D_2007年普通高等学校招生全国统一考试文科数学试卷及答案-辽宁卷
- 格式:pdf
- 大小:212.25 KB
- 文档页数:10
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)(2007•辽宁)若集合A={1,3},B={2,3,4},则A∩B=()2、(5分)(2007•辽宁)若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点()3、(5分)(2007•辽宁)双曲线的焦点坐标为(),,4、(5分)(2007•辽宁)若向量与不共线,≠0,且,则向量与的夹角为()表现形式有点繁琐,我们可以试着先求一下要求夹5、(5分)(2007•辽宁)设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()6、(5分)(2007•辽宁)若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是()7、(5分)(2007•辽宁)若函数y=f(x)的图象按向量平移后,得到函数y=f(x+1)﹣2的图象,则向量=()解:设=8、(5分)(2007•辽宁)已知变量x,y满足约束条件,则的取值范围是()根据已知的约束条件表示的几何意义,结合图象即可给出对应的平面区域如下图示:9、(5分)(2007•辽宁)函数的单调增区间为()根据复合函数的单调性知10、(5分)(2007•辽宁)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是()B11、(5分)(2007•辽宁)设p,q是两个命题:,则p是q的(),结合数轴知12、(5分)(2007•辽宁)将数字1,2,3,4,5,6拼成一列,记第i个数为a i(i=1,2,…,6),若a1≠1,a3≠3,a5≠5,a1<a3<a5,则不同的排列方法种数为()第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13、(4分)(2007•辽宁)已知函数y=f(x)为奇函数,若f(3)﹣f(2)=1,则f(﹣2)﹣f(﹣3)= 1、14、(4分)(2007•辽宁)展开式中含x的整数次幂的项的系数之和为72(用数字作答)、,15、(4分)(2007•辽宁)若一个底面边长为,棱长为的正六棱柱的所有顶点都在一个平面上,则此球的体积为4π、得R=,球体积为16、(4分)(2007•辽宁)设椭圆上一点P到左准线的距离为10,F是该椭圆的左焦点,若点M满足=(+),则=2、﹣的坐标,由=+)得到的坐标,利用两点间的距离公式求出解:由椭圆得,则左准线为,列出x=(舍去)x=,满足=(+(﹣,±=三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17、(12分)(2007•辽宁)某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率、,可得出各组的频率;18、(12分)(2007•辽宁)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=a,D,E分别为棱AB,BC的中点,M为棱AA1上的点,二面角M﹣DE﹣A为30°、(I)证明:A1B1⊥C1D;(II)求MA的长,并求点C到平面MDE的距离、,∴,,∴,即的距离为∵的距离相等,为19、(12分)(2007•辽宁)已知函数(其中ω>0)(I)求函数f(x)的值域;(II)若函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间、的两个相邻交点间的距离为)解:20、(12分)(2007•辽宁)已知数列{a n},{b n}满足a1=2,b1=1,且(n≥2)(I)令c n=a n+b n,求数列{c n}的通项公式;(II)求数列{a n}的通项公式及前n项和公式S n、公比为)解:由题设得,公比为的等比数列,通项公式为解得求和得21、(14分)(2007•辽宁)已知正三角形OAB的三个顶点都在抛物线y2=2x上,其中O为坐标原点,设圆C是OAB的内接圆(点C为圆心)(Ⅰ)求圆C的方程;(Ⅱ)设圆M的方程为(x﹣4﹣7cosθ)2+(y﹣7cosθ)2=1,过圆M上任意一点P分别作圆C的两条切线PE,PF,切点为E,F,求的最大值和最小值、两点坐标分别为,由题设知,点坐标为,于是有、中,,由此可得、的最大值为22、(12分)(2007•辽宁)已知函数f(x)=x3﹣9x2cosα+48xcosβ+18sin2α,g(x)=f'(x),且对任意的实数t均有g(1+cost)≥0,g(3+sint)≤0、(I)求函数f(x)的解析式;(II)若对任意的m∈[﹣26,6],恒有f(x)≥x2﹣mx﹣11,求x的取值范围、即,解得由题意只要即。
2007年普通高等学校招生全国统一考试(辽宁卷)数 学(理工科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p n n -=-=,,,,一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{12345}U =,,,,,{13}A =,,{234}B =,,,则()()U UA B =痧( )A .{1}B .{2}C .{24},D .{1234},,, 2.若函数()y f x =的反函数图象过点(15),,则函数()y f x =的图象必过点( )A .(11),B .(15),C .(51),D .(55),3.若向量a 与b 不共线,0≠a b ,且⎛⎫⎪⎝⎭a a c =a -b a b ,则向量a 与c 的夹角为( ) A .0B .π6C .π3D .π24.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63B .45C .36D .275.若35ππ44θ⎛⎫∈⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( ) A .(12)--,B .(12)-,C .(12)-,D .(12),7.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是( )A .若m βαβ⊂⊥,,则m α⊥B .若m αγ=n βγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥8.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭,B .[)965⎛⎤-∞+∞ ⎥⎝⎦,,C .(][)36-∞+∞,,D .[36],9.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是( ) A .122B .111C .322D .21110.设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则p 是q 的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( )A.B .12C.D .2412.已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能...出现的是( ) A .0是()f x 的极大值,也是()g x 的极大值B .0是()f x 的极小值,也是()g x 的极小值C .0是()f x 的极大值,但不是()g x 的极值D .0是()f x 的极小值,但不是()g x 的极值第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数2cos (0)()1(0)a x x f x x x ⎧=⎨-<⎩≥,在点0x =处连续,则a = .14.设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP DF =+,则||OM = . 15.若一个底面边长为2的正六棱柱的所有顶点都在一个平面上,则此球的体积为 .16.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种(用数字作答).三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>) (I )求函数()f x 的值域;(II )若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间. 18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=,AC BC a ==,D E ,分别为棱AB BC ,的中点,M 为棱1AA 上的点,二面角M DE A --为30.(I )证明:111A B C D ⊥;(II )求MA 的长,并求点C 到平面MDE 的距离.19.(本小题满分12分)某企业准备投产一批特殊型号的产品,已知该种产品的成本C 与产量q 的函数关系式为3232010(0)3q C q q q =-++>该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p 与产量q 的函数关系式如下表所示:市场情形 概率价格p 与产量q 的函数关系式 好 0.4 1643p q =- 中 0.4 1013p q =- 差0.2704p q =-设123L L L ,,分别表示市场情形好、中差时的利润,随机变量k ξ,表示当产量为q ,而市场前景无法确定的利润.(I )分别求利润123L L L ,,与产量q 的函数关系式; (II )当产量q 确定时,求期望k E ξ;(III )试问产量q 取何值时,k E ξ取得最大值.1A 1C1BCBAMDE20.(本小题满分14分)已知正三角形OAB 的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB 的内接圆(点C 为圆心) (I )求圆C 的方程;(II )设圆M 的方程为22(47cos )(7cos )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两条切线PE PF ,,切点为E F ,,求CE CF ,的最大值和最小值.21.(本小题满分12分)已知数列{}n a ,{}n b 与函数()f x ,()g x ,x ∈R 满足条件:n n a b =,1()()()n n f b g b n +=∈N*.(I )若()102f x tx t t +≠≠≥,,,()2g x x =,()()f b g b ≠,lim n n a →∞存在,求x 的取值范围;(II )若函数()y f x =为R 上的增函数,1()()g x f x -=,1b =,(1)1f <,证明对任意n ∈N*,lim n n a →∞(用t 表示).22.(本小题满分12分)已知函数2222()2()21tf x x t x x x t =-++++,1()()2g x f x =.(I )证明:当t <时,()g x 在R 上是增函数;(II )对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b ,上是减函数;(III )证明:3()2f x ≥.。
2012年大学生暑期社会实践活动指导手册二O一二年五月目录一、2012年武汉软件工程职业学院暑期社会实践活动程序图 (4)二、武汉软件工程职业学院2012年学生暑期社会实践活动流程 (5)三、武汉软件工程职业学院2012年大学生暑期社会实践相关制度与方案1. 武汉软件工程职业学院2012年学生暑期社会实践资助办法 (8)2. 武汉软件工程职业学院2012年学生暑期社会实践资助报销制度 (9)3. 武汉软件工程职业学院2012年学生暑期社会实践评奖办法 (10)四、武汉软件工程职业学院2012年学生暑期社会实践案例指导 (14)五、附录1. 武汉软件工程职业学院2012年暑期社会实践活动联系专用证明(样式) (16)2. 武汉软件工程职业学院2012年暑期社会实践地活动接收证明(样式) (17)3. 武汉软件工程职业学院2012年暑期社会实践项目申报书 (18)4. 武汉软件工程职业学院2012年暑期社会实践活动立项申报表(样式) (20)5. 武汉软件工程职业学院2012年暑期社会实践团队守则 (26)6. 武汉软件工程职业学院2012年暑期社会实践个人安全责任承诺书 (27)7. 武汉软件工程职业学院2012年暑期社会实践最终信息确认表 (28)8. 武汉软件工程职业学院2012年暑期社会实践学生团队登记表 (29)9. 武汉软件工程职业学院2012年暑期社会实践学生个人登记表 (30)10.武汉软件工程职业学院2012年暑期社会实践总结报告 (31)11.武汉软件工程职业学院2012年暑期社会实践活动反馈表 (31)12 武汉软件工程职业学院2012年暑期社会实践成果统计表 (32)13.武汉软件工程职业学院2012年暑期社会实践优秀项目申报表 (33)一、2012年武汉软件工程职业学院暑期社会实践活动程序图奔赴各地开展社会实践 总结工作:上交实践总结、成果册、推优名单、四项评比材料等 报帐 结算 成绩录入 评奖表彰院团委将初步审核通过的团队,并予以公布。
2007年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p n n -=-=,,,,一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{12345}U =,,,,,{13}A =,,{234}B =,,,则()()U UAB =痧( )A .{1}B .{2}C .{24},D .{1234},,, 2.若函数()y f x =的反函数图象过点(15),,则函数()y f x =的图象必过点( )A .(11), B .(15),C .(51),D .(55),3.若向量a 与b 不共线,0≠a b ,且⎛⎫⎪⎝⎭a a c =a -b a b ,则向量a 与c 的夹角为( )A .0B .π6C .π3D .π24.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .27 5.若35ππ44θ⎛⎫∈ ⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( )A .(12)--,B .(12)-,C .(12)-, D .(12),7.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是( )A .若m βαβ⊂⊥,,则m α⊥B .若m αγ=n βγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥8.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .9,65⎛⎤ ⎥⎝⎦B .[)965⎛⎤-∞+∞ ⎥⎝⎦,,C .(][)36-∞+∞,,D .[36],9.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是( )A .122 B .111C .322D .21110.设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则p 是q 的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( )A.B .12 C.D .2412.已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能...出现的是( ) A .0是()f x 的极大值,也是()g x 的极大值 B .0是()f x 的极小值,也是()g x 的极小值 C .0是()f x 的极大值,但不是()g x 的极值 D .0是()f x 的极小值,但不是()g x 的极值第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2007年普通高等学校招生全国统一考试(辽宁卷)2007年普通高等学校招生全国统一考试(辽宁卷)第卷(选择题共36分)一、(15分,每小题3分)1.下列词语中加点的字注音全都正确的一组是A.摄制(sh) 执拗(ni) 染色体(rn) 长歌当哭(dng)B.疾病(j) 吮吸(yn) 露马脚(1u) 遂心如意(su)C.辑录(j) 恪守(k) 干细胞(gn) 数见不鲜(xin)D.血液(xu) 脑髓(su) 文绉绉(zhu) 睚眦必报(z)C(A项,“当”应读“dng”,B项,“吮”应读“shn”,D项,“髓”应读“su”)2.下列词语中没有错别字的一组是A.精粹矍铄再所不惜人情世故B.部署好像金碧辉煌细水常流C.梳妆赋与人才辈出破涕为笑D.坐落针砭山清水秀各行其是D(A项,再——在;B项,常——长;C项,与——予)3.依次填人下面横线处的词语,最恰当的一组是方永刚既是“知者”,是一个“行者”。
他通过脚踏实地地党的创新理论,使得党的创新理论的威力通过传播者知行统一的人格魅力更好地出来。
A.也躬身体现B.更躬行发挥C.更躬身体现D.也躬行发挥B(“也”表示并列,“更”表示递进;本句中要突出方永刚是“行者”,所以用“更”。
“躬身”,自身,亲自;“躬行”,亲自实行。
本句中显然要用动词,所以用“躬行”。
“体现”,某种性质或现象在某一事物上具体表现出来;“发挥”,把内在的性质或能力表现出来,把意思或道理充分表达出来。
本句中“党的创新理论的威力”,属于“能力表现出来”,所以选“发挥”)4.下列语句中加点的熟语使用恰当的一项是A.儒学是儒家的学说,由孔子所创立。
薪尽火传,经过漫长的岁月,儒学得以延续和发展。
B.今天看来,亚里士多德的这个论断是错误的,然而在古代,亚里士多德有很高的声望,他所说的话不应无可置疑。
C.这真是大人不见小人怪,我犯了这点儿小错误,经理没有批评我,你倒挑起我的毛病来了。
D.王懿荣与“龙骨”第一次相遇,就刮目相看,从中发现了甲骨文,并成为把甲骨文考订为商代文字的第一人。
2007年普通高等学校招生全国统一考试文科数学参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p n n -=-=,,,,一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T =( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513 B.513- C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种C.96种D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02), B.(20)-, C.(02)-, D.(20),(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A.15 B.25 C.35 D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )B.2C. D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( )A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭, D.ππ2⎛⎫⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A.19 B.29 C.13 D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A.4B.C.D.8二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .1A1D1C1BD BCA(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.(20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.(21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.S CDAB2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()xx ∈R 15.4π3 16.13三、解答题17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+ 01()()P B P B =+0.2160.432=+ 0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==SA =11SD ==又sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC,连结SE .ESD ∠为直线SD 与平面SBC 所成的角.sin11ED AO ESD SD SD ====∠ 所以,直线SD 与平面SBC 所成的角为arcsin 11.解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD . 因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为2AO BO AB ===1SO ==,又BC =0)A ,, (0B ,(0C -,. (001)S ,,,(21)SA =-,,, (0220)CB =,,,0SA CB =(Ⅱ)(2SD SA AD SA CB =+=-=(2OA =,OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA 为平面SBC 的法向量,所以α与β互余. 22cos 11OA SD OA SDα==,sin 11β=,所以,直线SD 与平面SBC 所成的角为arcsin 11. 20.解:D Ay DBCASOE(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=. 即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--. 当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=.122135232112222n n n n n S ----=+++++,①3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++-,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭1111212221212n n n ----=+⨯-- 12362n n -+=-.。
2007年普通高等学校招生全国统一考试(辽宁卷)数 学(文科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C p p -=-一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{13}A =,,{234}B =,,,则A B =( )A .{1}B .{2}C .{3}D .{1234},,, 解析:AB ={1,3}∩{2,3,4}={3},选C2.若函数()y f x =的反函数...图象过点(15),,则函数()y f x =的图象必过点( ) A .(51),B .(15),C .(11),D .(55),解析:根据反函数定义知反函数图像过(1,5),则原函数图像过点(5,1),选A3.双曲线221169x y -=的焦点坐标为( )A .(,B .(0-,,(0 C .(50)-,,(50),D .(05)-,,(05), 解析:因为a=4,b=3,所以c=5,所以焦点坐标为(50)-,,(50),,选C 4.若向量a 与b 不共线,0≠a b ,且⎛⎫-⎪⎝⎭a a c =ab a b ,则向量a 与c 的夹角为( )A .0B .π6C .π3D .π2解析:因为0)(22=⋅⋅-=⋅→→→→→→→→b a ba aa c a ,所以向量a 与c 垂直,选D5.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27解析:由等差数列性质知S 3、S 6-S 3、S 9-S 6成等差数列,即9,27,S 成等差,所以S=45,选B6.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题...是( )A .若m βαβ⊂⊥,,则m α⊥B .若m β⊥,m α∥,则αβ⊥C .若αγ⊥,αβ⊥,则βγ⊥D .若m αγ=,n βγ=,m n ∥,则αβ∥ 解析:由有关性质排除A 、C 、D ,选B7.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =( ) A .(12)-,B .(12),C .(12)-,D .(12)-,解析:函数(1)2y f x =--为)1(2-=+x f y ,令2,1''+=-=y y x x 得平移公式,所以向量a =(12)-,,选C 8.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎡⎤⎢⎥⎣⎦,B .[)965⎛⎤-∞+∞ ⎥⎝⎦,,C .(][)36-∞+∞,,D .[36],解析:画出可行域为一三角形,三顶点为(1,3)、(1,6)和(29,25),yx表示可行域内的点(x ,y )与原点(0,0)连线的斜率,当(x ,y )=(1,6)时取最大值6,当(x ,y )=(29,25)时取最小值59,选A9.函数212log (56)y x x =-+的单调增区间为( )A .52⎛⎫+∞ ⎪⎝⎭,B .(3)+∞,C .52⎛⎫-∞ ⎪⎝⎭,D .(2)-∞,解析:定义域为(2)-∞,∪(3)+∞,,排除A 、C ,根据复合函数的单调性知212log (56)y x x =-+的单调增区间为(2)-∞,,选D 10.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为( ) A .122B .111C .322D .211解析:从中任取两个球共有66212=C 种取法,其中取到的都是红球,且至少有1个球的号码是偶数的取法有122326=-C C 种取法,概率为1126612=,选D 11.设p q ,是两个命题:251:||30:066p x q x x ->-+>,,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:p :),3()3,(+∞--∞ ,q :),21()31,(+∞-∞ ,结合数轴知p 是q 的充分而不必要条件,选A12.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法种数为( )A .18B .30C .36D .48解析:分两步:(1)先排531,,a a a ,1a =2,有2种;1a =3有2种;1a =4有1种,共有5种;(2)再排642,,a a a ,共有633=A 种,故不同的排列方法种数为5×6=30,选B第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数()y f x =为奇函数,若(3)(2)1f f -=,则(2)(3)f f ---= . 解析:由函数()y f x =为奇函数得(2)(3)f f ---=(3)(2)1f f -=,填114.x展开式中含x 的整数次幂的项的系数之和为 (用数字作答).解析:2488481)1()(--+==r r rrr r xC xx C T ,当r=0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为72884808=++C C C ,填7215的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 .解析:根据条件正六棱柱的最长的对角线为球的直径,由12)6()6()2(222=+=R 得R=3,球体积为ππ34343=R 16.设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP OF =+,则||OM = . 解析:椭圆2212516x y +=左准线为325-=x ,左焦点为(-3,0),P ()328,35±,由已知M 为PF 中点,M ()324,32±-,所以||OM =2)324()32(22=±+- 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:(I )将各组的频率填入表中;(II )根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(III )该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率.本小题主要考查频率、概率、总体分布的估计、独立重复试验等基础知识,考查使用统计的有关知识解决实际问题的能力.·········································································································· 4分(II )解:由(I )可得0.0480.1210.2080.2230.6+++=,所以灯管使用寿命不足1500小时的频率为0.6. ························································································· 8分 (III )解:由(II )知,1支灯管使用寿命不足1500小时的概率0.6P =,根据在n 次独立重复试验中事件恰好发生k 次的概率公式可得223333(2)(3)C 0.60.40.60.648P P +=+=.所以至少有2支灯管的使用寿命不足1500小时的概率是0.648. ···························· 12分18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=,AC BC a ==,DE ,分别为棱AB BC ,的中点,M 为棱1AA 上的点,二面角M DE A --为30.(I )证明:111A B C D ⊥;(II )求MA 的长,并求点C 到平面MDE 的距离.本小题主要考查空间中的线面关系,解三角形等基础知识,考查空间想象能力与思维能力.(I )证明:连结CD , 三棱柱111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC ,∴CD 为1C D 在平面ABC 内的射影.ABC △中,AC BC =,D 为AB 中点, ∴AB CD ⊥,∴1AB C D ⊥.11A B AB ∥, ∴111A B C D ⊥.1A 1C1BCBAMDE1A 1C1BCBAM DEF G(II )解法一:过点A 作CE 的平行线, 交ED 的延长线于F ,连结MF . D E ,分别为AB BC ,的中点, DE AC ∴⊥.又AF CE ∥,CE AC ⊥. ∴AF DE ⊥.MA ⊥平面ABC ,∴AF 为MF 在平面ABC 内的射影. ∴MF DE ⊥.MFA ∴∠为二面角M DE A --的平面角,30MFA ∠=.在Rt MAF △中,122aAF BC ==,30MFA ∠=,6AM a ∴=. 作AG MF ⊥,垂足为G , MF DE ⊥,AF DE ⊥, ∴DE ⊥平面DMF ,平面MDE ⊥平面AMF , ∴AG ⊥平面MDE .在Rt GAF △中,30GFA ∠=,2a AF =, ∴4a AG =,即A 到平面MDE 的距离为4a.CA DE ∥,∴CA ∥平面MDE ,∴C 到平面MDE 的距离与A 到平面MDE 的距离相等,为4a . 解法二:过点A 作CE 的平行线,交ED 的延长线于F ,连接MF . D E ,分别为AB BC ,的中点, ∴DE AC ∥.又AF CE ∥,CE DE ⊥ ∴AF DE ⊥.MA ⊥平面ABC ,∴AF 是MF 在平面ABC 内的射影, ∴MF DE ⊥.∴MFA ∠为二面角M DE A --的平面角,30MFA ∠=.在Rt MAF △中,122aAF BC ==,30MFA ∠=,∴6AM a =. ··························································································· 8分设C 到平面MDE 的距离为h ,∴M CDE C MDE V V --=.∴1133CDEMDE S MA S h =△2128CDEa S CE DE ==△,MA =, 211322cos30MDE AF S DE MF DE a ===△,∴2211386312a a a h ⨯⨯=⨯⨯, ∴4a h =,即C 到平面MDE 的距离为4a. ······················································· 12分19.(本小题满分12分) 已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>) (I )求函数()f x 的值域;(II )若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.本小题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.满分12分.(I )解:11()cos sin cos (cos 1)2222f x x x x x x ωωωωω=++--+12cos 12x x ωω⎫=--⎪⎪⎝⎭π2sin 16x ω⎛⎫=-- ⎪⎝⎭. ···················································································· 5分由π1sin 16x ω⎛⎫--⎪⎝⎭≤≤,得π32sin 116x ω⎛⎫--- ⎪⎝⎭≤≤, 可知函数()f x 的值域为[31]-,. ······································································· 7分(II )解:由题设条件及三角函数图象和性质可知,()y f x =的周期为π,又由0ω>,得2ππω=,即得2ω=. ··················································································· 9分 于是有π()2sin 216f x x ⎛⎫=-- ⎪⎝⎭,再由πππ2π22π()262k x k k --+∈Z ≤≤,解得 ππππ()63k x k k -+∈Z ≤≤.所以()y f x =的单调增区间为ππππ63k k ⎡⎤-+⎢⎥⎣⎦,()k ∈Z ···································· 12分20.(本小题满分12分)已知数列{}n a ,{}n b 满足12a =,11b =,且11113114413144n n n n n n a a b b a b ----⎧=++⎪⎪⎨⎪=++⎪⎩(2n ≥)(I )令n n n c a b =+,求数列{}n c 的通项公式; (II )求数列{}n a 的通项公式及前n 项和公式n S .本小题主要考查等差数列,等比数列等基础知识,考查基本运算能力. (I)解:由题设得11()2(2)n n n n a b a b n --+=++≥,即12n n c c -=+(2n ≥)易知{}n c 是首项为113a b +=,公差为2的等差数列,通项公式为21n c n =+. ································································································ 4分(II )解:由题设得111()(2)2n n n n a b a b n ---=-≥,令n n n d a b =-,则 11(2)2n n d d n -=≥. 易知{}n d 是首项为111a b -=,公比为12的等比数列,通项公式为 112n n d -=. ·································································································· 8分 由12112n n n n n a b n a b -+=+⎧⎪⎨-=⎪⎩,解得 1122n na n =++, ························································································ 10分求和得21122n n n S n =-+++. ······································································· 12分21.(本小题满分14分)已知正三角形OAB 的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB △的内接圆(点C 为圆心) (I )求圆C 的方程;(II )设圆M 的方程为22(47cos )(7sin )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两条切线PE PF ,,切点为E F ,,求CE CF ,的最大值和最小值. 本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力.满分14分.(I )解法一:设A B ,两点坐标分别为2112y y ⎛⎫ ⎪⎝⎭,,2222y y ⎛⎫⎪⎝⎭,,由题设知=. 解得221212y y ==,所以(6A ,(6B -,或(6A -,,(6B . 设圆心C 的坐标为(0)r ,,则2643r =⨯=,所以圆C 的方程为 22(4)16x y -+=. ······················································································· 4分解法二:设A B ,两点坐标分别为11()x y ,,22()x y ,,由题设知22221122x y x y +=+.又因为2112y x =,2222y x =,可得22112222x x x x +=+.即1212()(2)0x x x x -++=.由10x >,20x >,可知12x x =,故A B ,两点关于x 轴对称,所以圆心C 在x 轴上.设C 点的坐标为(0)r ,,则A 点坐标为322r r ⎛⎫⎪ ⎪⎝⎭,,于是有23222r r ⎛⎫=⨯ ⎪ ⎪⎝⎭,解得4r =,所以圆C 的方程为22(4)16x y -+=. ······························································· 4分(II )解:设2ECF a ∠=,则2||||cos 216cos 232cos 16CE CF CE CF ααα===-. ·································· 8分在Rt PCE △中,4cos ||||x PC PC α==,由圆的几何性质得 ||||17PC MC +=≤18+=,||||1716PC MC -=-=≥,所以12cos 23α≤≤,由此可得 1689CE CF --≤≤.则CE CF 的最大值为169-,最小值为8-.22.(本小题满分12分)已知函数322()9cos 48cos 18sin f x x x x αβα=-++,()()g x f x '=,且对任意的实数t 均有(1cos )0g t +≥,(3sin )0g t +≤. (I )求函数()f x 的解析式;(II )若对任意的[266]m ∈-,,恒有2()11f x x mx --≥,求x 的取值范围.。
2007年普通高等学校招生全国统一考试(辽宁卷)数学(理科)佚名
【期刊名称】《上海中学数学》
【年(卷),期】2007(000)007
【摘要】无
【总页数】6页(P10-11,64-67)
【正文语种】中文
【相关文献】
1.2007年普通高等学校招生全国统一考试 (四川卷)理科数学 [J], 毛仕理
2.2007年普通高等学校招生全国统一考试 (辽宁卷)数学(理科) [J], 袁苏
3.2007年普通高等学校招生全国统一考试 (江西卷)理科数学 [J], 龚晓洛
4.2007年普通高等学校招生全国统一考试 (广东卷)数学(理科) [J], 何树红
5.2007年普通高等学校招生全国统一考试(广东卷)数学(理科) [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.cos330= ( )A .12B .12-C .32D .32-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( ) A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2)C .ln 2D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .36B .34C .22D .328.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x +B .e 2x -C .2e x -D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .33C .12D .3212.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF += ( )A .10B .210C .5D .25二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.20.(本小题满分12分)如图,在四棱锥S ABCD-中,底面ABCD为正方形,侧棱SD⊥底面ABCD E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线:43=-y x 相切 (1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA PB ∙的取值范围。