无损检测的发展历程
- 格式:docx
- 大小:13.92 KB
- 文档页数:4
无损检测技术的发展及其应用随着科技的不断发展,无损检测技术在各个行业中得到了广泛应用。
无损检测技术简单来说,就是通过非破坏性手段检测材料、构件、设备、产品等的内在缺陷,而不损坏被检测物。
一、无损检测技术的发展历程无损检测技术在过去的几十年中取得了长足的发展。
早期的无损检测技术主要是简单的视觉检查或使用简单的仪器来检测材料缺陷。
到了20世纪60年代,无损检测技术开始使用电磁波谱学、超声波和磁粉检查等高级技术,提高了技术的精度和效率。
直到现在,无损检测技术在各个行业中都有着广泛的应用。
二、无损检测技术的应用领域1.航空航天领域飞机的安全性至关重要,无损检测技术在航空业中得到了广泛的应用。
飞机在使用中,经常会出现一些无法被肉眼发现的问题,而通过无损检测技术可以检测到材料的缺陷,从而及时进行维修和保养。
2.石油化工领域在石油化工领域,无损检测技术可以帮助企业监测设备的可靠度和安全状态。
例如,在石化工厂中,设备变形或者裂纹将导致大量的生产中断和经济损失。
使用无损检测技术预先发现这些问题,可以大大减少生产停机时间。
3.核电站领域核电站在使用的过程中,存在着极高的危险。
无损检测技术可以检测出隐蔽的材料缺陷,提高设备的可靠度和安全性。
因此,在核电站领域中,无损检测技术被广泛应用。
4.铁路领域在铁路领域中,列车各部位零件在长期使用中面临着磨损、老化等问题,使用无损检测技术可以及时发现设备的隐患,提高列车的安全性。
三、无损检测技术存在的问题1.无损检测技术设备价格高昂无损检测技术设备价格高昂,这是该技术被普及的一大障碍。
2.无损检测技术人才短缺无损检测技术需要专业的技术人才进行操作和维护,而无损检测技术人才的培养和招聘仍然面临着困难。
3.无损检测技术标准不一无损检测技术的标准在各个行业中并不一致,缺乏标准化的规范,这使无损检测技术的应用程度受到了一定的影响。
四、未来无损检测技术的发展趋势1.开发更高级的无损检测技术未来,随着物联网、云计算和人工智能的不断发展,越来越多的高级无损检测技术将应运而生。
超声波无损检测技术的发展与应用目录一、内容概览 (1)1. 无损检测的重要性 (1)2. 超声波无损检测技术的定义及作用 (2)3. 本文目的与结构 (3)二、超声波无损检测技术概述 (4)1. 超声波无损检测技术的原理与特点 (5)2. 超声波无损检测技术的发展历程及现状 (6)3. 超声波无损检测技术的应用范围 (7)三、超声波无损检测技术的发展历程 (8)1. 初始阶段 (9)2. 发展阶段 (10)3. 现阶段 (11)四、超声波无损检测技术的分类与特点 (12)1. 脉冲反射法超声波检测技术及其特点 (13)2. 穿透法超声波检测技术及其特点等 (15)3. 各种技术的比较与分析等 (16)一、内容概览超声波无损检测技术概述:简要介绍超声波无损检测技术的定义、原理及特点,为后文的内容做铺垫。
技术发展历程:回顾超声波无损检测技术的发展过程,包括早期探索、技术成熟及广泛应用等阶段。
应用领域:详细介绍超声波无损检测技术在各个领域的具体应用案例,如石油化工、航空航天、建筑结构等。
技术优势与局限性:分析超声波无损检测技术的优势,如非破坏性检测、高灵敏度、实时监测等;同时探讨其局限性,如对某些材料或结构的检测能力有限等。
未来发展趋势:展望超声波无损检测技术在未来可能的发展方向,如智能化、集成化、环保型等。
1. 无损检测的重要性随着科学技术的不断发展,无损检测技术在各个领域的应用越来越广泛。
在众多无损检测技术中,超声波无损检测技术因其具有较高的灵敏度、穿透力和效率等优点而备受关注。
本文将重点介绍超声波无损检测技术的发展与应用,首先我们来探讨无损检测的重要性。
提高产品质量:通过无损检测技术,可以在不破坏产品的情况下,对其内部结构、性能和材质进行检测,从而确保产品质量符合要求。
这不仅提高了产品的可信度,还降低了因质量问题造成的经济损失。
保障安全生产:无损检测技术可以发现潜在的安全隐患,避免生产过程中发生事故。
中国无损检测技术发展史摘要:众多事实已证明,中国从上古时代起就已对医疗、环境、军事、材料、运输、日常生活等方面进行了无损检测与诊断。
本文列举了笔者所知射线、磁粉、超声、(电磁)涡流和声振动等无损检测技术始于中国的时间、地点和先驱者姓名以及部分早期的发展史料,说明我国的现代无损检测已持续了近百年。
简略地勾画从古代到现代我国无损检测技术的一条发展之路。
关键词:无损检测;中国;简史笔者自从步入装甲兵工程学院装备再制造实验室以来,初次接触无损检测这一领域,对我国无损检测技术的历史,发展等知之尚少,利用了自然辩证法这一课程研究思路以及专业方向上的资料,对中国无损检测技术进行了一个简略地回顾。
1我国传统的“无损检测”技术(1)中医靠“望、闻、问、切”诊病,其中的切即切脉、按脉———由感触到患者的脉搏来判断疾病的种类、所在和轻重,而“望”就是目视观察。
显然“望”“闻”和“切”即是我国最古老的“无损检测”,因在《黄帝内经》中已有此等记载,更不用说司马迁著《史记》中的(战国人)《扁鹊传》了。
(2)东汉顺帝阳嘉无年(公元132年)太史令张衡(河南南阳西鄂人,公元78-139年)发明“候风地动仪”———世界最早的地震仪。
《后汉书》载:“……尝一龙机发,而地不觉动,京师学者咸怪其无徵,后数日驿至,果地震陇西,于是皆服之。
”这是我国最早用仪器进行的无损检测。
(3)唐朝杜佑(公元731-812年)所撰《通典》《拒守法》中载“地听:于城内八方穿井各深二丈,以新甖(小口大腹之盛酒瓦器)用薄皮裹口如鼓,使聪耳者于井中,讬甖而听,则去城五百步内悉知之。
”从而防备敌方(特别是骑兵)的突然袭击。
说明我国唐朝天宝年(公元742-755年)前早已掌握此项技术。
(4)根据硬物敲击木材、石料、墙壁等发出的声音来判断它们质地的优劣———有无空腔,破裂等缺陷。
历史悠久,始于何时待查。
(5)瓷器店员双手抛接稻草捆成的瓷碗束把(每束把捆瓷碗数十),凭束把落回双手时的声音辨别瓷碗在运输过程中有无破损。
无损检测技术的现状和未来趋势无损检测技术是一种技术手段,通过非破坏性的方法评估材料或构件的质量、完整性和缺陷,具有高效、可靠、精确等特点,已经广泛应用于航空、航天、船舶、铁路、核电、石油化工、汽车、电力、管道等领域。
本文将从无损检测技术的发展历程、现状和未来趋势三个方面进行论述。
一、无损检测技术的发展历程早在公元前400年,古希腊物理学家阿基米德就研究过无损检测技术,他利用半浸没于水中的物体排除的水位差的原理来测量物体的密度和矿物质含量。
20世纪初,X射线和磁粉探伤等检测技术开始应用于实际工程和生产中。
20世纪50年代,超声波检测、涡流检测、红外热成像等新的无损检测方法相继诞生。
80年代以后,数字信号处理技术、计算机图像处理技术的飞速发展,为无损检测技术的快速发展提供了强有力的支撑。
二、无损检测技术的现状1.技术手段丰富现代无损检测技术手段包括:超声波检测、射线检测、磁粉检漏、涡流检测、红外热像、激光检测、电磁检测等。
每种无损检测技术都有特定的适用范围和检测精度。
2.应用领域广泛无损检测技术几乎涉及到所有行业,主要应用于金属材料、建筑、热力设备、机车车辆、飞机、航天器、船舶等各个方面。
3.检测精度高无损检测技术在避免破坏物体的情况下进行检测,能够检测细微的缺陷和不可见的裂纹。
例如超声波检测技术可以探测到1/100毫米的裂纹,磁粉探伤技术可以发现0.05mm以下的缺陷。
4.检测耗时长与传统破坏性检测相比,无损检测技术的检测耗时往往较长,需要精细地设置检测参数、对数据进行后处理和分析。
加之不同的无损检测技术对受检物体和操作人员的要求不同,因此需要精准的技术人员进行操作。
三、无损检测技术的未来趋势1.智能无损检测随着人工智能、大数据、物联网等技术的快速发展,未来无损检测会向更智能化的方向发展。
通过大量无损数据模型的训练和学习,运用机器学习、深度学习等技术,实现更高效、更准确的无损检测,同时缩短检测时间、减少多余的原始数据记录。
无损检测技术的发展与应用前景分析随着科技的不断发展,无损检测技术在许多领域得到了广泛的应用。
无损检测技术是指可以在不破坏被检测物体的情况下,通过各种手段检测物体的质量、结构和缺陷等参数的技术。
无损检测技术的发展历程无损检测技术最早起源于人们对材料的品质和可靠性的追求。
最早的无损检测技术就是裸眼观测和简单的敲击检测,但是这种方法存在很大的误差率和不可靠性。
20世纪初,X射线、磁粉探伤和超声检测等无损检测技术逐渐出现,但是仍然存在一些缺陷,比如X射线会对生物体造成辐射损伤,而磁粉探伤只适用于表面缺陷的检测。
随着科技的不断进步,现代无损检测技术包括电磁检测、声波检测、红外线检测、微波检测等技术得到广泛应用,并不断发展创新。
应用前景分析无损检测技术在工业、建筑、科研等领域应用广泛,有着极其重要的作用。
在工业领域,无损检测可以大大提高生产效率和产品质量,广泛应用于汽车、飞机、船舶等行业的生产和维护,也可以用于油气管道、水利水电等领域的检测和维护。
在建筑领域,无损检测可以用于检测建筑材料的质量和强度,在防灾减灾方面发挥重要作用,如地震、火灾等。
在科研领域,无损检测可以用于材料分析和结构分析等领域,提高科研工作的效率和精度。
目前,无损检测技术仍然存在着一些问题和挑战。
比如检测精度和效率需要不断提高,检测装备需要不断升级更新,检测人员的专业技能和素质也需要得到提高。
另外,随着环境污染和人类活动对自然环境的影响越来越大,无损检测技术的应用范围也将不断扩大,因此需要不断探索和创新。
总之,无损检测技术的发展和应用前景非常广阔,是人类科技进步的重要体现。
在未来的发展中,我们需要不断推进技术创新和提高专业素质,为人类社会的发展贡献力量。
无损检测技术发展历程研究报告无损检测,顾名思义是以不损坏被检测物体内部结构为前提,应用物理的方法,检测物体内部或表面的物理性能、状态特性以及内部结构,检查物质内部是否存在不连续性(即缺陷),从而判断被检测物体是否合格,进而评价其适用性。
以1895年伦琴发现X射线为标志,无损检测作为一门多学科的综合技术,正式开始进入工业化大生产的实际应用领域,迄今已有一百多年的历史。
1900年法国海关开始应用X射线检验物品,1922年美国建立了世界第一个工业射线实验室,用X射线检查铸件质量,以后在军事工业和机械制造业等领域得到广泛的应用。
1912年超声波探测技术最早在航海中用于探查海面上的冰山,1929年超声波技术用于产品缺陷的检验,至今仍是锅炉压力容器、钢管、重要机械产品的主要检测手段。
二十世纪30年代,开始用磁粉检测方法来检测车辆的曲柄等关键部件,以后在钢结构件上广泛应用磁粉探伤方法,使磁粉检测得以普及到各种铁磁性材料的表面检测。
毛细管现象是土壤水分蒸发的一种常见现象。
随着工业化大生产的出现,将“毛细管现象”的原理成功地应用于金属和非金属材料开口缺陷的检验,其灵敏度与磁粉检测相当,它的最大好处是可以检测非铁磁性物质。
经典的电磁感应定律和涡流电荷集肤效应的发现,促进了现代导电材料涡流检测方法的产生。
1935年第一台涡流探测仪器研究成功。
二十世纪五十年代初,德国科学家霍斯特发表了一系列有关电磁感应的论文,开创了现代涡流检测的新篇章。
到了二十世纪中期,在现代化工业大生产促进下,建立了以射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和电磁检测(ET)五大常规检测方法为代表的无损检测体系。
随着现代科学技术的不断发展和相互间的渗透,新的无损检测技术不断涌现,新的无损检测方法层出不穷,建立起一套较完整的无损检测体系,覆盖工业化大生产的大部分领域。
进入二十世纪后期,以计算机和新材料为代表的新技术,促进无损检测技术的快速发展,例如,射线实时成像检测技术,工业CT技术的出现,使射线检测不断拓宽其应用领域。
现在无损检测的定义是:物理探伤就是不产生化学变化的情况下进行无损探伤。
主要的检测方法有五种:1.超声波检测UT(Ultrasonic Testing)2.射线检测RT(Radiographic Testing)3.磁粉检测MT(Magnetic Particle Testing)4.渗透检测PT(Penetrant Testing)5.目视检查VT(Visual Testing)无损检测技术经历了三个发展阶段,即无损探伤(Nondestructive inspection,NDI)、无损检测(Nondestructive testing,NDT)和无损评(Nondestructive evaluationNDE)。
目前一般统称为无损检测(NDT),而不是特指上述的第二阶段。
下面跟大家讲讲这3个阶段,各阶段之间也没有绝对的时间分界点,它们之间存在相互继承和发展,每个阶段主要特点如下。
1.无损探伤(NDI)从国际上看,这一技术主要应用于20世纪五六十年代,作为无损检测的初级阶段,其特点是技术和任务都较为简单。
在技术手段上可选择的并不丰富,主要采用超声、射线等技术;在任务上主要是检测试件是否存在缺陷或者异常,其基本任务是在不破坏产品的情况下发现零件或者构件中的缺陷,满足工程需要,其检测结论主要分为有缺陷和无缺陷两类。
2.无损检测(NDT)随着科学技术的不断发展,特别是生产对无损检测技术的需求不断提升,仅仅检测出是否有缺陷显然不能满足人们的实际需求。
在无损检测(NDT)这一发展阶段,不仅仅是探测出试件是否含有缺陷,还包括探测试件的一些其他信息,例如缺陷的结构、性质、位置等,并试图通过检测掌握更多的信息、对于国际上发达的工业国家,这一阶段大致开始于20世纪70年代末或者80年代初。
3.无损检测评价(NDE)尽管第二阶段的无损检测(NDT)技术已经能够满足大部分工业生产的需求,但是随着对材料、构件等质量要求不断提高,特别是针对在役设备的安全性和经济性的需求越加突出,无损检测技术进入了第三阶段,即无损评价阶段(NDE)。
中国无损检测技术发展史摘要:众多事实已证明,中国从上古时代起就已对医疗、环境、军事、材料、运输、日常生活等方面进行了无损检测与诊断。
本文列举了笔者所知射线、磁粉、超声、(电磁)涡流和声振动等无损检测技术始于中国的时间、地点和先驱者姓名以及部分早期的发展史料,说明我国的现代无损检测已持续了近百年。
简略地勾画从古代到现代我国无损检测技术的一条发展之路。
关键词:无损检测;中国;简史笔者自从步入装甲兵工程学院装备再制造实验室以来,初次接触无损检测这一领域,对我国无损检测技术的历史,发展等知之尚少,利用了自然辩证法这一课程研究思路以及专业方向上的资料,对中国无损检测技术进行了一个简略地回顾。
1我国传统的“无损检测”技术(1)中医靠“望、闻、问、切”诊病,其中的切即切脉、按脉———由感触到患者的脉搏来判断疾病的种类、所在和轻重,而“望”就是目视观察。
显然“望”“闻”和“切”即是我国最古老的“无损检测”,因在《黄帝内经》中已有此等记载,更不用说司马迁著《史记》中的(战国人)《扁鹊传》了。
(2)东汉顺帝阳嘉无年(公元132年)太史令张衡(河南南阳西鄂人,公元78-139年)发明“候风地动仪”———世界最早的地震仪。
《后汉书》载:“……尝一龙机发,而地不觉动,京师学者咸怪其无徵,后数日驿至,果地震陇西,于是皆服之。
”这是我国最早用仪器进行的无损检测。
(3)唐朝杜佑(公元731-812年)所撰《通典》《拒守法》中载“地听:于城内八方穿井各深二丈,以新甖(小口大腹之盛酒瓦器)用薄皮裹口如鼓,使聪耳者于井中,讬甖而听,则去城五百步内悉知之。
”从而防备敌方(特别是骑兵)的突然袭击。
说明我国唐朝天宝年(公元742-755年)前早已掌握此项技术。
(4)根据硬物敲击木材、石料、墙壁等发出的声音来判断它们质地的优劣———有无空腔,破裂等缺陷。
历史悠久,始于何时待查。
(5)瓷器店员双手抛接稻草捆成的瓷碗束把(每束把捆瓷碗数十),凭束把落回双手时的声音辨别瓷碗在运输过程中有无破损。
航空航天无损检测技术发展与应用一、引言航空航天行业是现代工业中最为重要的行业之一,无损检测技术在其中具有至关重要的作用。
无损检测技术是指不侵入或对被测物体造成不可逆损伤的检测方法,其在航空航天行业的应用非常广泛,常见的应用领域包括了飞机涡扇发动机叶片、机身结构、复合材料结构等等。
本文将就航空航天无损检测技术发展与应用做深入探讨。
二、航空航天无损检测技术发展历程航空航天无损检测技术的发展源远流长,可以追溯到二战时期。
在二战期间,无数的轰炸机、战斗机都需要在空中进行飞行,因此对于这些机器需要进行无损检测,以确保这些飞机安全。
当时主要是通过视觉和听觉判断故障点和缺陷点。
当然,这样的方法不仅耗时、精度低,而且还需要专业知识和实践经验的积累,现代化程度低。
进入基于电气和电磁的检测技术主要是从60年代开始的。
在这个时期,美国等国家开始研发用来检测金属表面内部缺陷的技术,这些技术可以通过改变磁场、电场、电磁辐射等物理量来实现对金属材料的无损检测。
80年代,激光扫描技术和成像技术开始被广泛应用于无损检测技术中,进一步提高了检测的速度和精度。
2003年,法国航空工业公司首次研发出了基于红外的无损检测技术,通过红外成像技术,可以对金属表面和深部缺陷进行无损检测,并得到对应的温度和图像信息。
此外,最近随着无损检测技术不断升级及智能化程度的提升,越来越多的无损检测自动化设备被投放到市场中,并被迅速广泛应用。
三、航空航天无损检测技术应用领域1.飞机涡扇发动机叶片飞机涡扇发动机叶片是当今民用和军用航空领域中最重要的元器件之一,其在飞机飞行中所承受的高速旋转、高温高压的庞大力量和工作条件,其材料的安全性和质量极其关键和重要。
为了保证飞机的安全性能和工作效率,准确的检测飞机涡扇发动机叶片是非常必要和重要的。
在过去,涡扇发动机叶片的寿命一般为2万个小时。
但是,随着检测方法的升级和技术的发展,现在的检测方法可以精确到发动机叶片材料内部的微观缺陷,深度、精度均可达到毫米级别,以及分析结果的可靠性大大提高。
无损检测技术的发展与应用随着科技的不断发展,无损检测技术也得到了迅猛的发展和广泛的应用。
从最早期的一些简单的手工检测方式,到现在的高科技无损检测技术,无损检测技术的发展历程中扮演着重要的角色。
本文将从无损检测技术发展的历程以及无损检测技术的应用等方面探讨无损检测技术的发展与应用。
一、无损检测技术发展的历程无损检测技术最早发展于二十世纪初,是为了解决工业生产中出现的材料损伤或疲劳、接头缺陷等问题而被发明的。
最早的无损检测技术是基于声波、磁力、电磁波和X射线等原理的手动检测方式,如超声波探伤、磁粉探伤、涡流探伤等。
这些方法存在着许多不足之处,主要体现在效率低、精度不高、检测范围有限等方面。
由此,人们开始研究如何改进这些技术,提高其检测精度、准确度和可靠性。
在1980年代,计算机技术的发展促进了无损检测技术的革命性发展。
计算机技术的出现大大加强了无损检测技术的数据处理能力,使无损检测技术不再是直观的手工检测方式,而成为一种具有高精度、高速度、高可靠性的数字化科学技术。
逐渐产生的数字信号处理技术使得无损检测技术的各项指标表现得更加优越,从而为无损检测技术的发展甚至给工业生产带来了一个新的篇章。
二、无损检测技术的应用无损检测技术因其独特的优势被广泛应用于工业生产的各个环节。
具体而言,无损检测技术的应用可以分为以下几个方面:1.机械制造方面无损检测技术广泛应用于机械制造领域,可以用来检测机床、机器设备、转子等的缺陷,同时进一步加强机械制造领域的质量控制和安全保障。
2.电子制造方面无损检测技术在微电子制造、半导体制造等领域的应用已经成为一种不可或缺的手段。
通过检测其制造过程中的联接和材料等细微部分来确保其质量和安全性。
3.交通运输领域在交通运输领域,无损检测技术可以用来检测航空和铁路交通工具的金属结构中的微小缺陷和紫外线照射等,既可以节省经费,又可以保障交通运输安全。
4.医疗领域无损检测技术在医疗领域中也有着广泛的应用,可以用来在确保患者安全的前提下有效地对病人进行检测。
我国无损检测技术的发展历史是什么?中国的无损检测技术实际上从 20 世纪 30 年代起就已经开始在一些机械工业领域中得到少量应用,但是由于历史的原因,并没有发展起来。
我国无损检测技术的发展历史是什么?接下来,就带你了解一下吧!中华人民共和国成立后,在 20 世纪 50 年代初,首先在军工领域(特别是航空工业)以及和军工相关的重工业领域和科研机构开始注重 X 射线、磁粉、渗透、超声等无损检测技术的应用,其中不少工作是在苏联援华专家指导下进行,当年的一批年轻人加入到了无损检测技术行业,成为今天被我们尊称为我国无损检测界的“爷爷辈”,他们为我国无损检测技术的起步和发展做出了卓越的贡献。
下面是我国无损检测技术发展的部分历史资料:超声检测:1951-1954 年航空工业系统(如沈阳飞机制造厂和飞机发动机制造厂以及相关的研究所)、机械工业系统的上海综合实验所(上海材料研究所前身)、中国科学院长春机电研究所、哈尔滨锅炉厂、富拉尔基重型机器厂等开始陆续引进苏联、德国的超声波探伤仪;1952 年铁道科学院孙大雨仿制苏联узд-12 型超声波探伤仪成功;1953 年江南造船厂吴绳武烧制钛酸钡压电陶瓷成功;1954 年长春机电研究所笪天锡、吴绳武仿制加拿大超声波探伤仪成功;1954-1955 年长春机电研究所开办超声波探伤技术和仪器调试及试制培训班;1957 年上海中原无线电厂仿制苏联超声波探伤仪成功;1955-1958 年江南造船厂仿制出中国第一台电子管式脉冲回波超声探伤仪并陆续有改进型,即“江南I、IB、IC、II、IIB、III 型”;1959 年富拉尔基重型机器厂首先制造出超声探伤试块;1960 年富拉尔基重型机器厂、上海综合实验所已经开始了超声探头的研制;1962 年汕头无线电厂(汕头超声波仪器厂前身,现为广东汕头超声电子股份有限公司超声仪器分公司)以姚锦钟为首研制成功 TS-II 工业用电子管式脉冲回波超声探伤仪和 TS-I 医用超声诊断仪,并陆续研发系列型号和批量生产投入市场,如 CTS-4561112 型等;1962 年北京航空材料研究所(现为北京航空材料研究院)陈小泉和北京航空工艺研究所(现为北京航空制造工程研究所)叶 xx 合作研制出“69 型超声波谐振探伤仪”用于检查蜂窝结构胶接质量; 1962~1965 年航空工业系统的哈尔滨国营伟建机器厂刘毓秀、仲维畅研制出“松花江-III、IV、65-I 型声阻探伤仪”;1963 年哈尔滨国营伟建机器厂刘毓秀研制出“松花江-I 型超声波(谐振)测厚仪”;1966 年哈尔滨国营伟建机器厂刘毓秀、仲维畅研制出“松花江-IX 型胶接质量检查仪”;1967 年多家单位联合研制出“声谐振式胶接强度检验仪”;20 世纪 60 年代初期,国产的金属胶接质量检测仪研制成功;20 世纪 70 年代后期汕头超声波仪器厂研制出晶体管式超声波探伤仪并批量生产投入市场,如CTS-88A8C;20 世纪 80 年代初期汕头超声波仪器厂研制出CTS-2122 型大规模集成电路晶体管式超声波探伤仪批量生产投入市场,随后又研制成功 CTS-2326 型等;1988 年 5 月中国科学院武汉物理数学研究所的武汉科声技术公司(后为武汉中科创新技术有限公司) 蒋危平主持研制出我国第一台数字超声探伤仪KS-1000 型;20 世纪 80 年代末到 90 年代初,江苏几家单位研制出应用单片机芯片的半模拟、半智能型电子管超声波探伤仪;2008 年武汉中科创新技术有限公司研发出国产第一台具有 TOFD 功能的数字式超声探伤仪 HS-800型;2008 年以后,国产超声相控阵、TOFD 等最新技术的超声检测仪器相继面世并投入市场2011 年,浙江大学研制出磁致伸缩导波检测仪用于管线检测,深圳市市政设计研究院有限公司研制出磁致伸缩导波检测仪用于桥梁斜拉索的在役原位检测……射线检测:1915 年山东济南共合医道学堂(齐鲁大学前身之一)已经有了国外进口的医疗诊断用 X 光机;抗日战争期间,1939 年新加坡华侨捐赠了 X 光机(现陈列在北京宋庆龄故居),美国志愿航空队(飞虎队)也带来了工业 X 光探伤机;1953 年 10 月上海精密医疗器械厂试制成功100kV 医用大型 X 光机;1954 年上海锅炉厂引进匈牙利 X 射线机;1957 年哈尔滨锅炉厂引进苏联60Coγ射线机;1959 年上海探伤机厂试制成功我国第一台工业用 X 射线探伤机;1960 年丹东射线仪器厂试制成功工业用 X 射线探伤机和 X 射线管;1963 年上海材料研究所张企耀研制成功60Coγ射线探测铸铁装置;1964 年上海锅炉厂引进英国137Csγ射线检测装置;1966 年丹东工业射线仪器厂仿制苏联 200kV 工业 X 光机成功;1973-1989 年我国 X 射线机进入仿制国外 X 射线机并大发展时期;20 世纪 80 年代我国已经能够自行生产60Co、192Ir等γ射线源;进入 21 世纪后,国产工业 X 射线实时成像检测系统、加速器、工业 CT(图像增强器、X 射线发生器等关键部件仍为进口)已经有了很大发展,成为应用较普遍的检测设备,自行研制的 X、γ射线机性能、结构也都有了很大改善并大量投放市场,有了国产中子射线检测装置,γ射线源及中子源的生产品种也大大增加……磁粉检测在抗日战争时期,由英美援华和爱国华侨捐助,已经引进了磁粉探伤设备,如 1939 年新加坡华侨带入英国磁粉探伤仪用于云南修理厂(可能是国内最早的无损检测应用),滇缅公路上的爱国华侨汽车维修大队、美国志愿航空队(飞虎队)使用了从国外带来的便携式磁粉探伤机,1941 年的昆明空军修理厂已应用磁粉探伤仪,1949 年以前,国民党南京飞机场维修部、上海综合实验所已经有美国进口的台式磁粉探伤机(蓄电池式直流磁粉探伤机);1949 年中华人民共和国成立后,国内利用变压器(包括交、直流电焊机)作为交流电源的触棒法磁粉检测焊缝已经较为普遍,军工行业和重型机械行业在苏联援华专家帮助下引入苏联的床式磁粉探伤机,开始将磁粉探伤技术应用于产品检测;1957 年上海联达华光仪器厂(上海探伤机厂前身)杨百林试制成功我国第一台手提式交直流磁粉探伤机;1958 年上海探伤机厂杨百林试制成功台式磁粉探伤机;20 世纪 60 年代我国进入仿制国外磁粉探伤机的时期;20 世纪 70 年代我国进入磁粉探伤机系列化、半自动化、磁粉检测辅助器材完善化的时期,并在工业领域得到广泛应用;20 世纪 80 年代初,首先由北京航空材料研究所郑文仪研制出国产荧光磁粉并迅速在航空工业得到推广应用;20 世纪 90 年代,我国自行研制的半自动化及专用磁粉探伤机得到迅速发展和广泛应用;进入 21 世纪后,我国自行研制的半自动化、自动化磁粉探伤设备得到迅速发展,如采用自动爬行器和 CCD 摄像记录,此外,配套的辅助器材也都有了很大发展,如与国际标准相适应的灵敏度试片、标准试块,黑光灯已经从高压汞灯发展到 LED 黑光灯,还有中空球形彩色磁粉等……渗透检测1949 年以前,上海综合实验所已经采用煤油为基础的渗漏检测(油-白垩法);1949 年中华人民共和国成立后,工业领域应用的渗透检测主要是以煤油+滑油或机油为渗透剂载体,军工行业和重型机械行业在苏联援华专家帮助下引入苏联的渗透检测材料,开始将渗透探伤技术应用于产品检测;20 世纪 60 年代初,首先在航空工业开始采用以荧光黄作染料的荧光渗透检测;1964 年以后国内自行研制的渗透检测材料投入应用,并以沪东造船厂陈时宗等研制成功的着色渗透剂为代表;1970 年后国产荧光染料 YJP-15 出现,开始生产自乳化型和后乳化型荧光渗透液;进入 21 世纪后,国产渗透检测材料的质量、灵敏度有了很大提高,适用于各种特殊行业、材料的渗透剂也发展迅速,如用于核工业、航空航天工业、天然气运输容器等,以及与国际标准相适应的灵敏度试片、标准试块……涡流检测1960 年国内多个单位开始了涡流检测技术的研究;1962~1964 年航空工业系统的南京金城机械厂岳允斌研制出涡流导电仪;1963 年上海材料研究所王务同研制出我国首台涡流检测装置;1966 年北京航空材料研究所陈小泉研制出 6442 型便携式涡流探伤仪;1993 年爱德森(厦门)电子有限公司研制出亚洲首台全数字式涡流检测仪;进入 21 世纪后,如阵列涡流检测技术、脉冲涡流检测技术、远场涡流检测技术、三维电磁场成像技术等最新涡流检测技术的商品化国产仪器陆续面世……声发射检测20 世纪 60 年代末 70 年代初中国科学院沈阳金属研究所首先开始声发射技术的研究与应用并研制了我国第一台单通道声发射仪器以后,发展到今天的国产声发射系统已经能达到 200 通道……其他1953 年 10 月出版汤良知编著的《现代放射学基础》可能是我国第一部射线检测专著;1955 年 10 月出版朱定翻译的《焊接接头的质量检验》;1957 年 7 月出版龚再仲、廖少葆编著的《工业 X 射线探伤基础》;1957 年 12 月出版于在兹编的《工业无损探伤法》(磁粉、射线、超声),可能是我国第一本无损探伤专著;1959 年 6 月出版杜连耀、应崇福翻译的《超声工程 [美]克洛福德著》;1963 年在河北省北戴河举办了全国第一次无损探伤技术学习班;一批物理专业毕业的大学生开始进入无损检测技术界,成为我国无损检测技术发展历史中的骨干力量;1964 年上海锅炉厂开始应用氦质谱仪检漏;1964 年 4 月第一机械工业部举行了首次全国无损探伤会议;1977 年丹东仪表研究所创刊《无损检测》-后改名《无损检测技术》-再改名《检测与评价》-最终定名《无损探伤》作为辽宁省无损检测学会会刊;1978 年 11 月中国机械工程学会无损检测学会成立;1978 年上海材料所增开《理化检验通讯-无损检测》,1979年创刊《无损检测》作为中国机械工程学会无损检测分会会刊;1980 年南昌航空工业学院首创开办无损检测本科专业(1982年招收第一届),随后开办了无损检测干部专科(1987年招收第一届)、函授大专(1987年招收第一届)、专业证书班(1989 年招收第一届);1981 年首届射线检测 II 级人员培训与资格鉴定班在南昌航空工业学院举办;1982 年首届超声检测 II 级人员培训与资格鉴定班在北京重型电机厂举办;1985 年昆明师范专科首创开办无损检测成人大专(2 年制,只办了一届)……20 世纪 80-90 年代可以说是我国无损检测技术专著出版的巅峰时期……【注:我国无损检测技术发展史料可参见中国机械工程学会无损检测分会编辑的《中国无损检测年鉴》以及《无损检测》杂志 2011 年 Vol.33 增刊“中国的无损探伤始于何时、何地、何人?(作者:仲维畅)”。
了解无损检测技术的发展历程与进展无损检测技术是一种非破坏性的测试方法,可用于评估材料、零部件和结构的完整性,而无需对其进行破坏性的实验或分析。
这项技术对于确保产品质量和安全性至关重要,因为它可以帮助检测缺陷、裂纹、疲劳破坏等隐藏的问题。
无损检测技术的发展历程可以追溯到19世纪末的早期试验。
在那个时候,人们开始探索利用声音和震动等物理特性来判断物体的完整性。
然而,真正的突破是在20世纪初期实现的,当时射线和电磁波等新颖的测试方法开始被引入。
最早应用于无损检测技术的方法之一是射线检测,即将射线通过受测物体以观察其内部结构。
通过观察射线在物体中的吸收和散射情况,人们可以判断出物体内部的缺陷或异质性。
这种方法最初被广泛应用于工业领域,尤其是在航空航天和核工业中。
随着科技的进步,其他无损检测技术也相继出现。
其中一种是超声波检测,它利用高频声波在材料中的传播来检测其中的缺陷。
通过观察超声波的反射和折射情况,人们可以确定材料的完整性和内部结构。
这种方法适用于金属、塑料和陶瓷等各种材料。
电磁波检测是另一种常用的无损检测方法,它利用电磁波在物体中的传播特性来判断其内部的缺陷。
通过观察电磁波的反射、折射和透射情况,人们可以得出关于物体完整性和内部结构的信息。
这种方法适用于金属、混凝土、纤维材料等多种材料。
近年来,随着计算机技术的快速发展,无损检测技术也得到了极大的改进。
现代的无损检测设备通常配备了先进的传感器和数据处理系统,能够实时显示和分析检测结果。
这大大提高了检测的准确性和效率,同时也减少了使用人员的工作负担。
不仅如此,无损检测技术还应用于许多其他领域。
例如,在医学诊断中,超声波成像可以帮助医生观察人体内部的器官和组织,以检测疾病和异常。
在汽车工业中,无损检测可以用来检测零部件的质量,以确保车辆的安全性能。
在建筑工程中,无损检测可以用于评估混凝土结构的健康状况,以避免潜在的结构问题。
尽管无损检测技术在工业和科学领域中取得了巨大的进展,但它仍然面临一些挑战和限制。
无损检测技术与发展无损检测(Non-destructive testing,简称NDT)是一种通过对材料和构件进行检测,而无需破坏其完整性和功能的方法。
无损检测技术的发展可以追溯到19世纪末,而如今已经发展成为一门成熟的技术体系,并被广泛应用于工业领域。
无损检测技术主要用于检测和评估材料的缺陷、疲劳性能、维修需求等。
与传统的破坏性检测技术相比,无损检测具有操作简便、实时性强、不污染环境、对被检材料无损伤等优势。
因此,无损检测技术被广泛应用于冶金、化工、航空航天、电子、建筑等领域。
第一个阶段是目视检测阶段。
这一阶段主要依靠人眼来检测材料和构件表面的缺陷,对于较大的缺陷效果明显,但对于微小缺陷往往难以发现。
第二个阶段是应用物理检测原理的检测方法。
电磁学、声学和放射学等物理原理的应用使得无损检测技术得以发展。
通过激发材料或构件并测量其反射或透射的信号,可以非破坏地检测缺陷。
这种方法具有高灵敏度、高精度和稳定性的优点。
第三个阶段是应用计算机和数字化技术的检测方法。
计算机和数字化技术的发展使得无损检测技术可以更加准确地获取检测信号,并对信号进行处理和分析。
这种方法的发展大大提高了无损检测的效率和可靠性。
无损检测技术的现代化发展也离不开互联网和智能化技术的应用。
通过互联网,无损检测技术可以进行实时监控和数据共享,提高检测效率和可靠性。
智能化技术的应用使得无损检测设备更加智能化、自动化和便携化,方便了操作人员的使用和维护。
尽管无损检测技术已经取得了重大的突破和应用,但仍然面临一些挑战。
首先,无损检测技术的检测深度和灵敏度有限,对于深埋在材料或构件中的缺陷往往无法准确检测。
其次,无损检测技术的成本较高,需要专业设备和培训技术人员。
最后,无损检测技术的标准化和认证体系有待完善,以提高检测结果的可靠性和可比性。
总之,无损检测技术的发展对于保障工业产品的质量和安全具有重要意义。
随着科学技术的不断进步和工业需求的增加,无损检测技术将继续发展和创新,以满足不断增长的无损检测需求。
无损检测技术的发展历程与创新趋势无损检测技术是一种非破坏性的检测方法,通过对材料或构件进行检测,可以判断其是否存在缺陷或内部结构的异常,而不会对被检测物体造成任何损伤。
随着科学技术的不断发展和进步,无损检测技术在工业生产、航空航天、核能、建筑、医学等领域得到了广泛应用。
无损检测技术的发展历程可以追溯到19世纪。
当时,人们使用简单的观察和感受手段来判断材料的质量和表面缺陷。
而随着电磁理论和声学原理的发展,无损检测技术逐渐进入科学精细化阶段。
20世纪初,X射线技术得到了广泛的应用,通过对物体透射的X射线进行观察,可以检测到物体内部的缺陷和异常。
20世纪中叶,超声波无损检测技术开始兴起。
通过将超声波传入被检测物体中,利用超声波在材料中的传播、反射和衍射的规律,可以判断材料的质量和存在的缺陷。
这种技术不仅可以应用于金属材料的检测,还可以应用于陶瓷、塑料等其它非金属材料的检测领域。
近年来,随着计算机技术、图像处理技术和传感器技术的飞速发展,无损检测技术得到了进一步的提升。
计算机辅助无损检测(Computer Aided NDT)技术的应用,使得无损检测的精度和效率得到了显著提高。
同时,利用红外热像仪、激光技术和电磁感应技术等新型传感器,无损检测技术在多个领域有了更广泛的应用。
创新趋势方面,无损检测技术正朝着更加精细化和智能化的方向发展。
随着人工智能技术的迅速发展,深度学习算法在无损检测领域得到了广泛应用。
通过对大量数据的训练和学习,深度学习网络可以通过图像、声音等信号来判断被检测物体的状态和存在的缺陷,大大提高了检测的准确性和效率。
此外,纳米技术也为无损检测技术的发展带来了新的机遇。
纳米材料具有较大的比表面积和特殊的物理和化学特性,在无损检测中具有重要应用价值。
例如,利用纳米材料的表面敏感性,可以制备出高灵敏度的传感器,用于检测微弱信号;而利用纳米材料的特殊光学性能,可以实现对微小缺陷的高分辨率检测。
此外,激光和红外技术的发展也为无损检测带来了新的突破。
现在无损检测的定义是:物理探伤就是不产生化学变化的情况下进行无损探伤。
主要的检测方法有五种:
1.超声波检测UT(Ultrasonic Testing)
2.射线检测RT(Radiographic Testing)
3.磁粉检测MT(Magnetic Particle Testing)
4.渗透检测PT(Penetrant Testing)
5.目视检查VT(Visual Testing)
无损检测技术经历了三个发展阶段,即无损探伤(Nondestructive inspection,NDI)、无损检测(Nondestructive testing,NDT)和无损评(Nondestructive evaluationNDE)。
目前一般统称为无损检测(NDT),而不是特指上述的第二阶段。
下面跟大家讲讲这3个阶段,各阶段之间也没有绝对的时间分界点,它们之间存在相互继承和发展,每个阶段主要特点如下。
1.无损探伤(NDI)
从国际上看,这一技术主要应用于20世纪五六十年代,作为无损检测的初级阶段,其
特点是技术和任务都较为简单。
在技术手段上可选择的并不丰富,主要采用超声、射线等
技术;在任务上主要是检测试件是否存在缺陷或者异常,其基本任务是在不破坏产品的情
况下发现零件或者构件中的缺陷,满足工程需要,其检测结论主要分为有缺陷和无缺陷两
类。
2.无损检测(NDT)
随着科学技术的不断发展,特别是生产对无损检测技术的需求不断提升,仅仅检测出
是否有缺陷显然不能满足人们的实际需求。
在无损检测(NDT)这一发展阶段,不仅仅是
探测出试件是否含有缺陷,还包括探测试件的一些其他信息,例如缺陷的结构、性质、位
置等,并试图通过检测掌握更多的信息、对于国际上发达的工业国家,这一阶段大致开始
于20世纪70年代末或者80年代初。
3.无损检测评价(NDE)
尽管第二阶段的无损检测(NDT)技术已经能够满足大部分工业生产的需求,但是随
着对材料、构件等质量要求不断提高,特别是针对在役设备的安全性和经济性的需求越加
突出,无损检测技术进入了第三阶段,即无损评价阶段(NDE)。
这一阶段的一个标志性事件是1996年在新德里召开的第14界世界无损检测大会,在该次大会上提出了将无损检测(NDT)变为无损评价(NDE)这一重要观点,并很快被各国无损检测界所接受。
在这一阶段,人们不仅要对缺陷的有无、属性、位置、大小等信息进行掌握,还要进一步评估分析缺陷的这些特性对被检构件的综合性能指标(例如寿命、强度、稳定性等)的影响程度,最终给出关于综合性指标的某些结论。
目前工业发达国家已经处于这一发展阶段,无损探伤已经广泛应用于工业。
分享一下关于无损检测的一些标准:
无损检测的相关标准:
GB/T 26951-2011 焊缝无损检测磁粉检测
GB/T 28705-2012 无损检测脉冲涡流检测方法
GB/T 26646-2011 无损检测小型部件声发射检测方法
GB/T 26595-2011 无损检测仪器周向X射线管技术条件
GB/T 28704-2012 无损检测磁致伸缩超声导波检测方法GB/T 26952-2011 焊缝无损检测焊缝磁粉检测验收等级GB/T 26953-2011 焊缝无损检测焊缝渗透检测验收等级。