温度自动控制系统的设计
- 格式:doc
- 大小:451.64 KB
- 文档页数:42
基于PID控制器的温度控制系统设计随着现代工业的快速发展,各种自动控制系统也得到了广泛应用。
其中,基于PID控制器的温度控制系统设计广泛应用于化工、制药、冶金等行业。
本文将从基本原理入手,详细论述基于PID控制器的温度控制系统设计。
一、PID控制器的原理PID控制器是一种经典的控制器,它采用比例、积分、微分三个控制量的组合,通过对控制量不同比例的组合,实现对被控对象的精确控制。
具体来说,PID控制器将被控对象的当前状态与期望的目标状态进行比较,计算出误差值,然后对误差值进行P、I、D三个控制量的加权计算,得到控制输出值,通过执行控制动作,使被控对象达到期望的目标状态。
其中,比例控制P以被控对象的当前状态与期望目标状态之间的误差值为输入,按比例放大输出控制信号,其控制效果主要针对误差量的大小。
积分控制I主要是针对误差值的积累程度,在误差值持续存在的情况下逐渐加大控制输出的幅度,使被控对象逐渐趋近期望的目标状态。
微分控制D主要是针对误差值的变化速度,当偏差值增加或减小的速率较快时,将适当增大或减小控制输出量的幅度,以加快误差的消除速度。
综上所述,PID控制器的优点在于能够快速消除误差,避免超调和欠调,稳定性强,且对于被控对象的性质要求不高。
因此,PID控制器成为了温度控制系统设计的主要控制器之一。
二、温度传感器的选取温度控制系统的核心是温度控制器,其中最关键的部分是温度传感器。
良好的温度传感器应具有温度响应时间短、测量范围广、精度高等特点。
其中最常用的温度传感器是热电偶和热电阻。
热电偶是一种基于热电效应的温度测量传感器,它是利用不同材料所产生的热电动势的差别测量温度。
热电偶具有灵敏度高、阻抗小、动态响应快等特点,但受到热电对、交流电干扰等因素影响较大,测量过程中容易出现漂移现象。
热电阻是一种利用金属或半导体的电阻随温度变化的特性测量温度的传感器。
热电阻具有较高的精度、长期稳定性好的特点,但响应迟缓,对于超出其量程的高温不可用。
PLC温室温度控制系统设计方案嘿,大家好!今天咱们就来聊聊如何打造一套高效、稳定的PLC 温室温度控制系统。
这个方案可是融合了我10年的写作经验和实践心得,下面咱们就直接进入主题吧!一、系统概述咱们先来简单了解一下这个系统。
这个PLC温室温度控制系统是基于可编程逻辑控制器(PLC)技术,通过传感器实时监测温室内的温度,再通过执行机构对温室内的环境进行调节,从而达到恒定温度的目的。
这套系统不仅智能,而且高效,是现代农业发展的好帮手。
二、系统设计1.硬件设计(1)传感器:选用高精度的温度传感器,如PT100或热电偶,实时监测温室内的温度。
(2)执行机构:选用电动调节阀或者电加热器,用于调节温室内的温度。
(3)PLC控制器:选用具有良好扩展性的PLC控制器,如西门子S7-1200系列。
(4)通信模块:选用支持Modbus协议的通信模块,实现数据传输。
2.软件设计(1)温度监测模块:实时采集温室内的温度数据,并进行显示。
(2)温度控制模块:根据设定的温度范围,自动调节执行机构的动作,实现温室内的温度控制。
(3)报警模块:当温室内的温度超出设定的范围时,发出报警提示。
(4)通信模块:实现与上位机的数据交换,便于远程监控和操作。
三、系统实现1.硬件连接将温度传感器、执行机构、PLC控制器和通信模块按照设计要求进行连接。
其中,温度传感器和执行机构与PLC控制器之间的连接采用模拟量输入输出模块。
2.软件编程(1)温度监测程序:编写程序实现温度数据的实时采集和显示。
(2)温度控制程序:编写程序实现根据设定的温度范围自动调节执行机构的动作。
(3)报警程序:编写程序实现当温室内的温度超出设定的范围时,发出报警提示。
(4)通信程序:编写程序实现与上位机的数据交换。
3.系统调试(1)检查硬件连接是否正确,确保各个设备正常工作。
(2)运行软件程序,观察温度监测、控制、报警等功能是否正常。
(3)进行远程监控和操作,检验通信模块是否正常工作。
智能恒温控制系统设计智能恒温控制系统是一个用于实现室内温度自动控制的系统,通过感知室内外环境温度,根据设定温度值来控制空调系统的运行,从而保持室内温度始终在一个合适的范围内。
本文将从系统需求、系统设计和实现等方面进行说明。
1.系统需求-实时感知室内外温度,可通过温度传感器实现。
-可设定室内目标温度,供用户设定期望的室内温度。
-控制空调系统进行制冷或制热。
-支持远程控制,用户可以通过智能手机或电脑等终端设备远程控制系统。
-具备定时功能,可以按照用户设定的时间自动开关空调系统。
2.系统设计2.1硬件设计硬件设计主要包括以下组件:-温度传感器:用于感知室内外温度,可以选择一种高精度的数字温度传感器。
-控制器:用于接收温度传感器的数据并做出相应的控制决策,可以选择一种高性能的微控制器。
-继电器:用于控制空调系统的开关,根据温度传感器的数据和用户设定的目标温度来控制继电器的开关状态。
-通信模块:用于与用户进行远程通信,可以选择无线通信模块,如Wi-Fi或蓝牙。
2.2软件设计软件设计主要包括以下部分:-温度感知模块:负责读取温度传感器的数据,并将其转换为室内外温度。
-控制逻辑模块:根据用户设定的目标温度和当前的室内外温度,做出相应的控制决策,包括控制空调系统的开关状态以及制冷或制热模式。
-用户界面模块:提供用户界面,用户可以通过界面来设定目标温度、查看实时温度和控制空调系统的开关状态。
-远程通信模块:负责与用户远程控制设备进行通信,接收用户的控制指令并传输给控制逻辑模块。
3.系统实现系统实现主要需要完成以下工作:-选定适合的硬件组件,并进行硬件搭建和连接。
-开发温度感知模块,通过读取温度传感器的数据来获取室内外温度。
-开发控制逻辑模块,包括控制空调系统的逻辑和算法,根据用户设定的目标温度和当前的室内外温度来控制空调的运行状态。
-开发用户界面模块,提供一个友好的用户界面,用户可以通过界面来设定目标温度、查看实时温度和控制空调系统的开关状态。
基于单片机的温度控制系统设计原理基于单片机的温度控制系统设计概述•温度控制系统是在现代生活中广泛应用的一种自动控制系统。
它通过测量环境温度并对温度进行调节,以维持设定的温度范围内的稳定状态。
本文将介绍基于单片机的温度控制系统的设计原理。
单片机简介•单片机是一种集成电路芯片,具有强大的计算能力和丰富的输入输出接口。
它可以作为温度控制系统的核心控制器,通过编程实现温度的测量和调节功能。
温度传感器•温度传感器是温度控制系统中重要的部件,用于测量环境温度。
常见的温度传感器有热敏电阻、热电偶和数字温度传感器等。
在设计中,需要选择适合的温度传感器,并通过单片机的模拟输入接口对其进行连接。
温度测量与显示•单片机可以通过模拟输入接口读取温度传感器的信号,并进行数字化处理。
通过数值转换算法,可以将传感器输出的模拟信号转换为温度数值,并在显示器上进行显示。
常见的温度显示方式有数码管和LCD等。
温度控制算法•温度控制系统通常采用PID(比例-积分-微分)控制算法。
这种算法通过比较实际温度和设定温度,计算出调节量,并通过输出接口控制执行机构,实现温度的调节。
在单片机程序中,需要编写PID控制算法,并根据具体系统进行参数调优。
执行机构•执行机构是温度控制系统中的关键部件,用于实际调节环境温度。
常见的执行机构有加热器和制冷器。
通过单片机的输出接口,可以控制执行机构的开关状态,从而实现温度的调节。
界面与交互•温度控制系统还可以配备界面与交互功能,用于设定目标温度、显示当前温度和执行机构状态等信息。
在单片机程序中,可以通过按键、液晶显示屏和蜂鸣器等外设实现界面与交互功能的设计。
总结•基于单片机的温度控制系统设计涉及到温度传感器、温度测量与显示、温度控制算法、执行机构以及界面与交互等多个方面。
通过合理的设计和编程实现,可以实现对环境温度的自动调节,提高生活和工作的舒适性和效率。
以上是对基于单片机的温度控制系统设计原理的简要介绍。
1 引言1.1 设计目的温度的测量和控制对人类平常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
在许多场合,及时准确获得目的的温度、湿度信息是十分重要的。
近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,可以在工业、农业等各领域中广泛使用。
1.2 设计内容重要是运用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运营指示灯监控实时控制系统的运营,实时显示当前温度值。
1.3 设计目的通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完毕工程项目中所应具有的基本素质和规定。
培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。
2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。
S7-200 是一种小型的可编程序控制器,合用于各行各业,各种场合中的检测、监测及控制的自动化。
S7-200系列的强大功能使其无论在独立运营中,或相连成网络皆能实现复杂控制功能。
因此S7-200系列具有极高的性能/价格比。
2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。
S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中涉及定数量的I/O端口,同时还可以扩展各种功能模块。
S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。
表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。
它具有24输入/16输出共40个数字量I/O点。
单片机温度控制系统设计及实现温度控制是很多自动化系统中的重要部分,可以应用于许多场景,如家用空调系统、工业加热系统等。
本文将介绍如何利用单片机设计和实现一个简单的温度控制系统。
一、系统设计1. 硬件设计首先,我们需要选择合适的硬件来搭建我们的温度控制系统。
一个基本的温度控制系统由以下几个组件组成:- 传感器:用于检测环境的温度。
常见的温度传感器有热敏电阻和温度传感器。
- 控制器:我们选择的是单片机,可以根据传感器的读数进行逻辑判断,并控制输出的信号。
- 执行器:用于根据控制器的指令执行具体的动作,例如开启或关闭空调。
2. 软件设计温度控制系统的软件部分主要包括,传感器读取、温度控制逻辑和执行器控制。
我们可以使用C语言来编写单片机的软件。
- 传感器读取:通过串口或者模拟输入端口来读取传感器的数据,可以利用类似的库函数或者自己编写读取传感器数据的函数。
- 温度控制逻辑:根据读取到的温度值,判断当前环境是否需要进行温度调节,并生成相应的控制信号。
- 执行器控制:将控制信号发送到执行器上,实现对温度的调节。
二、系统实施1. 硬件连接首先,将传感器连接到单片机的输入端口,这样单片机就可以读取传感器的数据。
然后,将执行器连接到单片机的输出端口,单片机可以通过控制输出端口的电平来控制执行器的开关。
2. 软件实现编写单片机的软件程序,根据前面设计的软件逻辑,实现温度的读取和控制。
首先,读取传感器的数据,可以定义一个函数来读取传感器的数据并返回温度值。
其次,根据读取到的温度值,编写逻辑判断代码,判断当前环境是否需要进行温度调节。
如果需要进行温度调节,可以根据温度的高低来控制执行器的开关。
最后,循环执行上述代码,实现实时的温度检测和控制。
三、系统测试和优化完成软硬件的实施之后,需要对温度控制系统进行测试和优化。
1. 测试通过模拟不同的温度情况,并观察控制器的输出是否能够正确地控制执行器的开关。
可以使用温度模拟器或者改变环境温度来进行测试。
基于单片机的温度控制系统设计随着科技的不断进步,智能化的生活也变得越来越普遍。
其中,智能的温度控制系统是一个非常实用的设备,它可以根据环境温度的变化来自动调整空调、加热器等设备的工作状态,以达到节能、舒适的效果。
基于单片机的温度控制系统设计可以实现较高的精确度和灵活性,下面我们来了解一下相关内容。
1. 系统功能设计设计一个基于单片机的温度控制系统,通常需要实现以下功能:1)测量环境温度:通过温度传感器等组件,可以实时检测环境的温度值,并将其传输给单片机。
2)温度控制:根据温度传感器所测量到的温度值,系统可以控制空调、加热器等设备的开/关状态,以达到自动控制温度的目的。
3)温度调节:用户可以通过设定控制温度的上下限,调节系统控制设备的工作状态。
4)数据显示:将当前环境温度值、设定温度值、设备状态等信息以数码管或LCD等方式显示出来,方便用户实时了解系统状态。
2. 系统硬件设计基于单片机的温度控制系统硬件设计主要包括以下组件:1)主控单元:使用常见的单片机如STC89C51等,完成程序控制、数据处理等任务。
2)温度传感器:一般使用NTC/PTC热敏电阻或DS18B20数字温度传感器等。
3)电源供应:可以使用AC/DC变压器等供电方式,输出稳定的5V电压。
4)触发开关:在系统中需要设置一些开关来切换不同的模式,如手动模式和自动模式等。
5)驱动器和执行器:控制空调、加热器等各种执行器,如继电器等。
6)显示器:可以使用LED数码管、LCD等显示温度和状态信息。
3. 系统软件设计基于单片机的温度控制系统的软件设计,可以采用汇编语言和C语言等方式来实现,主要包括以下几方面内容:1)温度数据采集:通过采集温度传感器的数据,将其转换成数字信号进行处理。
2)控温算法设计:可以使用PID控制算法等方式,实现自动控制温度的效果。
3)显示控制:显示当前的温度值、设定温度、设备状态等信息,以方便用户了解当前的状态。
4)串口通信:可以设置串口通信,实现上位机控制或远程监控等功能。
基于PID的温度控制系统设计PID(Proportional-Integral-Derivative)是一种常见的控制算法,被广泛应用于各种工业自动化系统中,其中包括温度控制系统。
本文将基于PID算法设计一个温度控制系统。
1.温度控制系统概述温度控制系统是一种典型的反馈控制系统,用于维持系统的温度在预定范围内。
温度传感器将感测到的温度信号反馈给控制器,控制器根据反馈信号与设定的温度进行比较,并根据PID算法计算出控制信号,通过执行器(例如加热器或冷却器)改变环境温度,以使温度保持在设定值附近。
2.PID控制算法原理2.1 比例控制(Proportional Control)比例控制根据设定值与反馈值之间的偏差大小来调整控制信号。
偏差越大,控制信号的改变越大。
比例控制能够快速减小偏差,但无法消除稳态误差。
2.2 积分控制(Integral Control)积分控制通过累积偏差来调整控制信号。
积分控制可以消除稳态误差,但过大的积分参数会引起控制系统的不稳定。
2.3 微分控制(Derivative Control)微分控制根据偏差的变化率来调整控制信号。
微分控制可以快速响应温度的变化,但不适用于快速变化的温度。
3.PID控制器设计PID控制器的输出可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)为控制器的输出,Kp、Ki、Kd为比例、积分和微分增益,e(t)为温度的偏差,即设定值与反馈值之差,de(t)/dt为温度偏差的变化率。
3.1比例增益的选择比例增益决定了系统对偏差的响应速度。
如果比例增益太大,系统会产生超调现象;如果比例增益太小,系统的响应速度会变慢。
因此,在实际应用中需要通过试验来选择合适的比例增益。
3.2积分时间的选择积分时间决定了系统对稳态误差的补偿能力。
如果积分时间太大,系统对稳态误差的补偿能力会增强,但会导致系统的响应速度变慢,甚至产生振荡现象;如果积分时间太小,系统对稳态误差的补偿能力会减弱。
清华大学毕业设计(论文)题目基于PLC的大棚温度自动控制系统设计系(院)自动化系专业电气工程与自动化班级2009级3班学生姓名雷大锋学号**********指导教师王晓峰职称副教授二〇一三年六月二十日独创声明本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。
据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本声明的法律后果由本人承担。
作者签名:年月日毕业设计(论文)使用授权声明本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。
本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。
(保密论文在解密后遵守此规定)作者签名:年月日基于PLC的大棚温度自动控制系统设计摘要大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。
该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。
这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。
关键词:大棚,温度控制,PLCThe Automatic Greenhouse Temperature ControlSystem Based on PLCAbstractThe system is a way to providing the best conditions to plants and promoting them growth very well ,avoiding the bad weather and effect of seasons outside the shed .This system uses FX2N series PLC as the next machine and PC as upper machine, using the Mitsubishi D-720 general frequency Manager. The sensor of temperature, humidity and light collecting scene signal, these simulation volumes are turned into digital signal by PLC, then compared with the setting value. At last, the PLC disposes of them, then contorts with wind machine, covering Yin curtain. According to the actual measured value of each sensor and the value determined in advance about greenhouse environmental factors. This system can suitable for the automation and mass production, the laboring productivity has been increasing by a wide margin through changing the target value of greenhouse environment, and we can control the greenhouse temperature automatically.Key words: greenhouse, temperature control, PLC目录第一章绪论 (1)1.1 大棚温度控制系统发展背景及现状 (1)1.2 大棚温度控制系统研究目的及意义 (2)第二章系统概述 (3)2.1 系统设计任务 (3)2.2 系统技术介绍 (3)2.2.1 传感技术 (3)2.2.2 PLC (4)2.2.3 上位机 (5)2.3 系统工作原理 (5)2.4小结 (7)第三章硬件部分设计 (8)3.1 环境调控系统 (8)3.2 传感器的选择 (10)3.3 系统硬件接线图 (12)3.3.1 系统主电路设计 (12)3.3.2 系统其他部分电路设计 (14)3.3.3 PLC部分电路设计 (15)3.4小结 (16)第四章软件设计 (17)4.1 PLC的I/O分布图 (17)4.2 系统程序 (18)4.2.1 系统温度PID调节程序 (18)4.2.2 系统主程序 (18)4.3 小结 (19)第五章结论 (20)参考文献 (21)谢辞 (22)第一章绪论1.1 大棚温度控制系统发展背景及现状如今塑料大棚、日光温室逐渐成为我国设施结构的主要结构类型。
毕业设计温度自动控制系统的设计内容摘要利用单片机技术、温度检测技术、温度控制技术等知识设计一个基于凌阳单片机控制的温度自动控制箱。
系统采用温度采集装置DS18B20来检测盒内温度,采用驱动芯片L298N控制制冷片的运作,以凌阳SPCE061A单片机作为系统主控芯片,分析处理相关数据,并借用PID算法精确调整温度控制技术,单片机通过对测得的温度与要求的温度进行比较分析,然后驱动制冷片,调节盒内温度。
用按键显示模块进行人机交互。
本系统硬件配置合理,控制方案优化,实现了温度控制的全部功能,能精确测量温度,对温度控制量可以通过键盘在一定范围内任意设定。
关键词单片机;制冷片;温度自动控制;驱动芯片ABSTRACTUsing single-chip microcomputer, temperature detection technology, temperature control technology to design an automatic temperature control box based on single-chip microcomputer control temperature gathering devices DS18B20 is used to detect temperature of box in this system, drive chip L298N is used to control operation of refrigeration plate , LingYang singlechip SPCE061A is used as microprocessor control system to analyze and deal with data, while using PID algorithm precisely adjust control technology of temperature, using key display module to realize human-machine interaction.single chip adjust temperature inside the box by driving refrigeration plate after comparing temperature of measurement and requirement.The hardware configuration and control scheme of this system is reasonable,realizing the temperature control function fully with the ability of setting numerical value arbitrarily in certain limit by using keyboard.KEY WORDSSinglechip;Refrigeration Plate;Thermostatic Control;Driving Chip目录1 绪论 (1)1.1 设计目的 (1)1.2 课题的研究现状和发展趋势 (1)1.2.1 课题的研究现状 (1)1.2.2 发展趋势 (4)1.3 设计要求 (5)1.4 设计方法 (6)1.5 设计内容 (7)2 模糊PID的控制原理 (8)2.1 PID控制技术 (8)2.2 模糊控制原理 (9)2.3 模糊PID控制的基本原理分析 (9)3 系统总体设计 (12)3.1 系统方案比较与选择 (12)3.1.1 控制模块 (12)3.1.2 温度检测模块 (12)3.1.3 制冷片模块 (13)3.1.4 制冷片驱动模块 (14)3.1.5 显示模块方案比较与论证 (14)3.1.6 电源模块方案比较与论证 (14)3.1.7 系统最终方案 (15)3.2 系统总体设计 (15)3.2.1 总体结构框图 (15)3.2.2 系统实现方法 (16)3.3 控制方法 (16)3.3.1 温度控制 (16)3.3.2 模糊PID控制 (16)4 硬件电路的设计 (17)4.1 主控模块的电路设计 (17)4.1.1 芯片介绍 (17)4.1.2 主控电路设计及端口分配 (19)4.2 制冷片驱动电路设计与实现 (20)4.3 键盘显示电路设计与实现 (21)4.4 温度检测电路设计与实现 (22)4.5 故障排除 (22)5 软件设计 (23)5.1 主程序说明及流程图 (23)5.2 温度检测设计及流程图 (23)5.3 制冷片驱动设计及流程图 (24)5.4 键盘显示程序设计及流程图 (25)6 系统测试 (26)6.1 测试仪器 (26)6.2 测试方法、步骤及注意事项 (26)6.3 测试结果 (26)7 结束语 (27)参考文献 (28)致谢 (30)附录A (31)附录C (33)附录D (34)附录E (35)附录F (36)附录G (37)温度自动控制系统的设计1 绪论1.1 设计目的本设计利用单片机技术、温度检测技术、温度控制技术等知识制作一个基于凌阳单片机控制的温度自动控制箱,单片机通过对测得的温度与要求的温度进行比较分析,然后驱动制冷片,调节盒内温度。
其涉及的知识面较广,涵盖了电子、机械、通信、软件学等领域。
通过本次设计掌握一般自动控制系统的硬件(如电机驱动电路、放大比较电路、抗干扰电路),软件(如C语言、汇编语言),的设计原理及实现方法,能提高对系统设计的总体调试和整体把握能力,熟悉系统的开发安装调试过程,为今后的工作打下基础。
1.2 课题的研究现状和发展趋势1.2.1 课题的研究现状在人类的生活环境中,温度扮演着极其重要的角色。
无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。
自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。
在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。
温度对于工业如此重要,由此推进了温度传感器的发展。
传感器主要大体经过了三个发展阶段:模拟集成温度传感器。
该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。
此种传感器具有功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控温,不需要进行非线性校准,外围电路简单。
它是目前在国内外应用最为普遍的一种集成传感器,典型产品有AD590、AD592、TMP17、LM135等;模拟集成温度控制器。
模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105和MAX6509。
某些增强型集成温度控制器(例如TC652/653)中还包含了A/D转换器以及固化好的程序,这与智能温度传感器有某些相似之处。
但它自成系统,工作时并不受微处理器的控制,这是二者的主要区别;智能温度传感器。
能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。
它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。
智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。
有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化程度也取决于软件的开发水平。
近年来,在我国以信息化带动的工业化正在蓬勃发展。
工业生产中的电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
其中的温度量已成为工业对象控制中一种重要的参数,对它的测量与控制有十分重要的意义。
随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度。
特别是在冶金、化工、机械、电气等各类工业中使用的各种加热炉、热处理炉、反应炉。
采用MCS-51 单片机为核心的温度调节系统来对温度进行控制,广泛应用于社会生活的各个领域,是用途很广的一类工业控制系统。
这类系统不仅具有控制方便、组态简单、灵活性大、成本降低,质量有保证和提高系统的可靠性等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。
随着时代的进步,控制技术也在不断地发展。
尤其是计算机的更新换代,更加推动了控制理论不断地向前发展。
控制理论的发展一般可分为三个阶段: 第一阶段时间为20 世纪40-60 年代,称为“古典控制理论”时期。
古典控制理论主要是解决单输入单输出问题。
主要采用传递函数,频率特性,根轨迹为基础的频域分析法。
所研究的系统多半是线性定常系统,对非线性系统,分析时采用的相平面法一般也不超过两个变量,古典控制理论能够较好的解决生产过程中的单输入单输出问题。
这一时期的主要代表人物有伯德(H. W.Bode)和伊文思(W.R.Evans)。
伯德于1945 年提出了简便而实用的伯德图法。
1948 年伊文思提出了直观而又形象的根轨迹法。
第二阶段时间为本世纪60-70 年代,称为“现代控制理论”时期。
这个时期,由于计算机的飞速发展,推动了空间技术的发展,古典控制理论中的高阶常微分方程可转化为一阶微分方程组,用以描述系统的动态过程,即所谓状态空间法。
这种方法可以解决多输入多输出问题。
系统可以是线性的,定常的,也可以是非线性的,时变的。
这一时期的主要代表有庞特里亚金,贝尔曼及卡尔曼等人。
庞特里亚金于1961 年提出了极大值原理;贝尔曼在1957 年提出了动态规划;1959 年,卡尔曼和布西发表了关于线性滤波器和估计器的论文,即著名的卡尔曼滤波。
第三阶段时间为本世纪70 年代末至今,70 年代末,控制理论向着“大系统理论” 和“智能控制”方向发展。
前者是控制理论在广度上的开拓,后者是控制理论在深度上的挖掘。
“大系统理论”使用控制和信息的观点,研究各种大系统的结构方案,总体设计中的分解方法和协调等问题的技术基础理论。
而“智能控制”是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制其具有某些仿人智能的工程控制与信息处理系统。
回顾控制理论的发展历程可以看出,它的发展过程反映了人类有机械化时代进入电气化时代,并走向自动化、信息化、智能自动化时代。
温度调节系统是以温度为主要的控制变量。
系统主要时通过温度传感器对工业现场的温度变化引起的其他物理量变化进行测量,然后通过电路转化成数字量转送到单片机中。