云南省中央民大附中2018年七年级数学下学期期中试卷及答案
- 格式:docx
- 大小:1010.25 KB
- 文档页数:8
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.25的算数平方根是A .5B .±5C .5±D .5 2.下列现象属于平移的是() A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中,点(2,0.01)P -位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列命题中,假命题的数量为( )①如果两个角的和等于平角,那么这两个角互为补角;②内错角相等;③两个锐角的和是锐角; ④如果直线a ∥b ,b ∥c ,那么a ∥c .A .3B .2C .1D .0 5.如图所示,12l l //,三角板ABC 如图放置,其中90B ∠=︒,若140∠=︒,则2∠的度数是( )A .40︒B .50︒C .60︒D .306.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 7.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x 轴正方向滚动2017圈(滚动时在x 轴上不滑动),此时该圆圆心的坐标为( )A .(2018,1)B .(4034π+1,1)C .(2017,1)D .(4034π,1)二、填空题9.若,则()m a b +的值为10.点A ()2,4-关于x 轴的对称点1A 的坐标为____________.11.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.12.将一副直角三角板如图放置(其中60A ∠=︒,45F ∠=︒),点E 在AC 上,//ED BC ,则AEF ∠的度数是______.13.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =72°,则∠AED ′=__.14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______. 15.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点()10,1A 、()21,1A 、()31,0A 、()42,0A …,那么点25A 的坐标为_______.三、解答题17.计算(1)31252724+-+ (2)22|21|--18.已知6a b +=,4ab =-,求下列各式的值:(1)22a b +;(2)22a ab b -+.19.如图所示,完成下列填空∵∠1=∠5(已知)∴a // (同位角相等,两直线平行)∵∠3= (已知)∴a //b ( )∵∠5+ =180°(已知)∴a //b ( )20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小. (3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.若整数m 的两个平方根为63a -,22a -;b 为89的整数部分.(1)求a 及m 的值;(2)求275m b ++的立方根.22.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.如图,已知//AB CD ,CN 是BCE ∠的平分线.(1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.【参考答案】一、选择题1.D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i 的平方是-1,i 是一个虚数,是复数的基本单位.【详解】=,5∴25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象.故选:C.【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.B【分析】根据直角坐标系的性质分析,即可得到答案.【详解】P-位于第二象限点(2,0.01)故选:B.【点睛】本题考查了直角坐标系的知识;解题的关键是熟练掌握象限、坐标的性质,从而完成求解.4.B【分析】根据平角和补角的性质判断①;内错角不一定相等判断②;根据锐角的定义:小于90°的角,判断③;根据平行线的性质判断④.【详解】根据平角和补角的性质可以判断①是真命题;两直线平行内错角相等,故②是假命题;两锐角的和可能是钝角也可能是直角,故③是假命题;平行于同一条直线的两条直线平行,故④是真命题,因此假命题有两个②和③,故选:B.【点睛】本题考查了平角、补角、内错角、平行线和锐角,熟练掌握相关定义和性质是解决本题的关键.5.B【分析】作BD∥l1,根据平行线的性质得∠1=∠ABD=40°,∠CBD=∠2,利用角的和差即可求解.【详解】解:作BD∥l1,如图所示:∵BD∥l1,∠1=40°,∴∠1=∠ABD=40°,又∵l1∥l2,∴BD∥l2,∴∠CBD=∠2,又∵∠CBA=∠CBD+∠ABD=90°,∴∠CBD=50°,∴∠2=50°.故选:B.【点睛】本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线.6.C【详解】解:由题意可知4的算术平方根是2,43434的算术平方根是22<22,8的立方根是2,故根据数轴可知,故选C7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB ∥CD ,∠B =75°,∴∠C =180°-∠B =180°-75°=105°.故选:C .【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键. 8.B【分析】首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.【详解】解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,∴圆心坐标(1,1解析:B【分析】首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.【详解】解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,∴圆心坐标(1,1).∵圆向x 轴正方向滚动2017圈,∴圆沿x 轴正方向平移1220174034⨯⨯π⨯=π个单位长度.∴圆心沿x 轴正方向平移4034π个单位长度.∴平移后圆心坐标()40341,1π+.故选:B .【点睛】本题考查了点平移时其坐标变化规律,点向左(右)平移时,横坐标减(加)平移距离,点向下(上)平移时,纵坐标减(加)平移距离.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b +10.(2,4)【分析】直接利用关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ),进而得出答案.【详解】解:点A (2,-4)关于x 轴解析:(2,4)【分析】直接利用关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P (x ,y )关于x 轴的对称点P ′的坐标是(x ,-y ),进而得出答案.【详解】解:点A (2,-4)关于x 轴对称点A 1的坐标为:(2,4).故答案为:(2,4).【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键. 11.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90°902n︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.12.【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED ∥BC ,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED ∥BC ,解析:165︒【分析】由题意得∠ACB =30°,∠DEF =45°,根据ED ∥BC ,可以得到∠DEC =∠ACB =30°,即可求解.【详解】解:由图形可知:∠ACB =30°,∠DEF =45°∵ED ∥BC ,∴∠DEC =∠ACB =30°∴∠CEF =∠DEF -∠DEC =45°-30°=15°,∴∠AEF =180°-∠CEF =165°故答案为:165°.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.13.36°【分析】根据平行线的性质可知∠DEF =∠EFB =72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.【详解】解:∵四边形ABCD 为长方形,∴AD//BC ,∴∠DEF =解析:36°【分析】根据平行线的性质可知∠DEF =∠EFB =72°,由折叠的性质求出∠D ′EF 72°,然后可求∠AED ′的值.【详解】解:∵四边形ABCD 为长方形,∴AD //BC ,∴∠DEF =∠EFB =72°,又由折叠的性质可得∠D ′EF =∠DEF =72°,∴∠AED ′=180°﹣72°﹣72°=36°,故答案为:36°.【点睛】本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键. 14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.15.(-4,0)或(6,0)【分析】设P (m ,0),利用三角形的面积公式构建绝对值方程求出m 即可;【详解】如图,设P (m ,0),由题意: •|1-m|•2=5,∴m=-4或6,∴P (-4解析:(-4,0)或(6,0)【分析】设P (m ,0),利用三角形的面积公式构建绝对值方程求出m 即可;【详解】如图,设P (m ,0),由题意:12 •|1-m|•2=5,∴m=-4或6,∴P (-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题. 16.【分析】结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解.【详解】结合图像可知,纵坐标每四个点一个循环,…解析:()12,1【分析】结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故25A 的纵坐标与()10,1A 的纵坐标相同,根据题中每一个周期第一点的坐标可推出()412,1n A n +=,即可求解.【详解】结合图像可知,纵坐标每四个点一个循环,254=6÷……1,∴25A 是第七个周期的第一个点,每一个周期第一点的坐标为:()10,1A ,()()592,1,4,1A A ,()412,1n A n +∴=,25=46+1⨯,∴25A (12,1). 故答案为:(12,1).【点睛】本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键.三、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.18.(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a2+b2与ab 的值代入原式计算即可求出值.【详解】解:(1)把解析:(1)44;(2)48【分析】(1)把a +b =6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a 2+b 2与ab 的值代入原式计算即可求出值.【详解】解:(1)把6a b +=两边平方得:()222236a b a b ab +=++=,把4ab =-代入得:()222436a b ++⨯-=, ∴2244a b +=;(2)∵2244a b +=,4ab =-,∴22a ab b -+=22a b ab +-=()444--=48.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.19.b ,∠5,内错角相等,两直线平行,∠4,同旁内角互补,两直线平行.【分析】准确的找出“三线八角”中的同位角、内错角、同旁内角,然后根据平行线的判定定理进行求解.【详解】解:∵∠1=∠5,(已解析:b ,∠5,内错角相等,两直线平行,∠4,同旁内角互补,两直线平行.【分析】准确的找出“三线八角”中的同位角、内错角、同旁内角,然后根据平行线的判定定理进行求解.【详解】解:∵∠1=∠5,(已知)∴a ∥b (同位角相等,两直线平行);∵∠3=∠5,(已知)∴a ∥b (内错角相等,两直线平行);∵∠5+∠4=180°,(已知)∴a ∥b (同旁内角互补,两直线平行).故答案是:b ,∠5,内错角相等,两直线平行,∠4,同旁内角互补,两直线平行.【点睛】本题考查平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a 值,从而得到m ;(2)估算出的范围,得到b 值,代入求出,从而得到的立方根.【详解】解:(1)∵整数的两个平方根为,解析:(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(289b 值,代入求出275m b ++,从而得到275m b ++的立方根.【详解】解:(1)∵整数m 的两个平方根为63a -,22a -,∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b 89 ∴8189100< ∴98910<,∴b =9,∴275275369216m b ++=+⨯+=,∴275m b ++的立方根为6.【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm 2的正方形纸片的边长为a cm∴a 2=400又∵a >0∴a =20又∵要裁出的长方形面积为300cm 2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm )∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm ,则宽为2x cm∴6x 2=300∴x 2=50又∵x >0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒, 180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.4的平方根是()A .±2B .2C .﹣2D .±22.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中是假命题的是( )A .对顶角相等B .8的立方根是±2C .实数和数轴上的点是一一对应的D .平行于同一直线的两条直线平行5.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 6.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是( )A .3B .33C .3D .327.如图,ABC 中,32A ∠=︒,50B ∠=︒,将BC 边绕点C 按逆时针旋转一周回到原来位置,在旋转过程中,当//CB AB '时,求BC 边旋转的角度,嘉嘉求出的答案是50°,琪琪求出的答案是230°,则下列说法正确的是( )A .嘉嘉的结果正确B .琪琪的结果正确C .两个人的结果合在一起才正确D .两个人的结果合在一起也不正确 8.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .5二、填空题9.如果1x +和2y -互为相反数,那么xy =________.10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 11.已知100AOB ∠=︒,射线OC 在同一平面内绕点O 旋转,射线,OE OF 分别是AOC ∠和COB ∠的角平分线.则EOF ∠的度数为______________.12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3.若子轩同学先将纸面以点B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.15.已知点A (0,0),|AB|=5,点B 和点A 在同一坐标轴上,那么点B 的坐标是________.16.如图,在平面直角坐标系上有点A (1,0),第一次点A 跳动至点A 1(﹣1,1),第二次点A 1跳动至点A 2(2,1),第三次点A 2跳动至点A 3(﹣2,2),第四次点A 3跳动至点A 4(3,2),…依此规律跳动下去,则点A 2021与点A 2022之间的距离是_______.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4; (2)23252+-;(3)220183|3|27(4)(1)-+---+-. 18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.19.如图,已知∠1+∠AFE =180°,∠A =∠2,求证:∠A=∠C +∠AFC证明:∵ ∠1+∠AFE =180°∴ CD ∥EF ( , )∵∠A=∠2 ∴( )( , )∴ AB ∥CD ∥EF ( , )∴ ∠A = ,∠C = ,( , )∵ ∠AFE =∠EFC +∠AFC ,∴ = .20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -是46的整数部分,求2a b c ++的算术平方根.22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.23.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 【参考答案】一、选择题1.A解析:A【分析】依据平方根的定义:如果x 2=a ,则x 是a 的平方根即可得出答案.【详解】解:∵(±2)2=4,∴4的平方根是±2.故选:A .【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.2.C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C .【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.解析:C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C .【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.B【分析】根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可.【详解】解:A 、对顶角相等,是真命题;B 、8的立方根是2,原命题是假命题;C 、实数和数轴上的点是一一对应的,是真命题;D 、平行于同一直线的两条直线平行,是真命题;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.B【分析】利用立方根的定义,将x 的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得33,为无理数符合题意,即为y 值.【详解】根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得33,为无理数.符合题意,即输出的y 值为33.故答案选:B. 【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定. 7.C【分析】分两种情况进行讨论,根据平行线的性质,周角的性质,三角形内角和的性质求解即可.【详解】解:当点B '在点C 的右边时,如下图:B CB '∠为CB 旋转的角度,∵//B C AB '∴50B B CB '∠=∠=︒,即旋转角为50︒当点B '在点C 的左边时,如下图:∵//B C AB '∴32A B CA '∠=∠=︒根据三角形内角和可得18098ACB A B ∠=︒-∠-∠=︒旋转的角度为360230B CA ACB '︒-∠-∠=︒综上所述,旋转角度为50︒或230︒故选C【点睛】此题考查了平行线的性质,三角形内角和的性质,周角的性质,熟练掌握相关基本性质是解题的关键.8.C【分析】列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【解析:C【分析】列出部分A n点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【详解】解:∵A2021的坐标为(﹣3,2),根据题意可知:A2020的坐标为(﹣3,﹣2),A2019的坐标为(1,﹣2),A2018的坐标为(1,2),A2017的坐标为(﹣3,2),…∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数).∵2021=505×4•••1,∵A2021的坐标为(﹣3,2),∴A1(﹣3,2),∴x+y=﹣3+2=﹣1.故选:C.【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题9.-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.【详解】解:∵和|y-2|互为相反数,∴,∴x+1=0,y-2=0,解得:x=-1,y=2,∴xy解析:-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x 与y 的值,进而得出答案.【详解】解:∵|y-2|互为相反数, ∴20y +=,∴x+1=0,y-2=0,解得:x=-1,y=2,∴xy=-1×2=-2故答案为:-2.【点睛】本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0和|y-2|都是非负数,所以这个数都是0.10.-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a+3b ,﹣2)和点B (8,3a+1)关于y 轴对称,∴,解得,∴a+b =解析:-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,∴238312a b a +=-⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴a +b =﹣3,故答案为:﹣3.【点睛】本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 11.50°【分析】分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.【详解】解:若射线OC在∠AOB的内部,∵OE,OF分别是∠AOC和∠COB的解析:50°【分析】分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.【详解】解:若射线OC在∠AOB的内部,∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=12∠AOC,∠FOC=12∠BOC,∴∠EOF=∠EOC+∠FOC=12∠AOC+12∠BOC=50°;若射线OC在∠AOB的外部,①射线OE,OF只有1个在∠AOB外面,如图,∠EOF=∠FOC-∠COE=12∠BOC-12∠AOC=12(∠BOC-∠AOC)=12∠AOB=50°;②射线OE,OF都在∠AOB外面,如图,∠EOF=∠EOC+∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°-∠AOB)=130°;综上:∠EOF 的度数为50°或130°,故答案为:50°或130°.【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用. 12.48°【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数.【详解】解:若AB//CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48°【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数.【详解】解:若AB //CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF ⊥MN ,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,140∠=︒,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解:∵点A(0,0),点B和点A在同一坐标轴上,∴点B在x轴上或在y轴上,∵|AB|=5,∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0),当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.16.2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2解析:2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点的坐标是(-1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012-(-1011)=2023,故答案为:2023.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5)=﹣,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x=或12x=-;(2)4x=.【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.【详解】证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵67,可得c=6;∴a+2b+c=3;∴a+2b+c【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.23.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.。
2018-2019学年七年级第二学期期中数学试卷一、选择题1.下列各数:,﹣π,﹣,0.,﹣0.1010010001…(两个1之间依次多一个0),﹣中无理数的个数为()A.2个B.3个C.4个D.5个2.下列各式正确的是()A.B.C.D.3.下列条件中不能判定AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠5=∠B D.∠BAD+∠D=180°4.下列变形不正确的是()A.若b>5,则4a+b>4a+5B.若a>b,则b<aC.若﹣5x>﹣a,则x>D.若﹣x>2y,则x<﹣4y5.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)6.如果点P(m,1﹣2m)在第四象限,那么m的取值范围是()A.0<m<B.﹣<m<0C.m<0D.m>7.不等式组的解在数轴上表示正确的是()A.B.C.D.8.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x名工人生产镜片,y名工人生产镜架,则可列方程组()A.B.C.D.9.如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°10.如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把一条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的一端固定在点A 处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,0)D.(1,0)二、填空题(30分)11.的算术平方根是.12.已知x,y满足|x﹣5|+(x﹣y﹣1)2=0,则(x﹣y)2019的值是.13.若关于x、y的二元一次方程组的解x、y互为相反数,则m=.14.在平面直角坐标系中,点A在x轴的下方,y轴的右侧,到x轴的距离是4,到y轴的距离是3,则点A的坐标为.15.若点P(2﹣a,2a+5)到两坐标轴的距离相等,则a的值为.16.“双11”促销活动中,小芳的妈妈计划用100元在唯品会购买价格分别为8元和12元的两种商品,则可供小芳妈妈选择的购买方案有种.17.把一副三角板放在同一水平面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数为.18.关于x,y的二元一次方程组的解为x+y≥﹣3,则a的取值范围是.19.如果一元一次不等式组的解集为x>3,则a的取值范围是.20.下列命题:①相等的两个角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③若∠1+∠2=180°,则∠1与∠2互为邻补角;④互为邻补角的两角的平分线互相垂直;⑤直线外一点到这条直线的垂线段叫做这点到这条直线的距离;⑥过一点有且只有一条直线与这条直线平行,其中真命题有(填序号).三、解答题(60分)21.计算(1).(2)4(x﹣1)2=25.22.解方程组(1);(2).23.解不等式(组)(1)解不等式;(2)解不等式组:,并写出它的所有整数解.24.已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移2个单位长度,再向上平移2个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1.各顶点的坐标:A1;B1;C1.(3)求出△ABC的面积.25.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?26.某家电专卖店销售每台进价分别200元、160元的A,B两种型号的电风扇,下表是近两周的销售情况销售时段销售数量销售收入A种型号B种型号第一周3台4台1550元第二周4台8台2600元(进价、售价均保持不变,利销=销售收入﹣进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若专卖店准备用不多于3560元的金额再采购这两种型号的电风扇共20台,且采购A型电风扇的数量不少于8台.求专卖店有哪几种采购方案?(3)在(2)的条件下.如果采购的电风扇都能销售完,请直接写出哪种采购方案专卖店所获利润最大?最大利润是多少?27.如图1,在平面直角坐标系中,点A、B的坐标分别为A(0,a),B(b,a).且a、b满足(a+b﹣6)2+,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D.连接AC,BD,AB,BC.(1)求点C,D的坐标及三角形BCD面积;(2)若点E在y轴负半轴上,连接BE、DE,如图2,请判断∠1、∠2,∠3的数量关系?并说明理由;(3)在x轴正半轴或y轴正半轴上是否存在点M,使三角形BMD的面积是三角形BCD 面积的?若存在,诸求出点M的坐标:若不存在,试说明理由.参考答案一、选择题(30分)1.下列各数:,﹣π,﹣,0.,﹣0.1010010001…(两个1之间依次多一个0),﹣中无理数的个数为()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:﹣π,﹣,﹣0.1010010001…(两个1之间依次多一个0)是无理数,故选:B.2.下列各式正确的是()A.B.C.D.【分析】先求出每个式子的值,再进行判断即可.解:A、=4,故本选项错误;B、﹣=≠2,故本选项错误;C、±=±3,故本选项错误;D、=﹣2,故本选项正确;故选:D.3.下列条件中不能判定AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠5=∠B D.∠BAD+∠D=180°【分析】根据平行线的判定方法对各选项分析判断后利用排除法求解.解:A、∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),故本选项错误;B、∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),判定的不是AB∥CD,故本选项正确;C、∵∠5=∠B,∴AB∥CD(同位角相等,两直线平行),故本选项错误;D、∵∠BAD+∠D=180°,∴AB∥CD(同旁内角互补,两直线平行),故本选项错误.故选:B.4.下列变形不正确的是()A.若b>5,则4a+b>4a+5B.若a>b,则b<aC.若﹣5x>﹣a,则x>D.若﹣x>2y,则x<﹣4y【分析】根据不等式的基本性质,逐项判断即可.解:∵若b>5,则4a+b>4a+5,∴选项A不符合题意;∵若a>b,则b<a,∴选项B不符合题意;∵若﹣5x>﹣a,则x<,∴选项C符合题意;∵若﹣x>2y,则x<﹣4y,∴选项D不符合题意.故选:C.5.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.6.如果点P(m,1﹣2m)在第四象限,那么m的取值范围是()A.0<m<B.﹣<m<0C.m<0D.m>【分析】横坐标为正,纵坐标为负,在第四象限.解:∵点p(m,1﹣2m)在第四象限,∴m>0,1﹣2m<0,解得:m>,故选D.7.不等式组的解在数轴上表示正确的是()A.B.C.D.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.解:,由①得,x<3,由②得x≥﹣1,故不等式组的解集为:﹣1≤x<3,在数轴上表示为:.故选:C.8.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x名工人生产镜片,y名工人生产镜架,则可列方程组()A.B.C.D.【分析】等量关系为:生产镜片工人数量+生产镜架工人数量=60,镜片数量=2×镜架数量,把相关数值代入即可求解.解:设安排x名工人生产镜片,y名工人生产镜架,由题意,得.故选:C.9.如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°【分析】如图,证明∠AEF+∠BFE=180°;借助翻折变换的性质求出∠BFE,即可解决问题.解:如图,∵四边形ABCD为长方形,∴AE∥BF,∠AEF+∠BFE=180°;由折叠变换的性质得:∠BFE=∠HFE,而∠1=50°,∴∠BFE=(180°﹣50°)÷2=65°,∴∠AEF=180°﹣65°=115°.故选:B.10.如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把一条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的一端固定在点A 处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,0)D.(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.解:∵A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),∴“凸”形ABCDEFGHP的周长为20,2018÷20的余数为18,∴细线另一端所在位置的点在P处上面1个单位的位置,坐标为(1,0).故选:D.二、填空题(30分)11.的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.12.已知x,y满足|x﹣5|+(x﹣y﹣1)2=0,则(x﹣y)2019的值是1.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,代入计算即可.解:由题意得,x﹣5=0,x﹣y﹣1=0,解得,x=5,y=4,则(x﹣y)2019=(5﹣4)2019=1,故答案为:1.13.若关于x、y的二元一次方程组的解x、y互为相反数,则m=2.【分析】由x与y互为相反数,得到x+y=0,即y=﹣x,代入方程组求出m的值即可.解:根据题意得:x+y=0,即y=﹣x,代入方程组得:,解得:,故答案:2.14.在平面直角坐标系中,点A在x轴的下方,y轴的右侧,到x轴的距离是4,到y轴的距离是3,则点A的坐标为(3,﹣4).【分析】先判断出点A在第四象限,再根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解:∵点A在x轴的下方,y轴的右侧,∴点A在第四象限,∵点A到y轴的距离是3,到x轴的距离是4,∴点A的横坐标为3,纵坐标为﹣4,∴点A的坐标为(3,﹣4).故答案为:(3,﹣4).15.若点P(2﹣a,2a+5)到两坐标轴的距离相等,则a的值为﹣1或﹣7.【分析】根据点到两坐标轴的距离相等,即点的横纵坐标相等或互为相反数,计算即可.解:根据题意,得:2﹣a=2a+5或2﹣a+2a+5=0,解得:a=﹣1或a=﹣7,故答案为:﹣1或﹣7.16.“双11”促销活动中,小芳的妈妈计划用100元在唯品会购买价格分别为8元和12元的两种商品,则可供小芳妈妈选择的购买方案有4种.【分析】设可以购买8元的商品x件,12元的商品y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出结论.解:设可以购买8元的商品x件,12元的商品y件,依题意,得:8x+12y=100,∴x=.∵x,y均为非负整数,∴或或或,∴共有4种购买方案.故答案为:4.17.把一副三角板放在同一水平面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数为75°.【分析】直接利用平行线的性质结合已知角得出答案.解:作直线l平行于直角三角板的斜边,可得:∠2=∠3=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°.故答案是:75°.18.关于x,y的二元一次方程组的解为x+y≥﹣3,则a的取值范围是a≥﹣6.【分析】①+②求出x+y的值,根据已知得出不等式≥﹣3,求出不等式的解集即可.解:,①+②得:6x+6y=6+4a,则x+y=,∵关于x,y的二元一次方程组的解为x+y≥﹣3,∴≥﹣3,解得:a≥﹣6;故答案为:a≥﹣6.19.如果一元一次不等式组的解集为x>3,则a的取值范围是a≤3.【分析】由题意不等式组中的不等式分别解出来为x>3,x>a,已知不等式解集为x>3,再根据不等式组解集的口诀:同大取大,得到a的范围.解:由题意x>3,x>a,∵元一次不等式组的解集为x>3,∴a≤3.20.下列命题:①相等的两个角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③若∠1+∠2=180°,则∠1与∠2互为邻补角;④互为邻补角的两角的平分线互相垂直;⑤直线外一点到这条直线的垂线段叫做这点到这条直线的距离;⑥过一点有且只有一条直线与这条直线平行,其中真命题有②④(填序号).【分析】根据正确的命题是真命题,错误的命题是假命题可得答案.解:①相等的两个角是对顶角,是假命题;②在同一平面内,若a∥b,b∥c,则a∥c,是真命题;③若∠1+∠2=180°,则∠1与∠2互为邻补角,是假命题;④互为邻补角的两角的平分线互相垂直,是真命题;⑤直线外一点到这条直线的垂线段叫做这点到这条直线的距离,是假命题;⑥过一点有且只有一条直线与这条直线平行,是假命题;真命题有②④,故答案为:②④.三、解答题(60分)21.计算(1).(2)4(x﹣1)2=25.【分析】(1)首先根据绝对值的性质、立方根的性质,二次根式的性质和乘方的意义进行计算,再算加减即可;(2)首先等式两边同时除以4,再开平方即可.解:(1)原式=3+3﹣4﹣1=6﹣4﹣1=1;(2)4(x﹣1)2=25,(x﹣1)2=,x﹣1=,则x﹣1=,x﹣1=﹣,∴x1=,x2=﹣.22.解方程组(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.解:(1),①+②×4得:11x=22,解得:x=2,把x=2代入②得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②×2得:13x=29,解得:x=,把x=代入②得:y=,则方程组的解为.23.解不等式(组)(1)解不等式;(2)解不等式组:,并写出它的所有整数解.【分析】(1)不等式去分母、去括号、移项合并、系数化为1即可求出不等式的解集;(2)先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集.解:(1),3(2+x)≥3(2x+1)﹣12,6+3x≥6x+3﹣12,3x﹣6x≥3﹣12﹣6,﹣3x≥﹣15,x≤5;(2),由①得x≥1,由②得x<4,故原不等式组的解集为1≤x<4,所以它的整数解有:1,2,3.24.已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移2个单位长度,再向上平移2个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1.各顶点的坐标:A1(1,1);B1(7,4);C1(3,5).(3)求出△ABC的面积.【分析】(1)根据图形平移的方向和距离即可画出△A1B1C1;(2)根据各点在坐标系中的位置写出△A1B1C1各点坐标即可;(3)利用割补法即可得到三角形的面积.解:(1)如图所示,△A1B1C1即为所求;(2)△A1B1C1各顶点的坐标:A1(1,1);B1(7,4);C1(3,5).故答案为:(1,1);(7,4);(3,5).(3)△ABC的面积为:3×2+×3×4=9.25.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.26.某家电专卖店销售每台进价分别200元、160元的A,B两种型号的电风扇,下表是近两周的销售情况销售时段销售数量销售收入A种型号B种型号第一周3台4台1550元第二周4台8台2600元(进价、售价均保持不变,利销=销售收入﹣进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若专卖店准备用不多于3560元的金额再采购这两种型号的电风扇共20台,且采购A型电风扇的数量不少于8台.求专卖店有哪几种采购方案?(3)在(2)的条件下.如果采购的电风扇都能销售完,请直接写出哪种采购方案专卖店所获利润最大?最大利润是多少?【分析】(1)根据表格可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到相应的不等式组,从而可以求得有几种采购方案;(3)根据(2)中的购买方案计算出两种方案的利润,然后再进行比较即可.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,,解得:,答:A、B两种型号电风扇的销售单价分别为250元、200元;(2)设购买A种型号的电风扇m台,则B种型号的电风扇(20﹣m)台,则解得,8≤m≤9,故A、B两种型号的电风扇的采购方案有二种,方案一:购买A种型号的电风扇8台,则B种型号的电风扇12台;方案二:购买A种型号的电风扇9台,则B种型号的电风扇11台.(3)方案一获得的利润为:8×(250﹣200)+12×(200﹣160)=880(元),方案二:获得的利润为:9×(250﹣200)+11×(200﹣160)=890(元).所以,购买A种型号的电风扇9台,则B种型号的电风扇11台获得利润最大,最大利润为890元.27.如图1,在平面直角坐标系中,点A、B的坐标分别为A(0,a),B(b,a).且a、b满足(a+b﹣6)2+,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D.连接AC,BD,AB,BC.(1)求点C,D的坐标及三角形BCD面积;(2)若点E在y轴负半轴上,连接BE、DE,如图2,请判断∠1、∠2,∠3的数量关系?并说明理由;(3)在x轴正半轴或y轴正半轴上是否存在点M,使三角形BMD的面积是三角形BCD 面积的?若存在,诸求出点M的坐标:若不存在,试说明理由.【分析】(1)由非负性可求a,b的值,可得点A,点B坐标,由平移的性质可得C(﹣1,0),D(3,0),由三角形面积公式可求解;(2)由平行线的性质和外角的性质可得∠1=∠2+∠3;(3)分两种情况讨论,由三角形的面积公式可求解.解:(1)∵(a+b﹣6)2+,∴a=2,b=4,∴A(0,2),B(4,2),∵将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D.∴C(﹣1,0),D(3,0).AB∥CD,AB=CD=4,∴S△BCD=×CD×OA=×4×2=4;(2)∠1=∠2+∠3,理由如下:如图,设BE与CD交于点H,∵AB∥CD,∴∠1=∠CHE,∵∠CHE=∠2+∠3,∴∠1=∠2+∠3;(3)∵三角形BMD的面积是三角形BCD面积的,∴△BMD的面积=×4=5,当点M在x轴正半轴上时,设点M(m,0),∴S△BMD=×DM×AO=5,∴2DM=10,∴DM=5,且点D(3,0),∴点M(8,0)或点M(﹣2,0)(不合题意舍去),当点M在y轴正半轴上时,设点M(0,n),如图,点M在线段OA上时,∵S△BMD=S梯形AODB﹣S△ABM﹣S△MOD=5∴﹣×3×n﹣×4×(2﹣n)=5,∴n=4(不合题意舍去),如图,点M在线段OA的延长线上,∵S△BMD=S梯形AODB+S△ABM﹣S△MOD=5∴+×4×(n﹣2)﹣×3×n=5,∴n=4,∴点M(0,4),综上所述:当点M(0,4)或(8,0)时,使三角形BMD的面积是三角形BCD面积的.。
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
精编2018年七年级数学下期中试题含答案一套一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只一个选项是正确的.1.下列代数运算正确的是()A. B. C. D.2.目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为()A. B. C. D.3.下面是一名学生所做的4道练习题:①;②;③;④。
他做对的个数是()A.1B.2C.3D.44.下列各式中,计算结果正确的是()A. B.C. D.5.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为(),你觉得这一项应是()A. B. C. D.6.如图,通过计算大正方形的面积,可以验证的公式是()A.B.C.D.7.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形。
(a>0)剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙)则长方形的面积为()A. B. C. D.8.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上. 如果∠1=20°,么∠2的度数是()A.15° B.20° C.25° D.30°第8题图第9题图9.如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()A.∠B=∠CB.AD//BCC.∠2+∠B=180°D.AB//CD10.下列正确说法的个数是()①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直.A.1B.2C.3D.411.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()x(kg)0 1 2 3 4 5 6y(cm)12 12.5 13 13.5 14 14.5 15A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+1212.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动,则CP的长度s与时间t之间的函数关系用图象描述大致是()A B C D二、填空题:本题共6小题,每小题填对得4分,共24分. 只要求在答题纸上填写最后结果.13.若长方形的面积是,长为3a,则它的宽为________.14.已知,则n=________.15.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=________度.16.三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积从________变化到________.17.如图所示,根据平行线的性质,完成下列问题:如果AB//CD,那么∠1=________,∠2+________=180°;如果AD//BC,那么∠1=________,∠2+________=180°.18.一个圆柱的底面半径为R cm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm.则R=________.三、解答题:本题共7小题,满分60分.在答题纸上写出必要的文字说明或演算步骤.19.(本小题满分13分)解下列各题:(1)计算:.(4分)(2)计算:.(4分)(3)用乘法公式计算:.(5分)20.(本小题满分7分)先化简,再求值:,其中,n=2.已知,,求下列式子的值:(1);(2)6ab.22.(本小题满分7分)小安的一张地图上有A,B,C3三个城市,地图上的C 城市被墨污染了(如图),但知道∠ABC=∠α,∠ABC=∠β,你能用尺规作图帮他在下图中确定C城市的具体位置吗?(不作法,保留作图痕迹)23.(本小题满分8分)如图,直线AB//CD,BC平分∠ABD,∠1=65°,求∠2的度数.24.(本小题满分8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC 上,EF⊥1AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:(1)图中自变量是____,因变量是______;(2)小明家到滨海公园的路程为____ km,小明在中心书城逗留的时间为____ h;(3)小明出发______小时后爸爸驾车出发;(4)图中A点表示___________________________________;(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.2017—2018学年度第二学期期中质量检测七年级数学参考答案与评分标准一、选择题:本大题共12小题,每小题3分,共36分.题号1 2 3 4 5 6 7 8 9 10 11 12答案D B A B C C D C A B A D二、填空题:本题共6小题,每小题填对得4分,共24分.13. 14. 14 15. 30 16. ,17. ∠1,∠,4,∠2,∠BAD 18. 5cm三、解答题:本题共7小题,满分60分.19.解:(1)=1-1+9 ……………….…………………………5分当,n=2时,原式. …………………………7分21.解:(1)因为,,所以,,…………………………2分所以,所以;…………………………4分(2)因为,所以,…………………………6分所以,所以. …………………………7分22.解:画对一个角得2分,标出C点得3分.点C为所求的点.23.解:因为AB//CD,根据“两直线平行,同位角相等”、“两直线平行,同旁内角互补”所以∠ABC=∠1=65°,∠ABD+∠BDC=180°. …………………………4分因为BC平分∠ABD,根据“角平分线定义”,所以∠ABD=2∠ABC=130°.所以∠BDC=180°-∠ABD=50°. …………………………6分根据“对顶角相等”,所以∠2=∠BDC=50°. …………………………8分24.解:(1)CD//EF. …………………………1分理由:因为CD⊥AB,EF⊥AB,所以∠CDF=∠EFB=90°,…………………………2分根据“同位角相等,两直线平行”所以CD//EF.…………………………4分(2)DG//BC,…………………………5分理由:因为CD//EF,根据“两直线平行,同位角相等”…………………………6分所以∠2=∠BCD,因为∠1=∠2,所以∠1=∠BCD,…………………………7分根据“内错角相等,两直线平行”所以DG//BC. …………………………8分25.解:(1)t,s;(2分)(2)30,1.7;(2分)(3)2.5;(1分)(1分)(4)2.5小时后小明继续坐公交车到滨海公园;(5)小明从中心书城到滨海公园的平均速度为,小明爸爸驾车的平均速度为;爸爸驾车经过追上小明;(2分)(6)小明从家到中心书城时,他的速度为,∴他离家路程s与坐车时间t之间的关系式为s=15t(0≤t≤0.8)(2分)。
2018年上学期七年级期中考试数学试卷参考答案一、选择题(每小题3分,共36分)BBADC DBCAC CA二、填空题(每小题3分,共18分)13、4 14、622 15、﹣4<﹣<0<0.14<2.7 16、-3 17、75, -30. 18、19三、解答题(本题8个小题,满分66分)21.解: 原式=12x -2x +23y 2-32x +13y 2=-3x +y 2,(5分) 当x =-2,y =23时,原式=649 (或 958) (8分) 22.解(1)∵A=3a 2﹣4ab ,B=a 2+2ab ,∴A ﹣2B=3a 2﹣4ab ﹣2a 2﹣4ab=a 2﹣8ab ;(4分)(2)∵|2a+1|+(2﹣b )2=0,∴a=﹣,b=2,则原式=+8=8.(8分)23.解:因为-5x 3y |a |-(a -4)x -6是关于x ,y 的七次三项式,所以3+|a |=7,a -4≠0,(5分)所以a =-4.(7)故a 2-2a +1=(-4)2-2×(-4)+1=25.(9 分)24.(9分)因为a,b 互为相反数,且都不为零,c,d 互为倒数,所以a+b=0,=-1,cd=1.有理数m 所对应的点到3所对应的点的距离是4个单位长度,则m=7或-1(4分).当m=7时,2a+2b+-m=2×0+(-1-3)-7=-11.当m=-1时,2a+2b+-m=2×0+(-1-3)-(-1)=-3. (9分)25、(1)4.5,-4, -3.5(6分)(2)2n m (10分) 26、(10分)已知数轴上有A 、B 、C 三点,分别表示有理数-26,-10,10,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设点P 移动时间为t 秒.27、(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=________,PC=__________(4分)28、(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,当点P 运动到点C 时,P 、Q 两点运动停止, ①当P 、Q 两点运动停止时,求点P 和点Q 的距离;=÷﹣×=×﹣ =﹣﹣.(②求当t为何值时P、Q两点恰好在途中相遇。
(完整版)2018初一数学下册期中考试试题与答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018初一数学下册期中考试试题与答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018初一数学下册期中考试试题与答案的全部内容。
2016年七年级数学下册期中测试卷一、选择题。
(每空3分,共18分)1. 如图,直线AB 、CD 相交于点O,若∠1+∠2=120°,则∠BOC 等于 ( )A 。
120°B 。
140° C.150° D.160° 2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A .30° B.25° C.20° D.15° 3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅"位于点(-1,—2),“马”位于点(2,—2),则“兵”位于点( )A .(-1,1)B .(-2,-1)C .(-3,1)D .(1,—2) 4.下列现象属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B 急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 5.下列各数中,是无理数的为( )A .39 B 。
3。
14 C. 4 D 。
722-6。
若a 2=9, 3b =-2,则a+b=( )A. —5B. —11C. —5 或 -11D. ±5或±11 二、填空。
(每小题3分,共27分)7.把命题“平行于同一条直线的两条直线平行”改成如果……那么形式:_________________________________________________________8.一大门的栏杆如右图所示,BA ⊥AE ,若CD ∥AE ,则∠ABC+密 封 线∠BCD=____度。
云南省中央民大附中芒市国际学校2017-2018学年七年级数学下学期期中试题一、填空题(本题共7题,每题3分,共21分)1.剧院里6排3号可以用(6,3)表示,则(7,4)表示 .2. 64的平方根是 ,算术平方根是 ,﹣8的立方根是 .3.已知2(2)30a b -++=,则点(,)P a b -在第 象限.4.,902.188.63=,则=36880 .5.如图,计划把河水引到水池A 中,先引AB⊥CD,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是_______________...6.若方程2x a ﹣1+y=1是关于x 、y 的二元一次方程,则a 的值是 .7.两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,阴影部分的面积为_________。
二、选择题(本题共8题,每题4分,共32分) 8.下列各图中,∠1与∠2是对顶角的是( )A. B. C. D.9.已知点P 位于第二象限,且距离x 轴4个单位长度,距离y 轴3个单位长度,则点P 的坐标是( ) A .(﹣3,4) B .(3,﹣4)C .(﹣4,3)D .(4,﹣3)10.在实数5,227,38-, 0,3.14,2π,36,0.1010010001中,无理数有( ) A .2个 B .3个 C .4个 D .5个11.若点M (3,-2)与点N (x ,y )在同一条平行于x 轴的直线上,且MN=1,则N 点的坐标为( )A 、(4,-2)B 、(3,-1)C 、(3,-1)或(3,-3)D 、(4,-2)或(2,-2)12.下列语句正确的是( ) A .64的平方根是±8 B . -3是9的平方根 C .216125的立方根是65± D .(-1)2的立方根是-113.如图,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( )A .80°B .90°C .100°D .95° 14.二元一次方程组32325x y x y -=⎧⎨+=⎩的解是( )A .3217 (23)122x x x x B C D y y y y =⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩ 15.下列命题中正确的有( ) ①相等的角是对顶角.②在同一平面内,若a∥b,b∥c,则a∥c .③若点P (m+3,m+1)在x 轴上,则点P 的坐标为(4,0). ④数轴上每一个点都表示唯一一个实数.⑤若a 大于0,b 不大于0,则点P (-a ,-b )在第三象限. A .1个 B .2个C .3个D .4个三、解答题(本题共8题,共67分) 16.(8分)计算:(12(2)求x 的值,()054323=++x17.(8分)解方程组(每小题4分,共8分)(1)257320x y x y -=⎧⎨-=⎩ (2) ⎩⎨⎧=-=+1126723y x y x18.(6分)已知一个正数的两个平方根分别为a +3和2a ﹣12.求的值,并求这个正数.19.(7分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?20.(9分)如图所示,ABD ∠和BDC ∠的平分线相交于点E,BE 交CD 于点F,09021=∠+∠. (1)AB 与CD 平行吗?试说明理由. (2)试探究2∠与3∠的数量关系.21.(12分)如图,这是某市部分简图,为了确定各建筑物的位置请完成以下步骤. (1)请你以火车站为原点建立平面直角坐标系.(2)写出市场的坐标为 ;超市的坐标为 .(3)请将体育场为A 、宾馆为C 和火车站为B 看作三点用线段连起来,得△ABC ,然后将此三角形向下平移4个单位长度,画出平移后的△A 1B 1C 1,并求出其面积.22.(7分)关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,求k 的值.23. (10分)如图,已知12l l ∥,射线MN 分别和直线12,l l 交于点,A B ,射线ME 分别和直线12,l l 交于点,C D ,点P 在射线MN 上运动(P 点与,,A B M 三点不重合),设PDB α∠=,PCA β∠=,CPD γ∠=.(1)如果点P 在,A B 两点之间运动时,,,αβγ之间有何数量关系?请说明理由;(2)如果点P 在,A B 两点之外运动时,,,αβγ之间有何数量关系?(只需写出结论,不必说明理由)绝密★启用前中央民大附中芒市国际学校2017~2018学年七年级期中考试卷数学试卷(答案)考试时间:120分钟;命题人:杨丹;校对人﹕陶光所注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、填空题(本题共7题,每题3分,共21分)1.剧院里6排3号可以用(6,3)表示,则(7,4)表示 7排4号 .2. 64的平方根是 8± ,算术平方根是 8 ,﹣8的立方根是 -2 .3.已知2(2)30a b -++=,则点(,)P a b -在第 一 象限.4.,902.188.63=,则=36880 19.02 .5.如图,计划把河水引到水池A 中,先引AB⊥CD,垂足为B ,然后 沿AB 开渠,能使所开的渠道最短,这样设计的依据是 垂线段最短_______.6.若方程2xa ﹣1+y=1是关于x 、y 的二元一次方程,则a 的值是 2 .7.两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,阴影部分的面积为____48_____。
2018学年第二学期期中联考七年级数学答题卷二、填空题(每小题3分,共30分)11.________ 12. _______ 13.______________14.________ 15.__________ 16. ________ 17.__________18.____________ 19.____________ 20.__________ 三、解答题(6+6+6+6+8+8共40分) 21.(6分)解下列方程组 (1)(2)22.(6分)已知(x 2+px +8)(x 2-3x +q)的展开式中不含x 2和x 3项,求p ,q 的值.学校 班级姓名 考号 ………………………………………………………………………………………………………………………………………………….23.(6分)王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?24.(6分)我们规定:a*b=10a ×10b, 例如3*4=103×104=107. (1)试求12*3和2*5的值;(2)想一想(a*b )*c 与a*(b*c )相等吗?如果相等,请验证你的结论.25.(8分)完成下面证明:如图,B是射线AD上一点,∠DAE=∠CAE,∠DAC=∠C=∠CBE (1)求证:∠DBE=∠CBE证明:∵∠C=∠CBE(已知)∴BE∥AC________∴∠DBE=∠DAC________∵∠DAC=∠C(已知)∴∠DBE=∠CBE________(2)请模仿(1)的证明过程,尝试说明∠E=∠BAE.26(8分).为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格与月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B 型设备少6万元.(1)求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.。
2017-2018学年七年级数学下期中考试卷及答案2017 — 2018 学年度第二学期初一年级数学学科期中检测试卷(全卷满分150 分,答题时间120 分钟)一、选择题(共8 小题,每题 3 分,共 24 分)1.以下图形中,能将此中一个图形平移获得另一个图形的是(▲)A. B.c. D.2 .以下计算正确的选项是(▲)A. B.c. D.3 .以下长度的 3 条线段,能首尾挨次相接构成三角形的是(▲)A .1c,2c, 4cB. 8c,6c, 4cc .15c, 5c, 6cD. 1c, 3c,4c4 .以下各式能用平方差公式计算的是(▲)A. B.c. D.5 .若 , ,则的值为(▲)A . 6B. 8c. 11D. 186 .如图, 4 块完整同样的长方形围成一个正方形. 图中阴影部分的面积能够用不一样的代数式进行表示,由此能考证的等式是(▲)A. B.c. D.7 .当 x=﹣6, y=时,的值为(▲)A.﹣ 6B. 6c.D.8.如图,四边形 ABcD中, E、 F、 G、 H 挨次是各边中点,o 是形内一点,若四边形AEoH、四边形BFoE、四边形cGoF 的面积分别为 7、 9、 10,则四边形DHoG面积为(▲)A . 7B. 8c. 9D.10二、填空题(共10 小题,每题 3 分,共 30 分)9.随意五边形的内角和与外角和的差为度.10.已知一粒米的质量是 0.000021 千克,这个数字用科学记数法表示为.11 .假如一个完整平方式,则=.12.已知,,则的值是 ______.13.假如( x+1)( x+)的乘积中不含 x 的一次项,则的值为.14 .若,则= .15. 若 { █ (x=3@y=-2) 是方程组 { █ (ax+by=1@ax-by=5) 的解,则 a+b=________.16.已知,且,那么的值为.17.如图,将△ ABc 沿 DE、 EF 翻折,极点 A,B 均落在点o 处,且 EA与 EB重合于线段 Eo,若∠ cDo+∠ cFo= 78°,则∠ c 的度数为 =.18.如图,长方形 ABcD中, AB=4c,Bc=3c,点 E 是 cD 的中点,动点 P 从 A 点出发,以每秒 1c 的速度沿 A→B→ c→ E运动,最后抵达点 E.若点 P 运动的时间为 x 秒,那么当x=_________ 时,△ APE的面积等于.三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定地区内作答)19 .计算(每题 4 分,共 16 分)(1)(2)(3)(4)( a-b+ 1)( a+ b- 1)20.解方程组(每题 4 分,共 8 分)(1)(2)21.(此题满分 8 分)绘图并填空:如图,每个小正方形的边长为 1 个单位,每个小正方形的极点叫格点.(1)将△ ABc 向左平移 8 格,再向下平移 1 格.请在图中画出平移后的△ A′ B′ c′(2)利用网格线在图中画出△ ABc 的中线 cD,高线 AE;(3)△ A′ B′ c′的面积为 _____.22.(此题满分 6 分)已知:如图, AB∥ cD,EF 交 AB于 G,交 cD 于 F,FH均分∠ EFD,交 AB于 H,∠ AGE=40°,求∠ BHF 的度数.23.(此题满分 10 分)已知:如图 , 在△ ABc 中,BD⊥ Ac 于点 D,E 为 Bc 上一点 , 过 E 点作 EF⊥ Ac, 垂足为 F, 过点 D作 DH ∥Bc 交 AB于点 H.(1) 请你补全图形。
中央民族大学附中2017~2018学年度七年级期中数学试卷班级姓名一、填空题(本题共7题,每题3分,共21分)1.剧院里6排3号可以用(6,3)表示,则(7,4)表示.2. 64的平方根是,算术平方根是,﹣8的立方根是.3.已知,则点在第象限.4.,,则.5.如图,计划把河水引到水池A中,先引AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是_______________...6.若方程2x a﹣1+y=1是关于x、y的二元一次方程,则a的值是.7.两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,阴影部分的面积为_________。
二、选择题(本题共8题,每题4分,共32分)8.下列各图中,∠1与∠2是对顶角的是()A. B. C. D.9.已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)10.在实数5,227,38-,0,3.14,2π,36,0.1010010001中,无理数有()2(2)30a b-++=(,)P a b-902.188.63==36880A.2个B.3个C.4个D.5个11.若点M(3,-2)与点N(x,y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为()A、(4,-2)B、(3,-1)C、(3,-1)或(3,-3)D、(4,-2)或(2,-2)12.下列语句正确的是()A.的平方根是±8 B.-3是9的平方根C.的立方根是D.(-1)2的立方根是-113.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,则∠ABC的度数是()A.80°B.90°C.100°D.95°14.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩15.下列命题中正确的有()①相等的角是对顶角.②在同一平面内,若a∥b,b∥c,则a∥c.③若点P(m+3,m+1)在x轴上,则点P的坐标为(4,0).④数轴上每一个点都表示唯一一个实数.⑤若a大于0,b不大于0,则点P(-a,-b)在第三象限.A.1个B.2个C.3个D.4个三、解答题(本题共8题,共67分)16.(8分)计算:(12(2)求x的值,()054323=++x 6421612565±17.(8分)解方程组(每小题4分,共8分) (1)257320x y x y -=⎧⎨-=⎩ (2) ⎩⎨⎧=-=+1126723y x y x18.(6分)已知一个正数的两个平方根分别为a +3和2a ﹣12.求的值,并求这个正数.19.(7分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?20.(9分)如图所示,ABD ∠和BDC ∠的平分线相交于点E,BE 交CD 于点F,09021=∠+∠. (1)AB 与CD 平行吗?试说明理由. (2)试探究2∠与3∠的数量关系.21.(12分)如图,这是某市部分简图,为了确定各建筑物的位置请完成以下步骤. (1)请你以火车站为原点建立平面直角坐标系.(2)写出市场的坐标为 ;超市的坐标为 .(3)请将体育场为A 、宾馆为C 和火车站为B 看作三点用线段连起来,得△ABC ,然后将此三角形向下平移4个单位长度,画出平移后的△A 1B 1C 1,并求出其面积.22.(7分)关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,求k 的值.23. (10分)如图,已知12l l ∥,射线MN 分别和直线12,l l 交于点,A B ,射线ME 分别和直线12,l l 交于点,C D ,点P 在射线MN 上运动(P 点与,,A B M 三点不重合),设PDB α∠=,PCA β∠=,CPD γ∠=.(1)如果点P 在,A B 两点之间运动时,,,αβγ之间有何数量关系?请说明理由; (2)如果点P 在,A B 两点之外运动时,,,αβγ之间有何数量关系?(只需写出结论,不必说明理由)答案解析一、填空题(本题共7题,每题3分,共21分)1.剧院里6排3号可以用(6,3)表示,则(7,4)表示 7排4号 .2. 64的平方根是 8± ,算术平方根是 8 ,﹣8的立方根是 -2 .3.已知,则点在第 一 象限.4.,,则 19.02. 5.如图,计划把河水引到水池A 中,先引AB ⊥CD ,垂足为B ,然后 沿AB 开渠,能使所开的渠道最短,这样设计的依据是 垂线段最短_______. 6.若方程2x a ﹣1+y=1是关于x 、y 的二元一次方程,则a 的值是 2 . 7.两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,阴影部分的面积为____48_____。
二、选择题(本题共8题,每题4分,共32分) 8.下列各图中,∠1与∠2是对顶角的是( B )A. B. C. D.9.已知点P 位于第二象限,且距离x 轴4个单位长度,距离y 轴3个单位长度,则点P 的坐标是( A ) A .(﹣3,4) B .(3,﹣4)C .(﹣4,3)D .(4,﹣3)10.在实数5,227,38-, 0,3.14,2π,36,0.1010010001中,无理数有( A ) A .2个 B .3个 C .4个 D .5个11.若点M (3,-2)与点N (x ,y )在同一条平行于x 轴的直线上,且MN=1,则N 点的坐标为( D ) A 、(4,-2)B 、(3,-1)C 、(3,-1)或(3,-3)D 、(4,-2)或(2,-2)12.下列语句正确的是( B ) A .的平方根是±8B . -3是9的平方根2(2)30a b -++=(,)P a b -902.188.63==3688064C .的立方根是 D .(-1)2的立方根是-113.如图,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( C )A .80°B .90°C .100°D .95°14.二元一次方程组32325x y x y -=⎧⎨+=⎩的解是( C )A .3217 (23)122x x x x B C D y y y y =⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩ 15.下列命题中正确的有( B ) ①相等的角是对顶角.②在同一平面内,若a ∥b ,b ∥c ,则a ∥c .③若点P (m+3,m+1)在x 轴上,则点P 的坐标为(4,0). ④数轴上每一个点都表示唯一一个实数.⑤若a 大于0,b 不大于0,则点P (-a ,-b )在第三象限 A .1个 B .2个C .3个D .4个三、解答题(本题共8题,共67分) 16.(8分)计算:(1)238127(2)32+-+-+-(2)求x 的值,()054323=++x解:3-10=原式 解:x =-17.(8分)解方程组(每小题4分,共8分) (1)257320x y x y -=⎧⎨-=⎩ (2) ⎩⎨⎧=-=+1126723y x y x解:(1)方程组的解是⎩⎨⎧==55y x (2)方程组的解是⎪⎩⎪⎨⎧==212y x21612565±18.(6分)已知一个正数的两个平方根分别为a +3和2a ﹣12.求的值,并求这个正数. 解:由题意可知,a+3+2a-12=0 3a=9 a=3 所以a +3=3+3+6所以(a +3)²=6²=36故这个正数为36.19.(7分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克? 解:设小亮妈妈买了甲种水果x 千克,乙种水果y 千克。
由题意得⎩⎨⎧==⎩⎨⎧=++=2428642y x y x y x 解得 答:小亮妈妈买了甲种水果4千克,乙种水果2千克.20.(9分)如图所示,ABD ∠和BDC ∠的平分线相交于点E,BE 交CD 于点F,09021=∠+∠. (1)AB 与CD 平行吗?试说明理由. (2)试探究2∠与3∠的数量关系. 解:(1),理由如下: 因为,分别平分,, 所以,.又因,所以,所以(同旁内角互补,两直线平行). (2).因为平分,所以.又因为,所以(两直线平行,内错角相等).所以(等量代换).因为(已知).所以(等量代换).21.(12分)如图,这是某市部分简图,为了确定各建筑物的位置请完成以下步骤. (1)请你以火车站为原点建立平面直角坐标系.(2)写出市场的坐标为 (4,3) ;超市的坐标为 (2,-3) . (3)请将体育场为A 、宾馆为C 和火车站为B 看作三点用线段连起来,得△ABC ,然后将此三角形向下平移4个单位长度,画出平移后的△A 1B 1C 1,并求出其面积. 解:(1)略(3)三角形A 1B 1C 1的面积为:722.(7分)关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,求k 的值 解:k=4323. (10分)如图,已知12l l ∥,射线MN 分别和直线12,l l 交于点,A B ,射线ME 分别和直线12,l l 交于点,C D ,点P 在射线MN 上运动(P 点与,,A B M 三点不重合),设PDB α∠=,PCA β∠=,CPD γ∠=(1)如果点P 在,A B 两点之间运动时,,,αβγ之间有何数量关系?请说明理由; (2)如果点P 在,A B 两点之外运动时,,,αβγ之间有何数量关系?(只需写出结论,不必说明理由)29. (1)证明:过点P 作P F ‖AC证出结论 (2)点P 在射线AN 上时:点P 在射线BM 上时:γαβ=+AC BD PFBD ∴γαβ=+γαβ=-γβα=-。