全面C3、C4、CAM植物的光合和生理生态特性的比较.doc
- 格式:doc
- 大小:35.00 KB
- 文档页数:1
C3植物、C4植物与CAM植物标题: C3植物、C4植物与CAM植物摘要: [C3植物、C4植物与CAM植物]在高等植物中,光合碳同化主要有3种类型:C3途径,C4途径和景天酸代谢途径(CAM)。
C3植物中,CO2的固定主要取决于1,5-二磷酸核酮糖羧化酶(RuBPCase)的活化状态,因为该酶是光合碳循环的入口钥匙。
它催化1,5-二磷酸核酮糖(RuBP)羧化,将大气中的CO2同化,产生两分子磷酸甘油酸,可见RuBPCase在C3植物中同化CO2的重要性。
C4植物是从C3植物进化而来的一种高光效种类。
与C3植物相比,它具有在高光强……[关键词:叶绿体活性基因外稃细胞质叶片大豆]……关键词: 叶绿体活性基因外稃细胞质叶片大豆在高等植物中,光合碳同化主要有3种类型:C3途径,C4途径和景天酸代谢途径(CAM)。
C3植物中,CO2的固定主要取决于1,5-二磷酸核酮糖羧化酶(RuBPCase)的活化状态,因为该酶是光合碳循环的入口钥匙。
它催化1,5-二磷酸核酮糖(RuBP)羧化,将大气中的CO2同化,产生两分子磷酸甘油酸,可见RuBPCase在C3植物中同化CO2的重要性。
C4植物是从C3植物进化而来的一种高光效种类。
与C3植物相比,它具有在高光强,高温及低CO2浓度下,保持高光效的能力。
C4植物固定CO2的酶为磷酸烯醇式丙酮酸羧化酶(PEPCase),与C3作物中RuBPCase相比,PEPCase对CO2的亲和力高。
C4植物的细胞分化为叶肉细胞和鞘细胞,而光合酶在两类细胞中的分布不同,如PEPCase在叶肉细胞固定CO2,生成草酰乙酸(OAA),OAA进一步转化为苹果酸(Mal),Mal进入鞘细胞,脱羧,被位于鞘细胞内的RuBPCase羧化,重新进入卡尔文循环。
这种CO2的浓缩机理导致了鞘细胞内的高浓度的CO2,一方面提高RuBPCase的羧化能力,另一方面又大大抑制了RuBPCase的加氧活性,降低了光呼吸,从而使C4植物保持高的光合效率。
C4植物与C3植物的光合作用曲线比较1、光合作用强弱变化的指标光合作用强弱变化的指标通常是光合速率和光合生产率光合速率是指单位时间、单位叶面积吸收CO2的量或放出O2的量或有机物的消耗量。
一般测定光合速率的方法都没有把叶片的呼吸作用考虑在内,所以测定的结果实际是光合作用减去呼吸作用的差数,称为表观光合速率或净光合速率。
如果把表观光合速率加上呼吸速率,则得到总(真正)光合速率。
光合生产率又称净同化率,是指植物在较长时间(一昼夜或一周)内,单位叶面积生产的干物质量。
光合生产率比光合速率低,因为已去掉呼吸等消耗。
2、影响光合作用的因素内因1)叶龄:叶片的光合速率与叶龄密切相关。
从叶片发生到衰老凋萎,其光合速率呈单峰曲线变化。
新形成的嫩叶由于组织发育不健全、叶绿体片层结构不发达、光合色素含量少、光合酶含量少、活性弱、气孔开度低、细胞间隙小、呼吸细胞旺盛等原因,净光合速率很低,需要从其它功能叶片输入同化物。
随着叶片的成长,光合速率不断提高。
当叶片伸展至叶面积最大和叶厚度最大时,光合速率达最大值。
通常将叶片充分展开后光合速率维持较高水平的时期,称为叶片功能期,处于功能期的叶叫功能叶。
功能期过后,随着叶片衰老,光合速率下降2)光合产物的运输:光合产物从叶片中输出的快慢影响叶片的光合速率。
例如,摘去花或果实使光合产物的输出受阻,叶片的光合速率就随之降低。
反之,摘除其他叶片,只留一个叶片和所有花果,留下叶片的光合速率就会增加。
如对苹果枝条进行环割,光合产物会积累,则叶片光合速率明显下降。
叶肉细胞中蔗糖的积累会促进叶绿体基质中的淀粉合成和淀粉粒形成,过多的淀粉粒一方面会压迫和损伤叶绿体,另一方面,由于淀粉粒对光有遮挡,从而阻碍光合膜对光的吸收。
(1)光照:光是光合作用的能量来源,是形成叶绿素的必要条件。
此外,光还调节着光合酶的活性和气孔开度,因此光是影响光合作用的重要因素1)光强:在暗中叶片无光合作用,只进行细胞呼吸释放CO2。
C3植物和C4植物的光合特征人们根据光合作用碳素同化的最初光合产物的不同,把高等植物分成两类:(1)C3植物。
这类植物的最初产物是3-磷酸甘油酸(三碳化合物),这种反应途径称C3途径,如水稻、小麦、棉花、大豆等大多数植物。
(2)C4植物。
这类植物以草酰乙酸(四碳化合物)为最初产物,所以称这种途径为C4途径,如甘蔗、玉米、高粱等。
一般来说,C4植物比C3植物具有较强的光合作用,其原因可从结构和生理两方面来探讨。
结构与功能是有密切关系的,是统一的。
C4植物叶片的维管束薄壁细胞较大,其中含有许多较大的叶绿体,叶绿体没有基粒或基粒发育不良;维管束鞘的外侧密接一层成环状或近于环状排列的叶肉细胞,组成了“花环型”(Kranz type)结构。
这种结构是C4植物的特征。
叶肉细胞内的叶绿体数目少,个体小,有基粒(图3-28)。
维管束鞘薄壁细胞与其邻近的叶肉细胞之间有大量的胞间连丝相连。
C3植物的维管束鞘薄壁细胞较小,不含或很少叶绿体,没有“花环型”结构,维管束鞘周围的叶肉细胞排列松散(图3-29)。
前面说过,C4植物通过磷酸烯醇式丙酮酸固定二氧化碳的反应是在叶肉细胞的细胞质中进行的,生成的四碳双羧酸转移到维管束鞘薄壁细胞中,放出二氧化碳,参与卡尔文循环,形成糖类,所以甘蔗、玉米等C4植物进行光合作用时,只有维管束鞘薄壁细胞形成淀粉,在叶肉细胞中没有淀粉。
而水稻等C3植物由于仅有叶肉细胞含有叶绿体,整个光合过程都是在叶肉细胞里进行,淀粉亦只是积累在叶肉细胞中,维管束鞘薄壁细胞不积存淀粉。
在生理上,C4植物一般比C3植物具有较强的光合作用,这是与C4植物的磷酸烯醇式丙酮酸羧化酶活性较强,光呼吸很弱有关。
前面已经提过,卡尔文循环的CO2固定是通过核酮糖二磷酸羧化酶的作用来实现的,C4途径的CO2固定是由磷酸烯醇式丙酮酸羧化酶催化来完成的。
两种酶都可使CO2固定。
但它们对CO2的亲和力却差异很大。
磷酸烯醇式丙酮酸羧化酶对CO2的Km值(米氏常数)是7μmol,核酮糖二磷酸羧化酶的Km值是450μmol。
C4植物相对于C3植物具有更高的光合速率,主要原因有以下几点:
1. C4植物具有更高的光合效率:C4植物的光合作用通过C4途径和C3途径两个步骤进行。
在C4途径中,C4植物通过将CO2固定为C4有机酸(如草酸)来增加CO2的浓度,并将其传输到叶绿体内。
这一过程可以克服光合作用初级产物CO2在叶绿体中的低浓度限制,并增加CO2利用的效率。
2. C4植物具有更高的光合作用整体效率:C4植物将光合作用的关键反应分离在不同的细胞类型中。
在外部细胞(称为束鞘细胞)中,C4植物在高CO2浓度下进行光合作用的第一步,形成C4有机酸。
然后,C4有机酸在内部细胞(称为甲酸细胞)中解离为CO2,并在这些细胞中进行C3光合作用。
这种分离可以减少C4植物在高温和干旱条件下的光合作用损失,并提高整体光合作用的效率。
3. C4植物具有更高的水分利用效率:C4植物的光合速率高,同时水分蒸腾速率相对较低。
这是因为C4植物在CO2获取过程中,CO2浓度较高,不需要开放气孔来获取足够的CO2。
相比之下,C3植物需要开放气孔来吸收CO2,但这会导致较高的水分蒸腾速率。
因此,C4植物相对C3植物具有更高的水分利用效率。
总的来说,C4植物比C3植物具有更高的光合速率主要是因为它们通过C4途径增加了CO2浓度,分离了光合作用的关键反应,并且具有更高的水分利用效率。
这些特性使得C4植物在热带和亚热带地区具有更好的适应性和竞争优势。
光合作用光合作用可分为:光反应和碳反应(旧称暗反应)两个阶段。
光反应条件:光照、光合色素、光反应酶。
场所:叶绿体的类囊体薄膜。
(蓝细菌等微生物的反应场所在细胞膜:色素所在地)过程:①水的光解:2H2O→4[H]+O2(在光和叶绿体中的色素的催化下)。
②ATP的合成:ADP+Pi+能量→ATP(在酶的催化下)。
影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度、矿质元素等。
意义:①光解水,产生氧气。
②将光能转变成化学能,产生ATP,为碳反应提供能量。
③利用水光解的产物氢离子,合成NADPH(还原型辅酶Ⅱ),为碳反应提供还原剂NADPH(还原型辅酶Ⅱ)。
碳反应条件:多种酶。
场所:叶绿体基质。
过程:①碳的固定:C5+CO2→2C3(在酶的催化下)②C3+[H]→(CH2O)+C5(在ATP供能和酶的催化下)影响因素:温度、CO2浓度㊣卡尔文循环(Calvin Cycle)可分为三个阶段: 羧化(碳的固定)、还原(3-磷酸甘油醛(G3P(PGAL))的合成)、二磷酸核酮糖的再生。
卡尔文循环,又称还原磷酸戊糖循环(以对应呼吸作用中的氧化磷酸戊糖途径)、C3循环(CO2固定的第一产物是三碳化合物)、光合碳还原,还是光合作用的暗反应的一部分。
反应场所为叶绿体内的基质。
㊣固碳作用:※碳三植物(小麦、水稻、大豆、棉花等)二氧化碳经气孔进入叶片后,直接进入叶肉进行卡尔文循环。
而C3植物的维管束鞘细胞很小,不含或含很少叶绿体,卡尔文循环不在这里发生。
※碳四植物(玉米、甘蔗、高粱、苋菜等)碳四植物维管束周围有两种不同类型的细胞:靠近维管束的内层细胞称为鞘细胞,围绕着鞘细胞的外层细胞是叶肉细胞。
①叶肉细胞里的磷酸烯醇式丙酮酸(PEP)经PEP羧化酶的作用,与CO2结合,形成苹果酸或天门冬氨酸。
②这些四碳双羧酸转移到鞘细胞里,通过脱羧酶的作用释放CO2,后者在鞘细胞叶绿体内经核酮糖二磷酸(RuBP)羧化酶作用,进入光合碳循环(卡尔文循环。
C4植物与C3植物的光合作用曲线比较1、光合作用强弱变化的指标光合作用强弱变化的指标通常是光合速率和光合生产率光合速率是指单位时间、单位叶面积吸收CO2的量或放出O2的量或有机物的消耗量。
一般测定光合速率的方法都没有把叶片的呼吸作用考虑在内,所以测定的结果实际是光合作用减去呼吸作用的差数,称为表观光合速率或净光合速率.如果把表观光合速率加上呼吸速率,则得到总(真正)光合速率。
光合生产率又称净同化率,是指植物在较长时间(一昼夜或一周)内,单位叶面积生产的干物质量。
光合生产率比光合速率低,因为已去掉呼吸等消耗.2、影响光合作用的因素内因1)叶龄:叶片的光合速率与叶龄密切相关。
从叶片发生到衰老凋萎,其光合速率呈单峰曲线变化。
新形成的嫩叶由于组织发育不健全、叶绿体片层结构不发达、光合色素含量少、光合酶含量少、活性弱、气孔开度低、细胞间隙小、呼吸细胞旺盛等原因,净光合速率很低,需要从其它功能叶片输入同化物。
随着叶片的成长,光合速率不断提高。
当叶片伸展至叶面积最大和叶厚度最大时,光合速率达最大值。
通常将叶片充分展开后光合速率维持较高水平的时期,称为叶片功能期,处于功能期的叶叫功能叶。
功能期过后,随着叶片衰老,光合速率下降2)光合产物的运输:光合产物从叶片中输出的快慢影响叶片的光合速率。
例如,摘去花或果实使光合产物的输出受阻,叶片的光合速率就随之降低。
反之,摘除其他叶片,只留一个叶片和所有花果,留下叶片的光合速率就会增加.如对苹果枝条进行环割,光合产物会积累,则叶片光合速率明显下降。
叶肉细胞中蔗糖的积累会促进叶绿体基质中的淀粉合成和淀粉粒形成,过多的淀粉粒一方面会压迫和损伤叶绿体,另一方面,由于淀粉粒对光有遮挡,从而阻碍光合膜对光的吸收。
(1)光照:光是光合作用的能量来源,是形成叶绿素的必要条件。
此外,光还调节着光合酶的活性和气孔开度,因此光是影响光合作用的重要因素1)光强:在暗中叶片无光合作用,只进行细胞呼吸释放CO2.随着光强的增高,光合速率相应提高,当达到某一光强时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强称为光补偿点在一定范围内,光合速率随着光强的增加而呈直线增加;但超过一定光强后,光合速率增加转慢;当达到某一光强时,光合速率就不再随光强增加而增加,这种现象称为光饱和现象。
C4植物与C3植物的比较 (优选.)rd植物与植物的比较人们根据光合作用碳素同化的最初光合产物的不同,把高等植物分成两类:(1)C 3植物。
这类植物的最初产物是3-磷酸甘油酸(三碳化合物),这种反应途径称C 3途径,如水稻、小麦、棉花、大豆等大多数植物。
(2)C 4植物。
这类植物以草酰乙酸(四碳化合物)为最初产物,所以称这种途径为C 4途径,如甘蔗、玉米、高粱等。
一般来说,C 4植物比C 3植物具有较强的光合作用,原因有:一、叶片的显微结构——重点比较维管束鞘细胞结构 C 4植物叶片的维管束薄壁细胞较大,其中含有许多较大的叶绿体,叶绿体没有基粒或基粒发育不良;维管束鞘的外侧密接一层成环状或近于环状排列的叶肉细胞,组成了“花环型”结构。
这种结构是C 4植物叶片所特有的特征。
叶肉细胞内的叶绿体数目少,个体小,有基粒。
C 3植物的维管束鞘薄壁细胞较小,不含或很少叶绿体,没有“花环型”结构,维管束鞘周围的叶肉细胞排列松散。
含有“花环状”环绕在维管束鞘细胞外含有大含有排列疏松不含小维管束C 4 植物C 3 植物叶绿体排列叶绿体细胞大小叶肉细胞维管束鞘细胞比较类型维管束C 4 植物的叶片结构海绵组织维管束鞘细胞栅栏组织维管束鞘细胞一部分叶肉细胞植物类型 植物 植物叶片的解剖结构 无“花环型”结构 维管束鞘细胞及周围的一部分叶肉细胞构成“花环型”结构叶绿体的类型 有一种类型的叶绿体,主要位于叶肉细有两种类型的叶绿体,叶肉细胞的叶绿体正常,维管束鞘细胞中 胞的叶绿体没有基粒二、淀粉粒形成的场所 C 4植物通过磷酸烯醇式丙酮酸固定二氧化碳的反应是在叶肉细胞中进行的,生成的四碳双羧酸转移到维管束鞘薄壁细胞中,放出二氧化碳,参与卡尔文循环,形成糖类,所以甘蔗、玉米等C 4植物进行光合作用时,只有维管束鞘薄壁细胞形成淀粉,在叶肉细胞中没有淀粉。
而水稻等C 3植物由于仅有叶肉细胞含有叶绿体,整个光合过程都是在叶肉细胞里进行,淀粉亦只是积累在叶肉细胞中,维管束鞘薄壁细胞不积存淀粉。
C_3植物、C_4植物和CAM植物的比较
罗红艺
【期刊名称】《高等函授学报:自然科学版》
【年(卷),期】2001(14)5
【摘要】根据光合作用中碳同化途径的不同 ,把植物分为C3 植物、C4 植物和CAM植物。
【总页数】4页(P35-38)
【关键词】C3植物;C4植物;CAM植物;光合特征;光合作用;碳同化;光合形态【作者】罗红艺
【作者单位】华中师范大学生命科学学院
【正文语种】中文
【中图分类】Q945.11
【相关文献】
1.C_3植物与C_4植物的比较 [J], 张晓丽;魏俊杰
2.C_4,C_3,CAM植物叶磷酸烯醇式丙酮酸羧化酶分子聚体的比较 [J], 焦德茂
3.C_3植物和C_4植物的区别 [J], 何世顺
4.C_3C_4C_3—C_4中间植物的光合特征及C_3—C_4中间植物在进化上的地位[J], 唐萍
5.浅论C_3植物和C_4植物 [J], 杨胜利
因版权原因,仅展示原文概要,查看原文内容请购买。