题1、B【解析】【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【考点】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2、C【解析】【分析】先根据二次根式的性质化简括号内的式子,再进行减法运算,最后进行除法运算即可.【详解】原式6===.【考点】本题考查了二次根式的混合运算,利用二次根式的性质化简是解题的关键.3、A【解析】【分析】根据无理数、分数的概念判断.【详解】解:无限不循环小数是无理数,∴①错误.0是有理数,∴②错误.=是有理数,42∴③错误.π也是无理数,不含根号,∴④错误.3是一个无理数,不是分数,3∴⑤错误.故选:A.【考点】本题考查实数的概念,掌握无理数是无限不循环小数是求解本题的关键.4、C【分析】根据实数的概念即可判断【详解】解:(A)无理数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C.【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题属于基础题型.5、D【解析】【详解】解:根据分式有意义的条件和二次根式有意义的条件,可知x-1≠0,x≥0,解得x≥0且x≠1.故选D.6、A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】2的绝对值是2故选:A.【考点】本题主要考查了绝对值化简,准确分析计算是解题的关键.7、C【解析】【分析】根据二次根式的性质和二次根式的运算法则分别判断.【详解】解:ABC4==,故选项正确;D、2=,故选项错误;(3故选:C.【考点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8、B【解析】【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【详解】A,不能与B能与CD3不能与故选B.【考点】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.9、C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数比较大小的方法,可得<3,<0<0.35<12,故选:C.【考点】本题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10、A【解析】【分析】根据平方根、立方根、乘方的定义以及性质逐一进行分析判断即可.【详解】① 负数没有平方根,但负数有立方根,正确;②49的平方根是23±,827的立方根是23,故②错误;③任何实数的平方都不可能为负数,故③错误;④算术平方根等于立方根的数有0、1,故④错误,所以正确的有1个,故选A.【考点】本题考查了平方根、立方根,熟练掌握平方根及立方根的定义是解题的关键.二、填空题1、2【解析】【分析】利用二次根式的乘除法则运算.【详解】解:原式=33+=4233+=2.故答案是:2.【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.2、【解析】【分析】 由条件2215a a +=,先求出21()a a+的值,再根据平方根的定义即可求出1a a +的值. 【详解】 解:∵2215a a +=, ∴2221(1)27a aa a +++==,∴1a a+=故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键.3、2【解析】【分析】由题意先根据有理数和无理数的定义得出a 、b【详解】解:7.5-,45=-,212=⎝⎭共有4个有理数,即4a =,15π共有2个无理数,即2b =,2=.故答案为:2.【考点】本题考查有理数和无理数的定义以及算术平方根的运算,熟练掌握相关定义与运算法则是解题的关键.4、3【解析】【分析】根据无理数就是无限不循环小数逐一进行判断即可得出答案.【详解】5=,无理数有4π,共3个,故答案为:3.【考点】本题主要考查无理数,掌握无理数的概念是解题的关键.5、94【解析】【分析】先根据二次根式的定义和除法的性质可得0y >,再根据二次根式的性质化简,然后计算二次根式的除法即可得.【详解】 由二次根式的定义得:2500x y y x⎧≥⎪⎨≥⎪⎩, 0x , 0y ∴≥, 又除法运算的除数不能为0,0y ∴≠,0y ∴>,35xy =3xy =49=故答案为:94【考点】本题考查了二次根式的定义与除法运算,熟练掌握二次根式的运算法则是解题关键.三、解答题1【解析】【分析】本题主要考查了无理数的公式能力,解题关键是估算无理数的整数部分和小数部分. 根据题意的方xy的值;再由相反数的求法,易得答案.【详解】2,∴1+10<∴11<12,∴x=11,,x-y=11-∴x-y2【解析】【分析】按照绝对值的性质、乘方、零指数幂、二次根式的运算法则计算.【详解】解:原式112=-=【考点】本题考查绝对值的性质、乘方、零指数幂、二次根式的运算法则,比较基础.3、4或4-【解析】【分析】的范围,确定a,b的值,再代入代数式即可解答.【详解】3,∴a=2,b2,∵|c|∴c当c a-b+c=4;当c a-b+c=4-故答案为:4或4-.【考点】本题考查代数式的求值,涉及无理数的估算和绝对值.估算无理数的取值范围是本题的关键.4、(1)2,-3;(2)±3;(3)【解析】【分析】(1)根据题意可得:a-2=0,b+3=0,从而可得解;(2)把已知等式进行整理可得)290a b a b --+=,从而得2a -b =9,a +b =0,从而可求得a ,b 的值,再代入运算即可;(3)将已知等式整理为379x y -=+,从而得3x -7y =9,y =3,从而可求得x ,y 的值,再代入运算即可.【详解】解:(1)由题意得:a -2=0,b +3=0,解得:a =2,b =-3,故答案为:2,-3;(2)∵((219a b -=,∴)290a b a b --+=,∴2a -b -9=0,a +b =0,解得:a =3,b =-3,∴2a b -=9,∴2a b -的平方根为±3;(3)∵()(3219x y y --=+,∴379x y -=+∴3x -7y =9,y =3,∴x =10,∴x y -=10-3=7,∴x y -的算术平方根为【考点】本题主要考查实数的运算,解答的关键是理解清楚题意,得出相应的等式.5、(2)29﹣【解析】【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.(1)解:原式263=⨯⨯==(2)解:原式((22222⎡⎤=-⨯--⎢⎥⎣⎦=12﹣18﹣(6﹣5)=30﹣ 1=29﹣【考点】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.。
二次根式演习01一.填空题 1.下列和数1415926.3)1(.3.0)2(722)3(2)4(38)5(-2)6(π (3030030003).0)7( 个中无理数有________,有理数有________(填序号)2.94的平方根________,216.0的立方根________. 3.16的平方根________,64的立方根________. 4.算术平方根等于它本身的数有________,立方根等于本身的数有________.5.若2562=x ,则=x ________,若2163-=x ,则=x ________.6.已知ABC Rt ∆双方为3,4,则第三边长________.7.若三角形三边之比为3:4:5,周长为24,则三角形面积________.8.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.9.假如0)6(42=++-y x ,则=+y x ________. 10.假如12-a 和a -5是一个数m 的平方根,则.__________,==m a11.三角形三边分离为8,15,17,那么最长边上的高为________.12.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________. 二.选择题13.下列几组数中不克不及作为直角三角形三边长度的是( )A.25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b aD.17,8,15===c b a14.小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C.29英寸(cm 74) D .34英寸(cm 87)15.等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16.三角形三边c b a ,,知足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17.2)6(-的平方根是( )A .6-B .36C.±6D.6±18.下列命题准确的个数有:a a a a ==233)2(,)1((3)无穷小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( )A .1个 B. 2个 C .3个D.4个19.x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B.7C.3,7D. 1,720.直角三角形边长度为5,12,则斜边上的高( )A. 6B.8C.1318D.1360 21.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A.2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+22.如图一向角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2 B.cm 3 C.cm 4D.cm 5三.盘算题23.求下列各式中x 的值:24.用盘算器盘算:(成果保存3个有用数字)四.作图题25.在数轴上画出8-的点.26.下图的正方形网格,每个正方形极点叫格点,请在图中画一个面积为10的正方形. 五.解答题27.已知如图所示,四边形ABCD中,,12,13,4,3cm CD cm BC cm AD cm AB ====090=∠A 求四边形ABCD 的面积.28.如图所示,在边长为c 直角边为b a ,勾股定理吗?写出来由.29.如图所示,15cm 60)堆在一路,30.如图所示,在ABC Rt ∆中,∠若AD=8,BD=2,求CD.31.在△ABC 中ABC 周长.二次根式演习01AEBDC第22题图第25题图第26题图第28题图 A第30题图AD答案:一.填空题:1.4.6.7,1.2.3.5;2.32±,0.6;3.±2,2;4.0和1,0和±1;5.±16,-4;6.5或7;7.24;8.直角;9.-2;10.-4,81;11.17120;12.1 二.选择题:13-22:ACBCCBDDDB 三.盘算题:23.(1)x=47±;(2)x=6或x=-4;(3)x=-1;(4)x=6;24.用盘算器盘算答案略 四.作图题:(略)五.解答题:27.提醒:贯穿连接BD,面积为56;28.提醒:应用面积证实;29.327.8;30.CD=4;31.周长为42.二次根式演习02一.选择题(每小题2分,共30分) 1.25的平方根是( )A.5B.–5C.5±D.5± 2.2)3(-的算术平方根是( )A.9B.–3C.3±D.3 3.下列论述准确的是( )2.0± B.32)(--的立方根不消失C.6±是36的算术平方根D.–27的立方根是–34.下列等式中,错误的是( ) A.864±=± B.1511225121±= C.62163-=- D.1.0001.03-=- 5.下列各数中,无理数的个数有( )A.1B.2C.3D.46.假如x -2有意义,则x 的取值规模是( )A.2≥xB.2<xC.2≤xD.2>x 7.化简1|21|+-的成果是( )A.22-B.22+C.2D.28.下列各式比较大小准确的是( )A.32-<-B.6655->-C.14.3-<-πD.310->-9.用盘算器求得333+的成果(保存4个有用数字)是( )A.3.1742B.3.174 C 10.假如mmm m -=-33成立,则实数m 的取值规模是( )A.3≥mB.0≤mC.30≤<mD.30≤≤m11.盘算5155⨯÷,所得成果准确的是( )A.5B.25C.1D.5512.若0<x ,则xx x 2-的成果为( )A.2B.0C.0或–2D.–213.a.b 为实数,在数轴上的地位如图所示,则2a b a +-的值是( )A.-bB.bC.b -2aD.2a -ba 0 b14.下列算式中准确的是( )A.333n m n m -=-B.ab b a 835=+C.1037=+x xD.52523521=+ 15.在二次根式:①12;④27中,与3是同类二次根式的是( )A.①和③B.②和③C.①和④D.③和④二.填空题(每小题2分,共20分)16.–125的立方根是_____.17.假如9=x ,那么x =________;假如92=x ,那么=x ________.18.要使53-x 有意义,则x 可以取的最小整数是. 19.平方根等于本身的数是________;立方根等于本身的数是_______20.x 是实数,且02122=-x ,则.____=x21.若b a 、是实数,012|1|=++-b a ,则._____22=-b a 22.盘算:①____;)32(2=-②._____1964522=-23.2.645==,24.盘算:._____1882=++ 25.已知正数a 和b ,有下列命题: (1)若2=+b a ,则ab ≤1 (2)若3=+b a ,则ab ≤23(3)若6=+b a ,则ab ≤3依据以上三个命题所供给的纪律猜测:若9=+b a ,则ab ≤________. 三.解答题(共50分) 26.直接写出答案(10分)④⑦348-⑧()225+⑨27.盘算.化简:(请求有须要的解答进程)(18分) ①8612⨯②)7533(3-③32 -321+2④123127+-⑤(2+2363327⨯-+28.探讨题(10分)=______.依据盘算成果,答复:(1)a吗?你发明个中的纪律了吗?请你用本身的说话描写出来.(2).应用你总结的纪律,盘算①若2x〈,则=②29.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(准确到)30.(6分)已知yx、知足0|22|132=+-+--yxyx,求yx542-的平方根.附加题:31.(5分)已知21,31==yx,求下列各式的值①3223441yxyxyx++②32241yxyyx+-32.(5分)已知ABC∆的三边为cba、、.化简根式002参考答案一.CDDBCCDCBCCACDC二.-5; ±9; ±3; 2; 0; ±1.0; ±0.5; 2;12;314;122.8;;92;三.12;±23;-0.4;5;;9+33;0.5;6;34;13;0;不必定.a=;2-x; 3.14π-;6cm;±4c.二次根式演习03一.填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数规模内分化因式:a4-4=____________.二.选择题(每题4分,共20分)15.下列说法准确的是( ).(A) x≥1 (B)x>1且x≠-2(C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三.盘算题(各小题6分,共30分)四.化简求值(各小题5分,共10分)五.解答题(各小题8分,共24分)29. 有一块面积为(2a + b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径若干?32cm2,假如将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是若干(保存3个有用数字)?根式003答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19.A 20. D23. 2430.二次根式演习04一.填空题(每题3分,共54分)2.-27的立方根=.二.选择题(每题4分,共20分)15.下列式子成立的是( ). 17.下列盘算准确的是( ).三.盘算题(各小题6分,共30分)四.化简求值(各小题8分,共16分)五.解答题(各小题8分,共24分)根式004答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19.B 20. A二次根式演习05二次根式:1..2. 当__________时.3.11m+意义,则m的取值规模是.4. 当__________x时是二次根式.5. 在实数规模内分化因式:429__________,2__________x x-=-+=.6. 2x=,则x的取值规模是.7. 2x=-,则x的取值规模是.8. )1x的成果是.9. 当15x≤时5_____________x-=.10. 把.11.11x=+成立的前提是.12.若1a b-+互为相反数,则()2005_____________ab-=.13. 在式子)()()230,2,12,20,3,1,x y y x x x x y+=--++中,二次根式有()A. 2个B. 3个C. 4个D. 5个14. 下列各式必定是二次根式的是()15. 若23a,)A. 52a- B. 12a- C. 25a- D. 21a-16.若A==()A. 24a+ B. 22a+ C. ()222a+ D.()224a+17. 若1a≤,)A. (1a-B. (1a-C. (1a-D. (1a-18.=成立的x的取值规模是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.的值是()A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开端出错的步调是()A. ()1B. ()2C. ()3D. ()421. 2440y y-+=,求xy的值.22. 当a取什么值时,1取值最小,并求出这个最小值.23. 去失落下列各根式内的分母:24. 已知2310x x-+=,.25. 已知,ab为实数,(10b-=,求20052006a b-的值.二次根式演习05答案:二次根式:1. 4x ≥;2. 122x -≤≤; 3. 01m m ≤≠-且; 4. 随意率性实数;5. ()((223;x x x x +; 6. 0x ≥;7. 2x ≤; 8.1x -;9. 4; 10. 1x ≥; 12. -1; 13——20:CCCABCDB21. 4; 22. 12a =-,最小值为1; 23.()()3121x x +;二次根式演习061. 当0a ≤,0b时__________=.2.,则_____,______m n ==.3.__________==.4.盘算:_____________=.5.面积为,则长方形的长约为(准确到0.01).6. 下列各式不是最简二次根式的是( )7. 已知0xy ,化简二次根式( )8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+a b =+22a b =+a b =+9.-和-)A. 32-- B. 32--C. -=-D. 不克不及肯定10.以下说法中不准确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 11. 盘算: 12. 化简:13. 把根号外的因式移到根号内:二次根式演习0621.2 二次根式的乘除:1. - 6——10: DDCAB11. ()()()()()()2221.6,2.15,3.20,4.5.1,6.x a b ab a -- 12. ()()()123.0ab ;13. ()()1.2. 根式013答案: 1——5: ABDDD6. 25x ≤≤; 7. 8; 8. ; 9. ()(22x x x +; 10. 0;11.36-15. 底面边长为; 高为; 16. 26x -; 17. ()41.3x y =⎧⎨=⎩. ()2.5 二次根式演习071. 下列根式中,)2. 下面说法准确的是( )A. 被开方数雷同的二次根式必定是同类二次根式D. 同类二次根式是根指数为2的根式3.)4. 下列根式中,是最简二次根式的是()D.5. 若12x,()A. 21x- B. 21x-+ C. 3 D. -36.10=,则x的值等于()A. 4B. 2±C. 2D. 4±7.x,小数部分为y,y-的值是()A. 38. 下列式子中准确的是()=a b=-C. (a b=-22==9.,.是同类二次根式,则____,____a b==.11.,则它的周长是cm.12.式,则______a=.13.已知x y==则33_________x y xy+=.14.已知x =则21________x x -+=.15. )()20002001232______________+=.16. 盘算:⑴.⑵(231⎛++ ⎝⑶. (()2771+--⑷. ((((22221111+17. 盘算及化简:⑴. 22-⑵⑶⑷. a b a b ⎛⎫+--18.已知:x y ==求32432232x xy x y x y x y -++的值.19. 已知:11a a +=+求221a a +的值.20. 已知:,xy 为实数,且13yx -+,化简:3y -.21. 已知11039322++=+-+-y x x x y x ,求的值. 二次根式演习07答案21.3 二次根式的加减:1——8:BAACCCCC9. ; 10. 1.1; 11. (; 12. 1; 13. 10;14. 42; 16. ()()()()122,3.454.4-+; 17. ()()()()()21.4,23.,4.1x yy x-+-;18. 5; 19. 9+二次根式演习08一.选择题1.假如-3x+5是二次根式,则x的取值规模是()A.x≠-5B.x>-5C.x<-5D.x≤-52.等式x2-1 =x+1 ·x-1 成立的前提是()A.x>1B.x<-1C.x≥1D.x≤-13.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A.3B.4C.5D.64.下列二次根式中,x的取值规模是x≥2的是()A.2-xB.x+2C.x-2D.1 x-25.鄙人列根式中,不是最简二次根式的是()A.a2 +1 B.2x+1 C.2b4D.0.1y6.下面的等式总能成立的是()A.a2 =aB.a a2 =a2C. a · b =abD.ab = a · b7.m为实数,则m2+4m+5 的值必定是()A.整数B.正整数C.正数D.负数8.已知xy>0,化简二次根式x-yx2的准确成果为()A.yB.-yC.-yD.--y9.若代数式(2-a)2 +(a-4)2的值是常数2,则a的取值规模是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=410.下列根式不克不及与48 归并的是()A.0.12B.18C.113D.-7511.假如最简根式3a-8 与17-2a 是同类二次根式,那么使4a-2x 有意义的x的规模是()A.x≤10B.x≥10C.x<10D.x>1012.若实数x.y知足x2+y2-4x-2y+5=0,则x +y3y-2x的值是()A.1B.32+ 2 C.3+2 2 D.3-2 2二.填空题1.要使x-13-x有意义,则x的取值规模是.2.若a+4 +a+2b-2 =0,则ab=.3.若1-a2与a2-1 都是二次根式,那么1-a2 +a2-1 =.4.若y=1-2x +2x-1 +(x-1)2 ,则(x+y)2003=.5.若 2 x>1+ 3 x,化简(x+2)2-3(x+3)3 =.6.若(a+1)2 =(a-1)2 ,则a=.7.比较大小:⑴3 5 2 6 ⑵11 -10 14 -138.若最简根式m2-3 与5m+3 是同类二次根式,则m=.9.已知223=223,338=338,4415=4415,…请你用含n的式子将个中蕴涵的纪律暗示出来:.10.若 5 的整数部分是a,小数部分是b,则a-1b=.11.已知x =1a- a ,则4x+x2 =.12.已知a=3- 5 -3+ 5 ,则化简a得.三.盘算与化简1.( 3 + 2 )-1+(-2)2 +3-82.13 +1+15 - 3+15 +33.(1+ 2 - 3 )(1- 2 + 3 )+2 64.9a + a31a +12aa 3 四.先化简再求值1.已知a=3,b= 4,求[4( a + b )( a - b ) +a +b ab ( b - a ) ]÷ a - bab的值.2.化简:a+2+a 2-4 a+2-a 2-4 - a+2-a 2-4 a+2+a 2-4 取本身爱好的a 的值盘算.3.当a= 3 + 2 3 - 2 ,b= 3 - 2 3 + 2 时,求a 2-3ab+b 2的值.4.当a= 21- 3 时,求a 2-1a -1 - a 2+2a+1 a 2+a - 1a 的值.五.解答下列各题1.解方程: 3 (x -1)= 2 (x+1)2.3.已知直角三角形两直角边长分离为a= 12 3 -11 ,b= 12 3 +11 ,求斜边的长.4.先浏览下列的解答进程,然后作答:形如m ±2n 的化简,只要我们找到两个数a.b 使a+b=m,ab=n,如许( a )2+( b )2=m, a · b =n,那么便有m ±2n =( a ± b )2= a ± b (a>b)例如:化简7+4 3 解:起首把7+4 3 化为7+212 ,这里m=7,n=12;因为4+3=7,4×3=12,即( 4 )2+( 3 )2=7, 4 · 3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2=2+ 3 由上述例题的办法化简:⑴13-242 ⑵7-40 ⑶2- 3二次根式演习08参考答案一.选择题1.C2.C3.)C4.C5.D6.C7.C8.D9.C10.B11.A12.C二.填空题1.1≤x<32.-123.04.15.-2x-56.07.>>8.69.n+nn2-1=nnn2-1(n≥2且n为整数)10.- 511.1a-a12.- 2三.盘算与化简1. 3 - 22. 3 +13.-4+4 64.236 a四.先化简再求值1. 3 -22.a3.954.- 3五.解答下列各题1.x=5+2 62.x=2 3 -2 y=6-2 33.464.⑴7 - 6 ⑵ 5 - 2 ⑶ 2 - 62二次根式演习09一.选择题1.若一个正数的算术平方根是a,则比这个数大3的正数的平方根是( )A.a 2+3 B.-a 2+3 C.±a 2+3 D.±a+3 2.若式子(x -1)2+|x -2|化简的成果为2x -3,则x的取值规模是( )A.x ≤1B.x ≥2C.1≤x ≤2D.x>03.下列说法错误的是( )A.a 2-6x+9 是最简二次根式 B. 4 是二次根式 C.a 2+b 2长短负数 D.a 2+16 的最小值是44.式子m m +6mm 4 -5m 21m的值是( ) A.正数 B.负数 C.非负数 D.可为正数也可为负数 5.等式x ÷1-x =x1-x成立的前提是( )A.0≤x ≤1B.x<1C.x ≥0D.0≤x <16.下列各组代数式中,互为有理化因式的是( )A.3x +1与1-3xB.x +y 与-x -yC.2-x 与x -2D.x 与 3 x7.下列断定中准确的是( )A.m -n 的有理化因式是m+nB.3-2 2 的倒数是2 2 -3C. 2 - 5 的绝对值是 5 - 2D. 3 不是方程x+1x -1-3x=2的解 8.下列盘算准确的是( )A. 2 + 3 = 5B.2+ 2 =2 2C.63 +28 =57D.8 +18 2= 4 +99.已知a<0,那么(2a -|a|)2的值是( ) A.a B.-a C.3a D.-3a10.在5a ,8b ,m 4,a 2+b 2 ,a 3中,是最简二次根式的有( )A.1个B.2个C.3个D.4个11.不等式(2- 5 )x<1的解集为( )A.x<-2- 5B.x>-2- 5C.x<2- 5D.x>-2+ 512.已知ba -ab =3 2 2 ,那么b a +a b的值为( )A.52B.72C.92D.132 二.填空题1. 2 2分数(填“是”或“不是”)2.最简二次根式a 2+a 与a+9 是同类二次根式,则a=. 3.将a-1a根号外的因式移入根号内的成果是.4.代数式(x +1)2 +(x -3)2的最小值是. 5.代数式2-a +9 的最值是.6.合适不等式15 ≤x ≤27 的整数x 的值是.7.化简:aa -ba 2-ab a 3-2a 2b+ab2 (a>b)=. 8.化简:(12 +1 +13 + 2 +14 + 3 +…+12006 +2005)(2006 +1)=.9.分化因式x 2(x - 3 )-3(x - 3 )=. 10.当a 时,a+2a -4是二次根式. 11.若(-2a )2=2a,则a=. 12.已知x+1x =4,则x -1x = .三.盘算与化简1. 6 ÷(12 +13 )2.22(212 +418-348 ) 3.22 -( 3 -2)0+20 4.22- 3 -12 +( 3 +1)25.aa -ab - ba -b 6.(ab -ab a +ab)·ab -ba -b7.a -9 a +3 8.1x +3 四.化简求值1.已知x= 3 +1,,求x21+2x+x2 的值.2.已知a= 2 5 +2 ,y=10 +2 2 ,求x 2+2xy+y 2+18 (x-y)的值.五.解答题1.解不等式: 2 x-1< 3 x2.解方程组:3.设等式a(x-a) +a(y-a) =x-a -a-y 在实数规模内成立,个中a.x.y是两两不合的实数,求3x2+xy-y2x2-xy+y2的值.4.已知x>0,y>0,且有x (x +2y )=y (6x+5y )求x+xy -y2x+xy +3y的值.5.若a+b=2ab (a>0,b>0),求a+b3a+5b的值.6.已知实数a知足|2003-a|+a-2004 =a,则a-20032的值是若干?二次根式演习09参考答案一.选择题1.C2.B3.A4.负数5.D6.A7.C8.C9.D10.B11.B12.D二.填空题1.不是2.-33.--a4.45.大 26.4或57.a(a-b)2a-b8.20059.(x- 3 )2(x+ 3 )10.a>4或a≤-211.012.±3 3三.盘算与化简1.6 3 -6 22.2-8 33. 2 -1+2 54.8+2 35.16.a7. a -38.当x≠9时,原式=x -3x-9当x≠9时,原式=16四.化简求值1. 3 -12.16五.解答题1. x>- 2 - 32.x=3 2 +2 35,y=3 3 -2 253.36.2004二次根式演习10一.选择题1.下列断定⑴12 3 和1348 不是同类二次根式;⑵145和125不是同类二次根式;⑶8x 与8x不是同类二次根式,个中错误的个数是( ) A.3 B.2 C.1 D.02.假如a 是随意率性实数,下列各式中必定有意义的是( ) A. a B.1a2 C.3-a D.-a 23.下列各组中的两个根式是同类二次根式的是( ) A.52x 和3x B.12ab 和13abC.x 2y 和xy 2D. a 和1a2 4.下列二次根式中,是最简二次根式的是( ) A.8x B.x 2-3 C.x -y xD.3a 2b 5.在27 .112.112中与 3 是同类二次根式的个数是( )A.0B.1C.2D.36.若a<0,则|a 2-a|的值是( ) A.0 B.2a C.2a 或-2a D.-2a 7.把(a -1)11-a根号外的因式移入根号内,其成果是( )A.1-aB.-1-aC.a -1D.-a -1 8.若a+b4b 与3a +b 是同类二次根式,则a.b 的值为( )A.a=2.b=2B.a=2.b=0C.a=1.b=1D.a=0.b=2 或a=1.b=19.下列说法错误的是( )A.(-2)2的算术平方根是2 B. 3 - 2 的倒数是3 + 2C.当2<x<3时,x 2-4x+4 (x -3)2 = x -2x -3 D.方程x+1 +2=0无解10.若 a + b 与 a - b 互为倒数,则( )A.a=b -1B.a=b+1C.a+b=1D.a+b=-1 11.若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a可化简为( )A.1-a 1+aB.a -11+aC.1-a 2D.a 2-112.在化简x -y x +y时,甲.乙两位同窗的解答如下:甲:x -y x +y = (x -y)(x -y )(x +y )(x -y )=(x -y)(x -y )(x )2-(y )2 =x -y 乙:x -y x +y =(x )2-(y )2x +y =(x -y )(x +y )x +y=x -yA.两人解法都对B.甲错乙对C.甲对乙错D.两人都错( )二.填空题1.要使1-2x x+3 +(-x)0有意义,则x 的取值规模是.2.若a 2=( a )2,则a 的取值规模是.3.若x 3+3x 2=-x x+3 ,则x 的取值规模是.4.不雅察下列各式:1+13 =213 ,2+14=314,3+15=415,……请你将猜测到的纪律用含天然数n(n ≥1)的代数式暗示出来是. 5.若a>0,化简-4ab =.6.若o<x<1,化简(x -1x)2+4 -(x+1x)2-4 =.7.化简:||-x 2-1|-2|=.8.在实数规模内分化因式:x 4+x 2-6=.9.已知x>0,y>0且x -2xy -15y=0,则2x+xy +3yx+xy -y =.10.若5+7 的小数部分是a,5-7 的小数部分是b,则ab+5b=.11.设 3 =a,30 =b,则0.9 =. 12.已知a<0,化简4-(a+1a)2-4+(a -1a)2=.三.盘算与化简 1.13(212 -75 ) 2.24 - 1.5 +223 - 3 + 2 3 - 23.(-2 2 )2-( 2 +1)2+( 2 -1)-14.7a 8a -2a218a+7a 2a 5.2nm n -3mn m 3n 3 +5m m 3n (m<0.n<0) 6.1a+ b7.x 2-4x+4 +x 2-6x+9 (2≤x ≤3) 8.x+xyxy +y+xy -y x -xy 四.化简求值1.已知x= 2 +12 -1 ,y= 3 -13 +1,求x 2-y 2的值.2.已知x=2+ 3 ,y=2- 3 ,求x +yx -y -x -yx +y的值.3.当a= 12+ 3 时,求1-2a+a 2a -1 - a 2-2a+1a 2-a 的值. 五.已知x +1x =4,求x -1x的值.二次根式演习10参考答案 一.选择题 1.B 2.C 3.B 4.B 5.C 6.D7.B 8.D 9.C 10.B 11.A 12.B 二.填空题1.x ≤x ≠-3,x ≠02.a ≥03.-3≤x ≤04. -55 (n+1) 1n+25.-2b -ab6.2x7.18.(x+ 3 )(x+ 2 )(x - 2 ) 9.2927 10.2 11.3a b12.-4三.盘算与化简 1. -1 2. 6 6 -53.6- 24.412 a 2a5.-10mn6. (1)当a ≠ b 时,原式=12a 或 b2b (2)当a= b 时,原式=a - ba 2-b7.18.(x+y)xy xy四.化简求值1.-11+12 2 +16 62.2 3 33.3五.±2 3。
第05讲实数与二次根式易错点梳理易错点梳理易错点01混淆平方根与算术平方根对于正数a 来说,a ±表示a 的平方根,a 表示a 的算术平方根。
易错点02混淆平方根与立方根的性质正数的平方根有两个,它们互为相反数;负数没有平方根,实数a 的立方根只有一个,无论a 是正数、负数还是0。
易错点03二次根式概念理解错误对二次根式的定义理解不透,认为只要带二次根号即为二次根式,忽视了二次根式a 中0≥a 的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数。
易错点04二次根式运算顺序出错由于乘除是同一级运算,因此按顺序哪个在前,要先算哪个运算。
易错点05错用二次根式的性质二次根式的性质有)0,0(≥≥∙=b a b a ab ;)0,0(>≥=b a ba ba ,切记不存在b a b a ±=±。
易错点06解题时忽视限制条件应用二次根式的运算性质)0,0(≥≥∙=b a b a ab ,)0,0(>≥=b a ba ba 时,必须要满足括号里的条件。
考向01平方根例题1:(2021·四川凉山·)A .9B .9和﹣9C .3D .3和﹣3【答案】D【思路分析】先化简,再根据平方根的地红衣求解.3±,故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.例题2:(2021·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y-=【答案】A【思路分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【解析】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点拨】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.考向02立方根例题3:(2021·辽宁大连·中考真题)下列计算正确的是()A .2(3=-B=C1=D .1)3+=【答案】B【思路分析】根据二次根式的运算及立方根可直接进行排除选项.【解析】解:A 、(23=,错误,故不符合题意;B =,正确,故符合题意;C 1=-,例题4:(2021·江苏南京·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是()A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n为奇数时,2的n 次方根随n 的增大而增大【答案】C【思路分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【解析】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232= ,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y =则155153232,28,x y ====1515,x y ∴>且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点拨】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.考向03实数例题5:(2021·山东日照·中考真题)在下列四个实数中,最大的实数是()A .-2BC .12D .0【答案】B【思路分析】根据实数的大小比较方法进行比较即可.【解析】解: 正数大于0,负数小于0,正数大于负数,∴1022>>>-,故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.例题6:(2021·贵州毕节·中考真题)下列各数中,为无理数的是()A .πB .227C .0D .2-【答案】A【思路分析】根据无理数的定义逐项判断即可.【解析】A 、π是无理数,符合题意;B 、223.1428577= 小数点后的142857是无限循环的,则227是有理考向04二次根式的概念与性质例题7:(2021·湖北襄阳·中考真题)x 的取值范围是()A .3x ≥-B .3x ≥C .3x ≤-D .3x >-【答案】A【思路分析】根据二次根式有意义的条件,列出不等式,即可求解.在实数范围内有意义,∴x +3≥0,即:3x ≥-,故选A .【点拨】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键.例题8:(2021·浙江杭州·中考真题)下列计算正确的是()A2=B 2=-C 2±D 2=±【答案】A【思路分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2=,故B 、D 错误;故选:A .【点拨】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.考向05二次根式的乘除例题9:(2021·湖南株洲·中考真题)计算:4-=()A .-B .-2C .D .【答案】A化简,然后根据乘法法则运算即可.【解析】解:()44--⨯-A .【点拨】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.例题10:(2021·广西桂林·中考真题)下列根式中,是最简二次根式的是()AB C D 【答案】D【思路分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方最简二次根式,故本选项不符合题意;C |a ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故选:D .【点拨】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.考向06二次根式的加减例题11:(2021·广西梧州·中考真题)下列计算正确的是()A=B =C .2=D .2=2【答案】D【思路分析】根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;=A B=选项C 错误;)2=2,选项D 正确;故选:D【点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键例题12:(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()ABC D 【答案】D【思路分析】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【解析】A =B =与类二次根式,故此选项错误;C 故此选项错误;D ==,D .【点拨】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.微练习一、单选题【答案】B<<∴56<,∴30的算术平方根介于5与6之间.故选:B .2.(2021·江苏·连云港市新海实验中学二模)下列计算:①222+=a a a ,②(1)x y x xy +=+,③46,④236() mn mn =,正确的有()A .1个B .2个C .3个D .4个【答案】B【分析】解:①23a a a +=,故①错误;②(1)x y x xy +=+,故②正确;③446+,故③正确;④2336() mn m n =,故④错误;故正确的有②,③,共2个,故选:B .3.(2021·湖南师大附中博才实验中学一模))A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】B∴56,5和6之间;故选B .4.(2021·广东·珠海市紫荆中学三模)下列四个实数中,最小的数是()A .5-B .14C .0D 【答案】A【分析】解:∵-5<0<14,A .227B C .3.1415926D 【答案】B【分析】解:A .227是分数,属于有理数;B 是无理数;C .3.1415926是有限小数,属于有理数;D 3=是整数,属于有理数;故选:B .6.(2021·重庆·西南大学附中模拟预测)在函数2y x =-中,自变量x 的取值范围是()A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠【答案】C【分析】解:根据题意得:1020x x +≥⎧⎨-≠⎩,解得:x ≥−1且x ≠2.故选:C .7.(2021·山东兰陵·一模)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是()A .2a b -+B .2a b -C .b -D .b【答案】A【分析】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A8.(2021·江苏建邺·二模)2b =-,则b 满足的条件是()A .2b >B .2b <C .2b ≥D .2b ≤【答案】D2b =-∴20b -≥∴2b ≤故选:D .9.(2021·内蒙古包头·三模)下列说法中,真命题有()有意义,则1x >;②已知27α∠=︒,则α∠的补角是153︒;③已知2x =是方程260x x c -+=的一个实数根,则c 的值为8;1≥x ,故错误;②已知27α∠=︒,则α∠的补角是153︒,故正确;③已知2x =是方程260x x c -+=的一个实数根,则22-12+c =0,解得c =8,故正确;④在反比例函数2k y x-=中,若0x >时,y 随x 的增大而增大,则k -2<0,则k 的取值范围是2k <,故错误;故选:B .10.(2021·重庆·字水中学三模))A .5和6之间B .6和7之间C .7和8之间D .8和9之间.【答案】C【分析】解:===== 78∴<介于7和8之间,故选:C .11.(2021·广西·南宁十四中三模)下列属于最简二次根式的是()AB C D 【答案】B【分析】A.3=开方数是分数,不是最简二次根式,故此选项不符合题意;B.是最简二次根式,故此选项符合题意;3=含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;D.10=被开方数是分数,不是最简二次根式,故此选项不符合题意;故选B 12.(2021·甘肃庆阳·二模))A B .3C .D .【答案】D【分析】解:S =D13.(2021·福建·厦门市第九中学二模))AB C .3D合题意;C.3 D.=故选D.14.(2021·广东·江门市第二中学二模)下列运算正确的是()B.AC.x5•x6=11x D.(x2)5=7x【答案】C【分析】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.15.(2021·福建南平·二模)下列运算正确的是()A=B=C2=D=【答案】A【分析】解:A=B:选项错误,不符合题意;C:选项错误,不符合题意;D:选项错误,不符合题意;故答案选A.二、填空题16.(2021·陕西·交大附中分校模拟预测)______.【答案】1或2.【分析】解:∵23=∴23<<,1,2,故答案为:1或2.17.(2021·江苏·连云港市新海实验中学二模)______________.【答案】2【分析】解:原式=2,故答案为:2.|=__.18.(2021·宁夏·银川唐徕回民中学一模)30+|﹣119.(2021·陕西·西安市铁一中学模拟预测)112-⎛⎫= ⎪⎝⎭____________.【答案】2-【分析】解:原式2=2=.故答案为2-.20.(2021·黑龙江·哈尔滨市萧红中学三模)=_______.【答案】32【分析】解:原式=32=.故答案为:32.21.(2021·浙江·杭州市采荷中学二模)=______.【答案】22=,故答案为:2.22.(2021·山东·济宁学院附属中学三模)已知1y ==_______.【答案】2【分析】 1y =,2020x x -≥⎧⎨-≥⎩,解得2x =,1y =∴,∴2=.故答案为:2.23.(2021·山东省诸城市树一中学三模)已知1a =,1b -,则33a b ab -=__________.【答案】【分析】解:33a b ab -()22ab a b =-()()ab a b a b =+-,∵1a +,1b =,∴)11211ab ==-=,11a b +-=112a b -=+-=,24.(2021·陕西·交大附中分校模拟预测)21|3|()2--+-.【答案】4【分析】解:原式=3﹣3+4=4.25.(2021·湖南师大附中博才实验中学二模)计算:201332-⎛⎫+-+- ⎪⎝⎭【答案】【分析】解:原式=143+-+=26.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)计算:11()(53--.【答案】2-【分析】解:11()(53--35=-+2=.27.(2021·陕西·西北工业大学附属中学模拟预测)1124-⎛⎫+ ⎪⎝⎭21124-⎛⎫+ ⎪⎝⎭42=+2=.。
tj|r>全国重点高中提前招生考试八年级下学期同步强化训练卷(一)(二次根式的性质和化简专题测试)总分:120分时间:120分钟—、选择题(每小题5分,共30分)1.若代数式謬矗有意义,则a■的取值范围是()A. x<2020B. x<2020 且± 2019C. x<2020 且乂工2019D. x<2020 且乂工一2019(“希望杯”竞赛试题改编)2.若化简11 —X I —A/JC2-8x+16的结果为2乂一5,则x的取值范围是()A.才为任意实数B. l<x<4 D.3.把(a-b'Jb'a根号外的因式移到根号内的结果为()D. —V a—b(华中师大一附中招生试题)4.已知实数a、b满足A/(a— I)2 + V(a—6)2 = 10 — | b + 3 | — I b— 2 | ,则a2 ~\~lr的最大值为()A. 50B. 45C. 40D. 0(芜湖一中理科实验班自主招生试题)5.已知y = +』5 —2丁一3,则2.z-y 的值为()15A. —15B. 15C. —6.计算4 丿3+2 血一丿41+24© =()A. 72-1B. 1C.V2二、填空题(5分X6 = 30分)D. 2(全国初中联赛试题)7.如果实数u、b、c在数轴上的位置如图1-1所示.那么代数式-/^-\a+h\ + /G—万尹+“+c何化简为—b " 0 c图1-1(全国初中竞赛题)&若实数.r、y满足|j—4| + ^7=8=0,则以y的值为边长的等腰三角形的周长为_9. __________________________________________________________ 已知实数m满足丨2019—rn \ + Jm—2020=加,那么m— 2019?= __________________________ .(重庆市竞赛试题)11. _______________________________________________ 若工+y= J3 V5—JC—y= V3 42—75 •则xy= ____________________________________________________ ・(天津市竞赛试题)12.若77— = —2,则F的值为.77 十 --------(天津市竞赛试题)三、解答题13.(12分)若」^的整数部分是a.小数部分是儿求a2 + (l+V7)a6的值.3—7711.( 13分)(1)先化简再求值:才存缶一(1一与护),其中a = 2+尽b=2—胚(2)已知a、b、c为ZSABC 的三边,化简:丿(a+6+c)2 + 丿―严 + jQ>_a—cV15.(11分)已知正实数a』满足:a+O=l,1—专+茫+】_茫—茫=_4,求:华的值.1—Jb—Jci 1—76+Va Jb16.(12分)已知7^=石+*(0<0<1),求代数式F+JT—6 . JT+317.(12分)先阅读再化简求值.(1)在化简丿匸刀而的过程中,小王和小李的化简结果不一样:小王的化简过程如下:原式=A/2-2 /2X^+5 = 7(T2)2-2V2 - 75 + (75)2 =丿近二丽=施一岳.小李的化简过程如下:原式=V(-/2)2-2V2 • V5 + (V5)2 = 7(72-75)2 =^-V2.请判断谁的化简结果正确,并说明理由.⑵化简求值:已知乂=“6 —2腐,求(上+*) • 2乙二;)的值(结果保留根号).全国重点高中提前招生考试 八年级下学期同步强化训练卷(二)(二次根式的化简求值专题测试) 总分:120分时间:120分钟一、选择题(5分X6 = 30分)1 •计算 14 + 6 75 — 14 6 75 的值是() A. 1 B.75C. 2 75D. 5(全国初中竞赛试题)2.已知非零实数 a 、b 满足 I 2a —4 | + | b+2 I + J (a — 3)624- 4 = 2a ,则 a~\~h 等于()3.化简J1+古+(”,1)2("〉0或1)所得的结果为()tj|r>A. -1B.0C. 1D. 2A.H 1'1w+1C. 141 1n+1D. 1—丄—一*(武汉市选拔赛试题)4.已知 2x-3 /亦一2y=0(z>0),则;;二器2的值是(16 -25A-fD-27(太原市竞赛题)5•设Dr]表示最接近的整数QHx+0・ 5,77为整数),则[/TX2] + Ly2X3] + L 5/3X4] + - +E7iooxioi]的值为( )C.5150D.5151(“五羊杯”竞赛题)6. 已知,=好兀+ 石弓均为实数).则y 的最大值与最小值的差为( )A. 2^2-2B. 4-2 72C. 3—2©D. 2 V2-1二、填空题(5分X6 = 30分)7. 计算 72017X2018X2019X2020+1-20182 的结果是 ________________ .&已知 a= 72018- v /2017.Z>= 72019- 72018.c= 72020-^/硕©,则 a 、b 、c 三者的大小关 系为.(武汉市竞赛试题改编)9.若实数"』满足乂2+$2_滋_2》+5=0.则石+$ 的值是 ____________________ .V3^—2 77(“希望杯”竞赛试题)华土华】=华二理.则兰+上=V3-V2 V3+V2 y &(“希望杯”竞赛试题)A /5+2 A /6 V 7+4 V3(湖北省黄冈中学理科实验班预录试题)12. [a]表示不大于a 的最大整数,{a}=a —[a].设a =[帚+斤],6=•则^ + (1+77)ab= _________・(鄂州高中自主招生考试数学试题)三、解答题13. (12分)计算与求值.(1)已知°=宀,求护_20 + 1_绍渔土1的值.2+V3 aTa L~a(244-4)<44+4)<64+4)<8<+4-)(104+-7-)4 4 4 4 4(r+4)<34+4-)<54+4-X74+-r )(94+-r )4 4 4 44(湖北黄冈中学理科实验班预录试题)10.已知x= (2)计算:14. (12分)正数心满足,”+4厉-2扁-皿+4,尸3.求倉豐爲的值.(北京市竞赛题)⑵设⑴册'求"2"曲7 + 18「17的值.16. (12 分)设 x= — . y = jZEEElzb/E, 为何值吋.代数式 20才 + 41>ry + 20b 的值 Vi+ 1+7? Jt +l —Jt为 2001.(全国初中数学联赛试题)15. (12 分)(1)化简:用十4血+3匹松)(腐_______________ 117. (12 分)定义/(JC)=求/(l)+/(3)+/(5)H ----------------- 1-■Z?-FZr+T+ \/ x2— 1+ 步卡一2JC+1/(2怡一1)+/(999)的值.(上海市竞赛试题)5. 已知 J25—yi5-x 2=2,则丿25—F + J15—F 的值为(A. 3B. 4C. 5(山东省竞赛题)6-设$=/+*+寺+/+*+* + J1++++ +…+/+壽 +誌?,则与5最接近 的数是( )A.2017B. 2018C. 2019D. 2020二、填空题(5分X6=30分)7.若 u+b —2 Va —1~4 "―2 = 3 J c —3— c ——5,贝9 a+〃+e= _______________ .(武汉市竞赛题)9. _____________________________________________________________ 若的最大值是a,最小值是几则a 2+62的值为 _______________________________________________________ .(全国初中数学竞赛试题)10. 已知a= V7-1.则代数式3a 3 + 12a 2-6a-12的值为 ________________ .(全国初中数学联赛试题)全国重点高中提前招生考试 八年级下学期同步强化训练卷(三)(二次根式综合测试) 总分:120分时间:120分钟―、选择题(5分X6 = 30分)1.已知 7x 2-4 + 727+3^=0.则 乂一y 的值为( ) A. 2B. 6C. 2 或一22.计算(721-3)(73+ 710-77)的值等于( )A. 6^7B. -6V7C. 20 73 + 6^73. 已知/+丄=7(0VzVl ),则石一-的值为()D. 6 或一6D. 20 73-6/7B. —-75D.V5(天津市竞赛试题)4. 已知整数.r 、y 满足点+2心=丿丽,那么整数对(_r,y )的个数是(A. 0B. 1C. 2D. 3(江苏省竞赛题)D. 68-当―点时•化简牛严+今芋1的结果是11.非零实数满足(Z?+2019-J-)(+2019—y) =2019,则孟洛¥;=_(湖北省鄂州市自主招生试题改编)12.已知a、Z>为有理数分别表示5-V7的整数部分和小数部分,且a>nn+bn2 = l.则2a+b三、解答题13.(12分)化简:丿37+20站+丿37-20箱.14. (12分)先化简.再求值:(弄务 a — 1-宦,其中"=血一1・«2+4a+415.(12 分)若〃201172012-1,求m 5— 2m 4—201 lzn 3 的值. 求n 的值.16. (12 分)乂=为自然数,如果2乂2 + 197刊+2)2 = 1993成立,17. ( 12分)求和:S = J1+令+壬 + J1+贪+令 + J1+寺+壬 + J1+令+右 + …4 1224 102参考答案全国重点高中提前招生考试八年级下学期同步强化训练卷(一)(二次根式的性质和化简专题测试)(2020-Q0 (J <20201. B 提示:由条件可知:「 则:,, 故工£2020且;rH±2019.I 1^-1-2019^0, I |却工2019.2. B 提示:•・•丨 1—工| 一 J£ -8工+16= 11—工| 一 丿(乂一4严=11一工| 一 |工一41 •则丨1一却一"一4|=2工一5,I x —1^011—^| =乂一 1, — b —41 =x —4.因此即 1 £乂=4・4—4W0.3. C 提示:由条件可甸:乙」石>0,・°・b —a>0, ・°・a — b<0.故原式=—(5_0)丿方二 =_『(/>_* • =—Jb —a.故选 C.4. B 提示:化简得:\a — l| + |a — 6 | + 16+3 | + “一2 | =10,由绝对值的意义可知・lWa£6・一3Wb 《2,所以 a=6“= —3时.a 2+62有最大值且为45.(2x —5^0cc5. A 提示:由二次根式的非负性得: ・・・工=可,,=一3.故2Q=2X_yX(—3) = —15.【5—2心0, 2 26. B 提示:原式=4 7( 7FFT)2- 7(4 72+3)2 =4(72 + 1)-(4 72+3) = 1.7. —a 提示:由实数aJ )-c 在数轴上的位置口]知:XCaVOVc.且“|>c,所以/—la+引+ J (c —a)? + |b+c| =—(a+6)+ (c —a) —(6-Fc) = —a.I x —4=0.(jr=4 8. 20提示:由题意得:解得:(1)若4是腰长,则三角形三边长分别为4,4,8不能组成三角丨夕一8=0,b=&形.(2)若4是底边长,则腰长为8•能组成三角形,周长为4+8+8=20.9. 2020 提示:由条件可知加$2020,・・・2019—加V0,・•・原等式可化为加一2019+丿加—2020=加,/.丿加一2020 =2019. .\T ?7-2020=20192.故 w-20192 =2020.卡_2>05«r —4"…2_a5 z _ 1则有•r2=2*3,= 2.j?2+y = 2+22 =6.fMwo 5^—411. 用—血 提示:由Q+_y)2 —(彳―$)2=4才〃得:4才3;=(虫岛一血)_(丿17兀騎)'=3站—血一(3血—75)=4頁—4 42.故 _J2.12. —2472 提示:(石'— )2 = ( —2尸=4,即 x ---—2 = 4,乂 -- =6.・°・.才--+2 = 8,即-- )2 =&77 乂 •!•工 77J~r~\-- =2 5/2» /. J ~2— =(无+丄)■(右 -- )•(岛— )=—24 J2.77 工 工 丘 丘 呼.又 2<疗<3..・.5<3+疗<6....2<呼<3..“2.=呼-13. 解:•••占=?3=^7)=10. 6提示:因为y3+疗14.解:(1)原式=(g—b)ab(a~\~b—2ab = 2(cz—6)2a~b'2=^=^ ・・・・/ + (1+疗)肪=2'+(1+疗)><2><^^=4+(7一1) = 10.______ 2 _______ = _ _ =_V3 (2+ 站)一(2—站)_ 2侑_3'(2)由三角形三边关系可知:a-b-cV0,b —a — cV0,c —a —b<0,.・・ V(a-b~c)2 =b-\~c~a, VCb-a-c)2 =a+c~b. V(c-b~a)2=a-^b-c.:.原式= (a+b+c) + (b+c —a) + (a+(—") —(“+"—小=心・ 15.解:原式=(1—心+俾 +(1 一片皿 =_4.即2[(1—心严+(石)右=—4[(]—乔严_(岛旧,整理得: (1—V6)z —(Va)z6(1—0)2=2°,即 3(1—石)2=a ・由于 4+〃=1,・・・3(1—心)2 = 1—〃=(1一心)(1+心),整理得:(1一亦)(3— 376 — 1—76)=0,1—7^=0 或 2—476=0.当 1—心=0,即 6=1 时,a=0,不合题意.当 2 — 476 = 0,即 b=.1 丄11 a 十十〒 1 1a 2 H — +2 * =a 2 H — +2 =a 2 +2.a 2 丄1丄 1 a aa ~\ aa a17.解:(1)小李的化简正确.(2) g = V (>/5 — I )2 =4^— 1,原式=-7 = [—-- = 3 +岳 无—1 V5-1-1全国重点高中提前招生考试八年级下学期同步强化训练卷(二)(二次根式的化简求值专题测试)1. C 提示:原式=V(3+V5)2 — V (3—V5)2 = 3 +站一3 +站=275.2. C 提示:由题设可知"$3,所以题设等式可化为:2a — 4+|b + 2| + J (a —3)圧+4 = 2°,即|方十2| + J (a —3)// =0,・°・b+2 = 0 且(a —3)Z>2 =0,・°・a = 3,b= —2,・°・a+〃=l,故选 C.4. D 提示:由 2JT —3 V xy —2)=0(工〉0)得:2(V^)2 — 3 V xy —2(Vj^)2 =0, /. (2 (-Zr —2 ^/y) =0.*•*2 V7 IVy>0・・2/y = 0. /.V7=2/y. A.r=4^.故原式=(塔=普・ 5. B 提示:设 x 为正整数,考察积.r(j —Fl).Vj*2<Cx(jr +l) = (jr+0. 5)2—0. 25V(«r+0. 5)2».\x<Z A /JT (才+1) VLr+O. 5,・°・[5/工(无+1)]=不,故原式=1+2+3 +…+ 100=5050.故选 B.6. A 提7B :J /=4 + 2 J —(立一6;r+5) =4 + 2 -J —(工一3严+ 4,当工=3时,西大值=2返,当工=1或5时, »最小值=2 •所求值为2 42 — 2 ♦选A.7. 2017 提示:设工=2018,则原式=J (&—1).疋(工+1)(工+2) + 1_.z 2 = A /[(G •—1)(/+2)][工(工+1)] + 1—JT 2rs-4-丄I a+丄 +1 1 1 ca 1 a —— 1 2 1 Z 1 a 丄] a n ------ 1 a ----- a 3. C 提示:原式(1+T )2_f +(^+T7 (1+X )2_2X n±l._X_+ 册"l+十—治S>0或D •故选C.・°・原式=広=壬2+乂一 1 —工2 =乂—i=2oi8—1 = 2017,9. 3 + 2 V2 提示:由已知条件可知:(債•一2)' + (»—I 2) =0・•°・」=2・』=1.故原式=~ =—=V 3-2 72 V(72-l)2^^1 = 3+2 血.V2-110. 98 提示:乂 =冬土纟= 5 + 2 76» y =冬一李=5 — 2 用,.I 工 + y = 10,刊=1, /. — + ^-= 十必=V3-V2V3+V2,龙 对(工+孙―2 可=1O2 = 2X1 = ]OO _2=9&11.2—72*提7F: *.* J 5+2 庇=J («/^+返')?=胚~\~匝、A /7 + 4 胚=J (2+>/^)? =2+>/§".故原式= ~~ +V3+V2—=庇—41 + 2 —厄=2 —42,2+7312. 10 提示:a=2、b= 7?13. 解:(1)原式=° — 1 賈一 =a — l --.当 a = 2~4^时,代入得:a —1 — =2—后一1+2+府=3.a(a —1) a a(1X2+*)(2X3+4_)(3X4+¥)(4X5+-|-)・・・(9X1O+4~)(1OX11+-|') lOXll+与(2)原式= ---------- 台 ------- 台 -------- 台 -------- 台 ----------- f ----------------- 严一= ------ =(0XH-y)(lX2+y)(2X3+y)(3X4+y )M.(8X9+y)(9X10+y) OXl+y 221.此题用到公式”++ =(点+卡)2—沪=(〃2+卄*)(”2—卄今)=[心一i )+g_][讥卄])+*]. 14.解:原式变形为:(^frn + 2 Vn — 3)( Vm + 2石+ 1) = 0.・°・+ 2 石=3,・°・ _8_ = _A —§_斥+2 石+2002 3+20021_401-15-S?:<1'用+翁)爲+②+(用;為游:血厂用—反(2) *• a =~_-— = V 17 — 1,「•a +1 = -/17,•:/ +2a +1 = 17,故 a 2 -\~2a —16 = 0,・:原式=(a' 2d' — /I7 + 116a 3) — («3 -\~2a 2 — 16a) + (a 2 +2a —16) — l=a 3 (a? +2Q —16)—a(.a 2 +2a —16) + (/ +2a —16) — 1 = — 1.16. 解:巧/=1口+,=虹+2,于是 20K2+4Lry+20b=20Gr+y)2+Hy=20(4r+2)2+l = 2001,・・・4r+2=±10, t = 2或z =—3(舍去)・・°・£=2.17. 解:./ (.r) -^====q-^=r===^y===-____________________ ^TT — __________________________ C 敦卄1严 + »Cr+l)Cr —1)+ »Cr —1严](vCTl-8. a>b>c提不:*•* a =]72018+72017 ] .72019+72018^ 13(兀+亦扬;血 J(5)=兀;弭,…,/(999) = J •'/W. .・./(i)+f(3)-------------- ---------------------- /(999) = 全国重点高中提前招生考试八年级下学期同步强化训练卷(三)(二次根式综合测试)(无2—4:=0 (工^2 (—21.D提示:由条件可知:或故x~y=6或一6.(2工+夕=0, »=—4, »=4,2. A 提示:原式=箱(质+疗一箱)(站+ /10-V7)7T0 + (V7-V3)]E 710-(V7~V3)]=A/3[( 7T0)2-(V7-V3)2]=V3(10-10+2 721)=73X2 721 = 677,故选A.3. B 提示:(7^ )2 =工+ 2 = 5(0<«rVl),故=—A/5*.77 & 77严+4 屈=5 屈,(a,y) = (2・8)4. D 提示:质=5施・•・•- 3血+2屈=5血,・・・(工,歹)=(18・2)故(工*)的个数是3•故选D.V572+0=55/2 Cr,y)=(50・0),近寺丸^=2.故血乞+砖7=5.6.B 提示:•••V1+J+(5TP=1+V_^+i'AS=1+l_T+1+T_l+1+l_l+'"+1+2M7—金=2018—佥.故选B.提示:(Va— 1 — I)2 + ( Jb一2 — 2严+*( \/c—3—3)'=0.・°・a = 2・b=6,c=12. .•・a+Z>+c=20.提示:a = 2-A<0.原式=年书=仏二3—丄=1a—3 aka—1) a—3 a(a—1) a5.C 提示:••• E- (冒9-1 提示:由1 — Jr 0.且工0«x1,则"=*十2 一#+歩-卡=* + 27. 20a—3v 25—jc l + v 15—J?214.解:原式=[a —2a(a+2)1 . a — 4_a?—4—a?+aa+2 a (a+2)''.a+2_ ]a—4 a(.a—2) (72-1)(72-1+2)、/_Q严+寻・丁*<■!■< 1,・°・当尤=号时取最大值1 •故a = l;当/=*或取最小值g■,故b 42・2..23 =1■…E =百10.24 提示:原式=3Q(Q2+2a)+6疋一6a —12=Qa2 ~\~\2a—12 = 6X6—12 = 24.11.—1提示:由题意可知%=—』.12.y 提示:•••2</7V3・・・・一3V-V7V—2,・・・2V5—V7V3,S = 2" = 5—V7—2 = 3—V7,・・・aX2X(3—疗)+风3—疗)2 = 1,.・・4(6—2存)+久16 — 6疗)=1,・・・ 6«-2 V7a +166-6 41b= 1, A (6a+ 16Z>) - (2tz += _3_l (6a+16b=l a~~2o 166)77 = 1.根据等式两边对应系数相等,得:解得:2 ・・・2a+b=2X号一£ = 3 —l-(2a+6b)=0. . 1 2 21 _ 5~2~~2'13 .解:原式=725+20 V3 + 12 + 725-20 73 + 12 = 7(5+2 V3)2 + 丿(5—2 府严=5+2 膚+5—2 用=10.1L 5 ••20ll 2011 X ( •/20l2~\~ l) /ccr c I i •1/eel c • 2 c I i ccic15.M: . m= — = ----------- /,---- =』2012 + ]…加一1= J2012…亦一2加+] = 20]2,V2012 — 1( 72012)2-1m2—2m—2011=0. 原式=加3 (?w2—2m—2011) =0.16.解:x=(2n+l)-2 %AiG+l),_y=(2 卄1)+2 /?G+1),工+ y = 4n + 2,£y= 1,又2(工+ 3^ + 193工夕= 1993,得2(4w+2)24-193=1993,(4n+2)z=900,n>0,得宛=7.17.解:A“=Jl+* + d)2 = 1 + —^^2s=Ai +A2 +A3 H ------------------------- An, = (1+ ) + (1+ ) +9 9 9 9 9 9 9 9n-\~—----- )-1-…+O+ ---------- )= io+二 + --------- -- =1?—3 5 10 12 1 2 11 12 66°。
第一讲实数(含二次根式)【命题1 实数的分类级正负数意义】1.(2022•巴中)下列各数是负数的是()A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.2.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元3.(2022•日照)在实数,x0(x≠0),cos30°,中,有理数的个数是()A.1个B.2个C.3个D.4个4.(2022•金华)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.25.(2022•益阳)四个实数﹣,1,2,中,比0小的数是()A.﹣B.1C.2D.【命题点2 相反数、倒数、绝对值】6.(2022•黔西南州)﹣3的绝对值是()A.±3B.3C.﹣3D.7.(2022•盘锦)﹣6的倒数是()A.B.﹣0.6C.D.68.(2022•聊城)实数a的绝对值是,a的值是()A.B.﹣C.±D.±9.(2022•福建)﹣11的相反数是()A.﹣11B.C.D.11【命题点3 数轴】10.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.11.(2021•怀化)数轴上表示数5的点和原点的距离是()A.B.5C.﹣5D.﹣12.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()13.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6 14.(2022•台湾)如图数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d| 15.(2021•安顺)如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|﹣|a|正确的是()A.b﹣a B.a﹣b C.a+b D.﹣a﹣b【命题点4 科学计数法】16.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A.0.11×108B.1.1×107C.11×106D.1.1×106 17.(2022•贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是()A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m 18.(2021•荆门)“绿水青山就是金山银山”某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.012×108元资金.数据1.012×108可表示为()A.10.12亿B.1.012亿C.101.2亿D.1012亿19.(2021•潍坊)第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)表示为()A.1.02×108B.0.102×109C.1.015×108D.0.1015×109【命题点5 实数的大小比较】20.(2022•营口)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.21.(2022•吉林)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定22.(2022•临沂)比较大小:(填“>”,“<”或“=”).【命题点6 平方根、算术平方根、立方根】23.(2022•攀枝花)2的平方根是()A.2B.±2C.D.24.(2021•济南)9的算术平方根是()25.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2 26.(2022•常州)化简:=.27.(2021•南充)如果x2=4,则x=.28.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【命题点7 二次根式及其运算】【类型一二次根式的有关概念及性质】29.(2022•湘西州)要使二次根式有意义,则x的取值范围是()A.x>2B.x<2C.x≤2D.x≥2 30.(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1 31.(2022•雅安)使有意义的x的取值范围在数轴上表示为()A.B.C.D.32.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.33.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【类型二二次根式的运算】34.(2022•凉山州)化简:=()A.±2B.﹣2C.4D.2 35.(2022•南岸区自主招生)计算+结果正确的是()A.B.3C.3D.536.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.3 37.(2022•瓯海区校级自主招生)已知点P(x,y)在函数y=的图象上,那么点P应在平面直角坐标系中的()A.第一象限B.第二象限C.第三象限D.第四象限38.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a 39.(2022•衢州)计算()2=.40.(2022•山西)计算:×的结果为.41.(2022•南充)若为整数,x为正整数,则x的值是.42.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.43.(2022•天津)计算(+1)(﹣1)的结果等于.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=.45.(2022•内蒙古)已知x,y是实数,且满足y=++,则的值是.【类型三二次根式的估值】46.(2022•台州)无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间47.(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间48.(2022•北碚区自主招生)估计×﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【命题点8 实数的运算】【类型一有理数的运算】49.(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).50.(2022•杭州)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.【类型二实数的运算】51.(2022•甘肃)计算:×﹣.52.(2022•河池)计算:|﹣2|﹣3﹣1﹣×+(π﹣5)0.53.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.答案与解析【命题1 实数的分类级正负数意义】1.(2022•巴中)下列各数是负数的是()A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.【答案】D【解答】解:(﹣1)2=1,是正数,故A选项不符合题意;|﹣3|=3,是正数,故B选项不符合题意;﹣(﹣5)=5,是正数,故C选项不符合题意;,是负数,故D选项符合题意.故选:D.2.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.3.(2022•日照)在实数,x0(x≠0),cos30°,中,有理数的个数是()A.1个B.2个C.3个D.4个【答案】B【解答】解:在实数,x0(x≠0)=1,cos30°=,=2中,有理数是,x0(x≠0),所以,有理数的个数是2,故选:B.4.(2022•金华)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.2【答案】C【解答】解:﹣2,,2是有理数,是无理数,故选:C.5.(2022•益阳)四个实数﹣,1,2,中,比0小的数是()A.﹣B.1C.2D.【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.【命题点2 相反数、倒数、绝对值】6.(2022•黔西南州)﹣3的绝对值是()A.±3B.3C.﹣3D.【答案】B【解答】解:﹣3的绝对值:|﹣3|=3,故选:B.7.(2022•盘锦)﹣6的倒数是()A.B.﹣0.6C.D.6【答案】A【解答】解:﹣6的倒数是1÷(﹣6)=.故选:A.8.(2022•聊城)实数a的绝对值是,a的值是()A.B.﹣C.±D.±【答案】D【解答】解:∵|a|=,∴a=±.故选:D.9.(2022•福建)﹣11的相反数是()A.﹣11B.C.D.11【答案】D【解答】解:﹣(﹣11)=11.故选:D【命题点3 数轴】10.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.【答案】D【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.11.(2021•怀化)数轴上表示数5的点和原点的距离是()A.B.5C.﹣5D.﹣【答案】B【解答】解:数轴上表示数5的点和原点的距离是5;故选:B.12.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.13.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6【答案】A【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A14.(2022•台湾)如图数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d|【答案】A【解答】解:∵a表示的点A到原点的距离最近,∴|a|最小,故选:A.15.(2021•安顺)如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|﹣|a|正确的是()A.b﹣a B.a﹣b C.a+b D.﹣a﹣b【答案】C【解答】解:由图可知,a<0,b>0,∴|a|=﹣a,|b|=b,∴|b|﹣|a|=b+a,故选:C.【命题点4 科学计数法】16.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A.0.11×108B.1.1×107C.11×106D.1.1×106【答案】B【解答】解:11000000=1.1×107.故选:B.17.(2022•贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是()A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m【答案】C【解答】解:因为1nm=10﹣9m,所以28nm=28×10﹣9m=2.8×10﹣8m.故选:C.18.(2021•荆门)“绿水青山就是金山银山”某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.012×108元资金.数据1.012×108可表示为()A.10.12亿B.1.012亿C.101.2亿D.1012亿【答案】B【解答】解:数据1.012×108可表示为:1.012×108=101200000=1.012亿,故选:B.19.(2021•潍坊)第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)表示为()A.1.02×108B.0.102×109C.1.015×108D.0.1015×109【答案】C【解答】解:101 527 000=1.01527×108≈1.015×108.故选:C.【命题点5 实数的大小比较】20.(2022•营口)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.【答案】C【解答】解:∵﹣1<0<<2,∴最大的数是2;故选:C.21.(2022•吉林)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定【答案】B【解答】解:∵b>0,a<0,∴a<b,故选:B.22.(2022•临沂)比较大小:(填“>”,“<”或“=”).【答案】<【解答】解:∵()2=,()2=,<,∴<,故答案为:<.【命题点6 平方根、算术平方根、立方根】23.(2022•攀枝花)2的平方根是()A.2B.±2C.D.【答案】D【解答】解:因为(±)2=2,所以2的平方根是,故选:D.24.(2021•济南)9的算术平方根是()A.3B.﹣3C.±3D.【答案】A【解答】解:∵32=9,∴9的算术平方根是3.故选:A.25.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2【答案】C【解答】解:=4,±=±2,故选:C.26.(2022•常州)化简:=.【答案】2【解答】解:∵23=8∴=2.故填2.27.(2021•南充)如果x2=4,则x=.【答案】±2【解答】解:x2=4,开平方得x=±2;故答案为:±2.28.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【答案】2【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2【命题点7 二次根式及其运算】【类型一二次根式的有关概念及性质】29.(2022•湘西州)要使二次根式有意义,则x的取值范围是()A.x>2B.x<2C.x≤2D.x≥2【答案】D【解答】解:∵3x﹣6≥0,∴x≥2,故选:D.30.(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1【答案】B【解答】解:代数式有意义时,x+1>0,解得:x>﹣1.故选:B.31.(2022•雅安)使有意义的x的取值范围在数轴上表示为()A.B.C.D.【答案】B【解答】解:∵有意义,∴x﹣2≥0,∴x≥2,故选:B.32.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.【答案】D【解答】解:A.,不是最简二次根式;B.,不是最简二次根式;C.,不是最简二次根式;D.,是最简二次根式.故选:D.33.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【答案】D【解答】解:A、=2和不是同类二次根式,本选项不合题意;B、=2与不是同类二次根式,本选项不合题意;C、与不是同类二次根式,本选项不合题意;D、=5,=3是同类二次根式,本选项符合题意.故选:D.【类型二二次根式的运算】34.(2022•凉山州)化简:=()A.±2B.﹣2C.4D.2【答案】D【解答】解:==2,故选:D.35.(2022•南岸区自主招生)计算+结果正确的是()A.B.3C.3D.5【答案】C【解答】解:+=.故选:C.36.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.3【答案】B【解答】解:(﹣)×=﹣=﹣=3﹣2=1,故选:B37.(2022•瓯海区校级自主招生)已知点P(x,y)在函数y=的图象上,那么点P应在平面直角坐标系中的()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵,∴x<0;又∵x<0,∴,即y>0∴P应在平面直角坐标系中的第二象限.故选:B.38.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a【答案】B【解答】解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.39.(2022•衢州)计算()2=.【答案】2【解答】解:原式=2.故答案是2.40.(2022•山西)计算:×的结果为.【答案】3【解答】解:原式==3.故答案为:3.41.(2022•南充)若为整数,x为正整数,则x的值是.【解答】解:∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵为整数,∴=0或1或2,当=0时,x=8,当=1时,x=7,当=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【答案】4或7或842.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.【答案】2【解答】解:∵1<<2,∴1<3﹣<2,∵若3﹣的整数部分为a,小数部分为b,∴a=1,b=3﹣﹣1=2﹣,∴(2+a)•b=(2+)(2﹣)=2,故答案为:2.43.(2022•天津)计算(+1)(﹣1)的结果等于.【答案】18【解答】解:原式=()2﹣12=19﹣1=18,故答案为:18.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=.【答案】2【解答】解:由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|﹣+=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.45.(2022•内蒙古)已知x,y是实数,且满足y=++,则的值是.【答案】【解答】解:∵y=++,∴x﹣2≥0,2﹣x≥0,∴x=2,y=,则原式=×==,故答案为:【类型三二次根式的估值】46.(2022•台州)无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】B【解答】解:∵4<6<9,∴2<<3.故选:B47.(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解答】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.48.(2022•北碚区自主招生)估计×﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解答】解:×﹣1=﹣1,∵5<<6,∴4<﹣1<5,∴×﹣1的值应在4和5之间.故选:C.【命题点8 实数的运算】【类型一有理数的运算】49.(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).【解答】解:原式=1×3+4÷(﹣4)=3﹣1=2.50.(2022•杭州)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.【解答】解:(1)(﹣6)×(﹣)﹣23=(﹣6)×﹣8=﹣1﹣8=﹣9;(2)设被污染的数字为x,根据题意得:(﹣6)×(﹣x)﹣23=6,解得:x=3,答:被污染的数字是3.【类型二实数的运算】51.(2022•甘肃)计算:×﹣.【解答】解:原式=﹣2=﹣.52.(2022•河池)计算:|﹣2|﹣3﹣1﹣×+(π﹣5)0.【解答】解:原式=2﹣﹣2+1=.53.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.【解答】解:∵a=2+,b=2﹣,∴a2b+ab2=ab(a+b)=(2+)(2﹣)(2++2﹣)=(4﹣5)×4=﹣1×4=﹣4.。
一、选择题1.如果0,0a b <<,且6a b -=,则22a b -的值是( ) A .6 B .6- C .6或6- D .无法确定2.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x > B .3x ≥ C .3x ≤D .x 是非负数 3.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( )A .12B .10C .8D .64.下列二次根式中,是最简二次根式的是( )A .15B .8C .13D .265.下列计算正确的是( )A .93=±B .8220-=C .532-=D .2(5)5-=-6.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( )A .1B .2C .3D .43 7.若ab <0,则代数式可化简为( )A .aB .aC .﹣aD .﹣a8.下列各式成立的是( ) A ()222- B ()255-=- C 2x x D ()266-=- 9.下列二次根式中,最简二次根式是( ) A 23a B 13C 2.5D 22a b -10.下列各组二次根式中,能合并的一组是( )A 1a +1a -B 3和13C 2a b 2abD 318二、填空题11.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.12.)230m m --≤,若整数a 满足52m a +=a =__________.13.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.14.方程14(1)(1)(2)(8)(9)x x x x x x ++⋅⋅⋅+=+++++的解是______. 15.把1a a-的根号外的因式移到根号内等于? 16.若a 、b 为实数,且b =2211a a -+-+4,则a+b =_____. 17.已知x =51-,y =51+,则x 2+xy +y 2的值为______. 18.化简(322)(322)+-的结果为_________.19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.2a ·8a (a ≥0)的结果是_________.三、解答题21.1123124231372831-+- 533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】1123124231372831-+-=48132331)32(337228+⨯⨯⨯=46233132337533121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.计算:(18322(2))((25225382+-+. 【答案】(1)52【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2=023.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b c p ++= (1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积. (2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S ==(2)222222211[()]24a b a S c b +-=- =222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =--- ∵2a b c p ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >,∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.24.计算:10099+【答案】910【解析】 【分析】 先对代数式的每一部分分母有理化,然后再进行运算【详解】10099++10099+++=9912233499100-+-+-++-=1100-=1110-=910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
考点一:二次根式的识别★方法导引★:判定二次根式的方法:(1)有二次根号“”;(2)被开方数非负;例题1、当a 为实数时,下列各式中哪些是二次根式?10+a ,a ,2a ,12-a ,12+a ,2)1(-a .(答:a 、2a 、12+a 、2)1(-a )强化训练《一》:1、下列各式中15、3a 、21b -、22a b +、220m +、144-,二次根式的个数是( ).A .4B .3C .2D .1 2、下列各式中一定是二次根式的是( )A 、3-;B 、x ;C 、12+x ; D 、1-x 3、下列各式一定是二次根式的是() A.7- B.m C.12+a D.334、下列各式中15、3a 、21b -、22a b +、220m +、144-,35不是二次根式的有考点二:二次根式有意义的条件★ 方法导引★:二次根式有意义的条件:被开方数非负;(即,若a 有意义,则0a ≥)例题2.x 是怎样的实数时,下列各式在实数范围内有意义?(1)2+x -x 23-;(2)x --11+x ; (3)2||12--x x ;例题3.设m 、n 满足329922-+-+-=m m m n ,则mn =。
强化训练《二》: 1.(2015•滨州)如果式子有意义,那么x 的取值范围在数轴上表示出来,正确的是( ) A. B.C.D.2.(2015•绵阳)要使代数式有意义,则x 的( )A .最大值是B .最小值是C .最大值是D .最小值是3.(2015•内江)函数y=+中自变量x 的取值范围是( )A . x ≤2B . x ≤2且x ≠1C . x <2且x ≠1D . x ≠14.(2014·广州)若代数式1xx -有意义,则实数x 的取值范围是( ) A .1x ≠ B .0x ≥ C .0x > D .01x x ≥≠且 5. x 取何值时,下列各式在实数范围内有意义。
(1)(2)121+-x (3)45++x x(4)(5)1213-+-x x (6).(7)若1)1(-=-x x x x ,则x 的取值范围是(8)若1313++=++x x x x ,则x 的取值范围是。
2013---2014学年度第一轮总复习强化练习(1)----实数、二次根式 班级:_____ 姓名:________ 座号:________
考点一:相反数、倒数、绝对值
1、(2010珠海)-5的相反数是 ( ) A.5 B.-5
C.
5
1 D.5
1-
2、(2009清远) -5-的值等于 ( )
A .5
B .-5
C .51
D .5
1- 3.-
1
3
的倒数是 ( ) A.-3 B .3 c .-13 D .1
3
4.(2012贵州)实数a 、b 在数轴上的位置如图所示,下列式子错误..的是( )
A.b a <
B.b a >
C.b a -<-
D.0>-a b
5、(2013年广州市)实数a 在数轴上的位置如图所示,则 2.5a -=( )
A 、 2.5a -
B 、 2.5a -
C 、 2.5a +
D 、 2.5a --
考点二:科学记数法
6、(2010无锡)12.上海世博会“中国馆”的展馆面积为158002
m ,这个数据用科学记数法可表示为
2
m .
7、(2010连云港)今年1季度,连云港市高新技术产业产值突破110亿元,同比增长59%.数据“110亿”用科学记数可表示为( ) A .1.1×1010
B .11×1010
C .1.1×109
D .11×109
8、(2010金华)据报道,5月28日参观2010上海世博会的人数达35.6万﹒用科学记数法表示数35.6万是( )
A .3.56×101 B. 3.56×10
4
C .3.56×105
D .35.6×10
4
9.甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( ) A .8.1×19
0-米 B .8.1×18
0-米 C .81×19
0-米 D .0.81×17
0-米 考点三:平方根、算术平方根、立方根 10. (2012江苏盐城)4的平方根是( ) A . 2 B .16 C .2± D .±16
11、(2009东莞) 4的算术平方根是 ( ) A .±2 B .2 c
12、(2013东营中考)16的算术平方根是( ) A . 4±
B . 4
C . 2±
D . 2
13.(2012黑龙江省绥化)下列计算正确的是( )
A .33--=-
B .0
30= C .1
33-=- D 3±
14、的值为 。
考点四:无理数和实数的概念
15. (2012湖北黄冈)下列实数中是无理数的是( )
π
16.(2012贵州六盘水)13
,πcos 45︒,0.32中无理数的个数是( )
A .1
B .2
C .3
D .4
考点五:二次根式 17
在实数范围内有意义,则x 的取值范围( ) A .x≥0 B .x>2 C .x ≠2 D .x≥2
18、(2013x 的取值范围是( ) A 、1x ≠ B 、0x ≥ C 、0x > D 、01x x ≥≠且 19、(2009安顺)下列计算正确的是 ( )
A =
1=
C =、=4 =21、(2013年广东省)若实数a 、b 满足042=-++b a ,则=b
a 2
________. 考点六 实数的运算
22.(2012山东东营)计算:()122
160tan 33101
+
-+︒-⎪
⎭
⎫
⎝⎛--;
23.(2012贵州省毕节市)计算:20121
)1(60tan 2)2
1(27----+-ο
24.(2012四川攀枝)计算:202)14.3(45sin 221-+-+︒--π
考点七:规律探究题
25、(2012江苏泰州市)根据排列规律,在横线上填上合适的代数式:x ,3x 2,5x 3
, ,9x 5
,
26、(2012广东肇庆)观察下列一组数:
32,54,76,98,11
10
,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 .
27、(2013山西)一组按规律排列的式子:a2
,43a ,65a ,
8
7
a ,….则第n 个式子是________ 28、(2013•娄底)如图,是用火柴棒拼成的图形,则第n 个图形需 _______根火柴棒.
29、(2013•遂宁)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为 ________.
30、(2013年江西省)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).
31、观察下列等式(式子中的“!”是一种数学运算符号)
1! = 1,2! = 2×1,3! = 3×2×1,4! = 4×3×2×1,……,那么计算:!
2008!
2007=_______。
32、(2013•常德)小明在做数学题时,发现下面有趣的结果: 3﹣2=1
8+7﹣6﹣5=4
15+14+13﹣12﹣11﹣10=9
24+23+22+21﹣20﹣19﹣18﹣17=16 …
根据以上规律可知第100行左起第一个数是__________. 广东真题
1、(2010梅州)-2的相反数是 ( ) A .2 B .-1 C .- 1 2 D . 1
2
2、(2010深圳)-2的绝对值等于 ( ) A .2 B .-2 C .1
2
D .4
3、(2009广东)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是 ( ) A .10
7.2610⨯ 元 B .9
72.610⨯ 元
C .11
0.72610⨯ 元 D .11
7.2610⨯元
4、 (2011广东省)按下面程序计算:输入x =3,则输出的答案是__ _ .
5、(2010深圳)观察下列单项式:a ,-2a 2
,4a 3
,-8a 4
,16a 5
,….按此规律,第n 个单项
6、(2010梅州)计算: 45cos 8)14.3(21201
⨯+-+⎪⎭
⎫
⎝⎛---π
7、(2010深圳)计算:( 13 )-2-2sin45º+(π -3.14)0+ 1
2 8+(-1)3.
8.(2012广东汕头)观察下列等式: 第1个等式:a 1==×(1﹣); 第2个等式:a 2==×(﹣); 第3个等式:a 3==×(﹣); 第4个等式:a 4==×(﹣);
请解答下列问题:
(1)按以上规律列出第5个等式:a 5=_______________= _______________;
(2)用含有n 的代数式表示第n 个等式:a n =____________= _____________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.。