167;4-2布洛赫Bloch定理
- 格式:ppt
- 大小:161.50 KB
- 文档页数:22
布洛赫定理(一) Bloch 定理:势场()U r →具有晶格周期性时,即()U r →=()n U r R →→+ (1) 电子的波函数满足薛定谔方程的解具有以下性质:()n r R ψ→→+=ni k R e→→·()r ψ→(2)根据()n r R ψ→→+=ni k R e→→·()r ψ→,电子的波函数()r ψ→满足:()r ψ→=ni k R e→→·()u r →其中,()u r →为与势能同周期的周期性函数,()u r →=()n u r R →→+n R →为势场的周期(二)Bloch 定理的证明: (1) 证明H ∧具有周期性。
(2) 引入平移对称算符()n T R ∧→,证明平移对称算符与哈密顿算符H ∧对易,两者具有相同的本证函数。
(3) 由平移对称的本征值方程导出··ni k R n r R e r ψψ→→→→→⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,根据证明(2)知r ψ→⎛⎫ ⎪⎝⎭也是哈密顿算符H ∧的本征函数,综合上述要点便可证明Bloch 定理的第一条性质。
证明:(1)H r ∧→⎛⎫ ⎪⎝⎭=—22()2r m →∇ +()U r → 在直角坐标系中:2()r →∇=222222x y z ∂∂∂++∂∂∂=222222112233()()()x n a y n a z n a →→→∂∂∂++∂+∂+∂+ =2()n r R →→∇+其中112233n R n a n a n a →→→→=++为势能的一个周期或者若干个周期。
∴()n H r R ∧→→+=—22()2n r R m →→∇+ +()n U r R →→+=—22()2r m→∇ +()U r → ∴()n H r R ∧→→+=()H r ∧→引入平移对称算符(简称平移算符)()n T R ∧→:()n T R ∧→·()f r →=()n f r R →→+()f r →为任意函数2()n T R ∧→·()f r →=()n T R ∧→·()n f r R →→+=(2)n f r R →→+ ()ln T R ∧→·()f r →=()n f r l R →→+=()n T lR ∧→·()f r →由上式知:()ln T R ∧→=()n T lR ∧→将平移算符作用到定态薛定谔方程中:()n T R ∧→·()H r ∧→·()r ψ→=()n H r R ∧→→+·()n r R ψ→→+=()H r ∧→·()n T R ∧→·()r ψ→∴()n T R ∧→·()H r ∧→=()H r ∧→·()n T R ∧→∴平移算符与哈密顿算符是对易的。
简述布洛赫定理的内容
布洛赫定理是固体物理学中的一项重要定理,它描述了晶体中电子的行为。
该定理是由瑞士物理学家费米和德国物理学家布洛赫在1929年分别提出的。
一、晶体结构和周期性势场
晶体是由原子或分子按照一定规律排列而成的固体。
晶格是指构成晶体的原子或分子在空间中排列成的有序周期性结构。
周期性势场是指在空间中呈现出周期性变化的势场。
二、电子在周期性势场中的运动
当电子遇到一个周期性势场时,它会受到一个平稳而有规律的力,这个力会使电子做简谐振动。
在这种情况下,电子行为类似于弹簧振动器。
三、布洛赫定理和能带结构
布洛赫定理描述了晶格对电子运动的影响。
它指出,在一个周期性势场中,电子波函数可以表示为平面波与一个具有与晶格相同周期的函
数之积。
这个函数被称为布洛赫函数。
通过布洛赫函数,我们可以推导出能带结构。
能带结构描述了材料中
电子的能量和动量之间的关系。
在能带结构中,能量被分成了不同的
区域,每个区域被称为一个能带。
在一个能带内,电子具有相似的能
量和动量。
四、布洛赫定理的应用
布洛赫定理在固体物理学中有着广泛的应用。
它可以用来研究半导体、金属和绝缘体等材料中电子行为的特性。
在半导体领域,布洛赫定理
可以用来解释p-n结和场效应晶体管等器件的工作原理。
总之,布洛赫定理是固体物理学中非常重要的一项定理。
它描述了晶
格对电子运动的影响,并推导出了能带结构。
通过这个定理,我们可
以更好地理解材料中电子行为的特性,并将其应用于实际设备设计中。
布洛赫定理知识点布洛赫定理是固体物理学中的一个重要概念,它描述了晶体中电子的行为和能量分布。
通过理解和掌握布洛赫定理,可以深入了解固体物理学的许多基本原理和现象。
本文将主要介绍布洛赫定理的概念、应用以及相关知识点。
一、布洛赫定理的概念布洛赫定理是由瑞士物理学家布洛赫(Bloch)于1928年提出的。
它是描述周期性势场中粒子(如电子)行为的一种数学模型。
根据布洛赫定理,晶体中的物理特性可以由一个周期函数和平面波函数的乘积来描述。
具体而言,布洛赫定理给出了如下形式的波函数表示:ψ(r) = u(r)* exp(ik•r)其中,ψ(r)表示晶体中的波函数,u(r)是一个周期函数,k是布拉格波矢,r是晶格中的位置矢量。
根据布洛赫定理,晶体中的波函数具有周期性,即在晶体中的任意位置矢量r上,波函数的模长和相位都具有相同的周期性。
这种周期性使得我们能够用一个有限大小的晶胞作为模型来描述整个晶体的物理特性。
二、布洛赫定理的应用布洛赫定理在固体物理学中有广泛的应用。
下面将介绍一些常见的应用。
1. 能带理论布洛赫定理为解释固体中能带结构提供了重要工具。
能带结构是指能量与波矢之间的关系。
根据布洛赫定理,电子的波函数可以表示为周期函数和平面波函数的乘积,从而可以得到电子的能量本征值和能带结构。
2. 色散关系布洛赫定理可以用来描述晶体中的电子色散关系。
色散关系是能量与波矢之间的关系,描述了晶体中电子的传输性质。
布洛赫定理给出了电子波函数的表示形式,可以通过对波函数进行求解,得到电子能量与波矢的关系。
3. 赝势方法布洛赫定理在赝势方法中也有重要应用。
赝势方法是一种计算固体物理性质的近似方法,通过引入赝势将全电子问题简化为少电子问题。
布洛赫定理提供了计算周期势场中电子行为的数学模型,使得赝势方法在实际计算中得到了广泛应用。
三、布洛赫定理的相关知识点除了上述介绍的应用外,布洛赫定理还涉及一些其他重要的知识点。
1. 布洛赫矢量布洛赫矢量是用来描述布洛赫定理中波函数的平移对称性的参数。
JISHOU UNIVERSITY《固体物理》期末考核报告布洛赫定理及它的指导意义布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫(Felix Bloch )而得名。
布洛赫波由一个平面波和一个周期函数u (r )(布洛赫波包)相乘得到。
其中u (r )与势场具有相同周期性。
布洛赫波的具体形式为:式中k 为波矢。
上式表达的波函数称为布洛赫函数。
当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质:这一结论称为布洛赫定理(Bloch's theorem ),其中为晶格周期矢量。
可以看出,具有上式性质的波函数可以写成布洛赫函数的形式。
平面波波矢k(又称“布洛赫波矢”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵矢量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波矢。
对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n以区别。
这些能带的能量在k的各个单值区分界处存在有限大小的空隙,称为能隙。
在第一布里渊区中所有能量本征态的集合构成了电子的能带结构。
在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。
上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波矢k是一个守恒量(以倒易点阵矢量为模),即电子波的群速度为守恒量。
换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷。
从薛定谔方程出发可以证明,哈密顿算符(Hamiltonian)与平移算符(translation)的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。
更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。
布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill,1877年),加斯东·弗洛凯(Gaston Floquet,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov,1892年)等独立地提出。
bloch定理布洛赫定理(BlochTheorem)是物理学界最重要的定理之一,也是量子力学和物理化学领域中最基础的定理。
它是由德国物理学家费里克斯布洛赫(Fritz Bloch)在1929年发现的,概括性地描述了离散有限系统的电子状态,在量子力学领域得到了广泛的应用。
一、布洛赫定理的内容布洛赫定理指出,一个简单离散系统中电子状态的波函数,在一个周期序列上必须满足以下条件:1、波函数在周期序列的最后一节点,必须与在周期序列的第一节点处的波函数相同,即ψ (r + R) = (r);2、波函数在周期序列的最后一节点处,其导数与在该序列的第一节点处的导数乘以1乘积,也必须相等,即 (r + R) = (r)。
二、布洛赫定理的应用布洛赫定理最主要的应用是用于计算离散系统中的能量状态,它可以用来显示特定的离散系统的电子模式。
此外,它还可以用于计算离散系统中的电子结构,如电子结构图正确性的验证,以及离子键的数量的确定。
布洛赫定理也可以应用于分子原子轨道计算中,帮助科学家们解释分子结构。
它也可以用来计算原子势能,从而实现对溶液中物质结构与化学行为的研究。
布洛赫定理还可以用于研究分子光谱,利用它可以求出离子测试的能量,从而得到分子的光谱线,从而确定分子的结构。
布洛赫定理的另一个重要应用是用来研究多电子系统中的电子交换现象。
它也可以用来研究公共电子结构、簇量子现象、多电子系统中最低能量状态等。
三、布洛赫定理的影响布洛赫定理是量子力学领域最基础的定理,其影响是广泛的。
它极大地丰富了物理科学在分子尺度上的研究,为科学家提供了一种新的思路,来实现对物质结构和化学行为的研究。
此外,布洛赫定理还可能在未来的物理、化学研究中发挥重要的作用。
比如,一些高精度的激光测量,可以用来研究离子的结构与性质,这正是布洛赫定理可以提供的帮助。
四、结论布洛赫定理自1929年以来,一直是物理学界最重要的定理之一,在量子力学领域得到了广泛的应用。