当前位置:文档之家› 锅炉燃烧系统的控制系统设计

锅炉燃烧系统的控制系统设计

锅炉燃烧系统的控制系统设计
锅炉燃烧系统的控制系统设计

锅炉燃烧系统的控制系统设计

摘要:锅炉是热电厂重要且基本的设备,其最主要的输出变量之一就是主蒸汽压力。主蒸汽压力的自动调节的任务是维持过热器出口气温在允许范围内,以确保机组运行的安全性和经济性。锅炉所产生的高压蒸汽既可作为驱动透平的动力源[1],又可以作为精馏、干燥、反应、加热等过程的热源。随着工业生产的规模不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。在控制算法上、综合运用了单回路控制、串级控制、比值控制等控制方法实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效克服了彼此的扰动,使整个系统稳定运行。

关键词:锅炉;蒸汽压力;单回路控制;

Control system design of the boiler combustion system Abstract:The boiler is important and basic equipment of the thermal power plant,one of the main output variable is the main steam pressure.The task of the automatic adjustment of the main steam pressure is to maintain the superheater outlet temperature within the allowable range,to ensure the safety and economy of the unit operation.The boilers produce high pressure steam can be used as a source of power-driven turbine,but also as a distillation,drying,reaction,heating and process heat source.With industrial production expanding,as a filter for power and heat,but also toward the high-capacity,high-parameter,high-efficiency direction.In the control algorithm,the integrated use of single-loop control,cascade control,ratio control,the control method of fuel control to adjust the vapor pressure,air volume control to adjust the flue gas oxygen content,the wind control the furnace negative pressure,and effectively overcome each other disturbances so that the whole stability of the system.

Key words:Boiler;Vapor pressure;Single-loop control

引言

随着城市的快速发展,我们对用电的需求也越来越大,如何利用好有限的能源来保证供电是一个重要的话题,在能源的利用过程中如何更加提高能源的利用率是一个可研究性的话题,本文基于上述话题对电厂的燃烧锅炉控制进行了研究。

火力发电是我国电力能源的主要来源,大型火力发电机组是由锅炉、汽轮发电机组等设备构成,它利用锅炉生产的过热蒸汽来推动汽轮机运转,带动发电机发动。

在火力发电厂中,锅炉和汽轮发电机组采用一机一炉方式。它们作为蒸汽的供需双方,必须保持一定平衡,并且作为一个整体分析,否则会影响系统的正常运行。

综上所述,火力发电生产过程的控制部分包括三部分:锅炉控制、汽轮机控制、锅炉与汽轮机之间的协调控制。

1电厂生产过程

火力发电厂的主要工艺如图1-1所示可以把它划分为锅炉和汽轮发电机组两部分,其中锅炉又可以划分为燃料系统和汽水系统。

1)锅炉燃烧系统中,燃料和热空气按一定比例送入炉膛,燃烧产生的热量传递给锅筒,通过热交换,生成饱和蒸汽。同时,燃烧后剩余的烟气(废气)通过烟道,经引风机送往烟囱,排入大气。由于烟气本省具有一定余热,可以通过空气预热器为输入的冷空气加热,获得的热空气又可以循环送入燃烧系统,从而节约能源。

2)锅炉汽水系统中,给水经省煤器预热后进入锅筒,再经过与燃料系统的热交换过程,产生饱和蒸汽;然后经过多级过热器,形成具有一定气温和压力的过热蒸汽,汇集至蒸汽母管,推动单元机组的工作。

3)汽轮发电机组接受锅炉提供的过热蒸汽,推动高压汽轮机转子,进而带动发电机转子转动,产生电能。同时,温度和压力都降低的蒸汽冷凝为凝结水,又被作为给水进入锅炉汽水系统,从而加以循环利用,节约资源。

图1-1火力发电厂主要工艺流程图

1.1锅炉控制

锅炉是化工、炼油、发电等工业生产过程中必不可少的重要动力设备。锅炉控制的目的是供给合格的蒸汽,使锅炉产汽量适应负荷需要,同时保证燃烧的经济性、安全性[2]。要实现该控制目的,必须对锅炉生产过程中的各个主要工艺参数进行严格控制。

给水量锅筒水位

减温水量过热蒸汽温度

燃烧量锅炉设备蒸汽压力

送风量过剩空气

引风量炉膛负压

图1-2锅炉的输入/输出变量示意图

锅炉设备是一个复杂的被控对象,主要输入变量包括负荷的蒸汽需求量、给水量、燃料量、减温水量、送风量和引风量等;主要输出变量有锅筒水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气(烟气含氧量)等,图1-2所示为输入变量与输出变量之间相互关联。如果蒸汽负荷变化或给水量发生变化,会引起锅筒水位、蒸汽压力和过热蒸汽温度等的变化;而燃料量的变化不仅影响蒸汽压力,还会影响锅筒水位、过热蒸汽温度、过剩空气和炉膛负压。

可见,锅炉是一个具有多输入/多输出变量,且变量之间相互关联的被控对象,其主要控制系统如下。

1)锅炉锅筒水位的控制:锅筒水位时保证锅炉、汽轮机安全运行的必要条件之一,是锅炉正常运行的重要指标。其控制目的是基于锅筒内部的物料平衡关系,使给水量满足锅炉的蒸汽量需求(即负荷要求),并将锅筒中水位维持在工艺允许的范围内。

2)锅炉燃烧系统的控制:通过控制燃料量、送风量和引风量,使燃料所产生的热量适应蒸汽负荷需要;使燃料量与空气里保持一定的比例,以保证最经济的燃烧,提高锅炉的燃烧效率;使引风量与送风量的控制相匹配,以保持炉膛内负压在一定的范围内。

3)过热蒸汽系统的控制:维持过热器出口温度在允许范围内,并保证管壁温度不超过允许的工作温度。

1.2单元机组的出力控制

对电网来说,要求单元机组的出力能快速适应负荷的需求,而机组的出力大小事由锅炉和汽轮机共同决定的。两者在适应负荷变化的能力上有很大的差别:锅炉从给水到形成过热蒸汽式一个惯性较大的热交换过程,而汽轮机从蒸汽进入到产生电能是一个反应相对较快的环节。如何合理地控制锅炉和汽轮机的各自出力[3],使其彼此适应,最终满足负荷需求是出力控制的核心任务。

2锅炉燃烧过程控制

锅炉燃烧过程控制系统的基本任务是使燃料所产生的热量能够满足蒸汽负荷的需求,同时要保证燃烧的经济性和锅炉的安全性。为达到上诉目的,该系统划分为三个子系统,分别实现维持汽压、保持最佳空燃比和保证炉膛负压不变的控制任务。

1)蒸汽压力控制系统。蒸汽压力反映了锅炉生产的蒸汽量和汽轮机消耗的蒸汽量相适应的程度。当负荷变化时,通过调节燃料量使蒸汽压力稳定。

2经济燃烧控制系统。当燃料量改变时,必须按照一定的比例调节送风量,以保证充分燃烧和经济性。

3)炉膛负压控制系统。炉膛压力的高低关系到锅炉的安全经济运行,燃烧控制系统必须配合引风量与送风量,以保证炉膛压力稳定。

2.1主蒸汽压力的动态特性

汽压调节对象结构如图2-1所示。可见,主蒸汽压力主要受到燃料量和汽轮机耗汽量

的影响。

图2-1汽压调节对象示意图

Q c -燃料量Q o -进风量H-炉膛发热量Q w -进水量P b -锅筒压力

P t -主蒸汽压力U g -汽轮机进汽阀开度Q t -汽轮机耗汽量N-机组实发功率

燃料热值或成分的变化,会引起燃料供热量的变化。如果燃料量增加,炉膛热负荷随之增加,锅筒压力P b 升高。在保持汽轮机进汽阀开度U g 不变的条件下,主蒸汽压力P t 将随着蒸汽的

累积而升高。

当电网负荷变化时,改变汽轮机进汽阀开度U g ,使汽轮机耗汽量发生突然改变,主蒸汽

压力也相应变化。如果汽轮机进汽阀开度加大,则汽轮机耗汽量会增加,主蒸汽量压力随之降低。

为克服燃料量和蒸汽负荷对主蒸汽压力产生的扰动,在蒸汽压力发生波动时,通过控制燃料量来满足控制要求,这种单回路控制系统虽然简单,但适用于蒸汽负荷及燃料量波动较小的情况。当燃料量波动较大时,为及时抑制燃料量自身的扰动,采用蒸汽压力-燃料量构成的串级控制。

2.2经济燃烧控制

经济燃烧以燃料量跟踪蒸汽负荷需求为前提,保证空气量(进风量)能与燃料量满足一

定比例关系,使燃烧过程充分,从而以最经济[4]的燃料供给量提供最大的燃烧量。因此,燃

料量与进风量之间采用比值控制,其中,燃料量跟随蒸汽负荷变化而变化,为主流量;进风量为副流量。其控制方案如图2-2所示。

图2-2经济燃烧控制方案

图2-2a 是将蒸汽压力控制器P t C 的输出同时作为燃料量控制器F b C 和进风量控制器F i C 的设定值。这种控制方案可以保持蒸汽压力的稳定,空燃比通过F b C 和F i C 的正确动作而间

接得到保证;图2-2b 中蒸汽压力与燃料量构成串级控制,进风量跟随燃料量变化而变化,从而确保空燃比。这种控制在负荷发生变化时,进风量的变化落后于燃料量,会导致燃烧的

不完全,为克服上述两种控制方案的不足,图2-2c 在控制方案a 的基础上增加了选择性控制。当负荷减少时,通过低值选择器LS,先减少燃料量,后减少空气量;当负荷增加时,通过高值选择器HS,先增加空气量,再加大燃料量,从而保证充分燃烧。

上述燃烧控制方案虽然考虑了燃料量与进风量的比例,但不能保证在整个生产过程中始终保持最经济的燃烧。这是因为:在不同的负荷下,两流量的最优化比值是不同的;燃料成分(如水分、灰分的含量)和热值有可能变化;流量测量得不够准确。这些因素都不会痛程度地引起空气过量或燃烧不玩去昂,造成锅炉热效率下降。因此,有必要选择一个指标来检验空燃比是否恰当,并通过校正进风量来修正空燃比。目前,常选用烟气中的含氧量作为衡量空燃比的指标。

理论和实践已证明,烟气中的各种成分,如O 2、CO 2、CO 和未燃烧烃的含量,基本上可

以反映燃料燃烧的情况,最简便的方法是用烟气中的含氧量A 来表示。根据燃烧时的化学反应方程式,可以计算出使燃料完全燃烧所需要的含氧量,进而可以折算出所需的空气量,称为理想空气量,用Q T 表示。但实际上完全燃烧时所需的空气量Q P ,要超过理论计算的Q T ,既要有一定的过剩空气量。由于烟气的热损失占锅炉热损失的绝大部分,当过剩空气量增多时,会使炉膛温度降低,同时使烟气热损失增加。因此,过剩空气量对不同的燃料都有一个最优值,以达到最优经济燃烧。

过剩空气量常用过剩空气系数α来表示,即实际空气量Q p 与理想空气量Q T 之比

(2—1)

因此,α是衡量经济燃烧的一种指标。保证锅炉热效率最高的α值称为最佳α值,最佳α值与锅炉负荷有关,一般α=1.2-1.4。但是α很难直接测量,需要利用它与烟气含氧量之间的近似关系来间接计算

(2—2)

由上式可以折算出最佳α值:α=1.2-1.4,此时,烟气含氧量A=3.5%-6%。因此,烟气含氧量也可以作为一种衡量经济燃烧的指标。根据烟气含氧量对图2-2中的送风量加以校正,构成图2-3所示的最优经济燃烧控制系统。

图2-3锅炉最优经济燃烧控制方案

为保证不同负荷下,锅炉始终保持最优经济燃烧,根据烟气含氧量与蒸汽流量(负荷)之间的近似关系,获得当前负荷条件下的烟气含氧量设定值。氧含量成分控制器再根据该最佳值对过剩空气量进行校正,使锅炉在不同负荷下始终处于最优过剩空气量下运行,从而保证锅炉燃烧的经济性最高,热效率最高。

2.3炉膛压力控制

为了保证炉膛安全,一般要求炉膛压力略低于大气压力,保持在微负压;-8—

-2mmH 2O(1mmH 2O=9.80665Pa)。若炉膛负压太小,炉膛内热烟气甚至火焰会向外冒出,危机人

员设备安全;若炉膛负压太大,冷空气进入炉内,使热量损失增加,热效率降低。

炉膛压力控制可以通过调节烟道引风机开度来改变引风量,维持炉膛负压一定。但由于炉膛压力不仅受到引风量的影响,还对送风量很敏感,特别是当锅炉负荷变化较大时,送风量变化会引起炉膛负压的较大波动。为此,引入送风量F i T 作为前馈信号,与引风量F o T 单回路控制系统共同构成前馈-反馈复合控制系统,从而有效维持引风量与送风量之间的平衡关系,其控制结果原理如图2-4所示。

图2-4炉膛负压控制系统

2.4安全保护系统

燃烧嘴背压大小直接影响到燃料给入系统的安全。燃料嘴背压过高,容易引起脱火现象;燃烧嘴背压过低,会导致回火。

为避免上述现象,在蒸汽压力控制系统中增加安全保护措施,如图2-4所示。在燃料嘴背压正常的情况下,由蒸汽压力控制器P t C 控制燃料给入量,维持主蒸汽压力稳定;当燃烧

嘴背压过高时,背压控制器P r C 通过低值选择器LS,减小燃料阀开度,降低背压,避免发生

脱火;当燃烧嘴背压过低时,有PSA 系统带动联锁装置,切断燃料上游阀门,避免回火引发事故。

3过热蒸汽温度控制系统

过热蒸汽系统由一级过热器、减温器、二级过热器构成。其中,过热器工作在高温高压条件下,过热器出口温度是全厂设备温度的最高点,在正常运行时已接近材料允许的最高温度。如果过热蒸汽温度过高,容易烧坏过热器,还会引起汽轮机内部零件过热,影响生产过程顺利进行;过度过低则会降低全厂热效率,引起汽轮机叶片磨损。因此,必须对过热蒸汽温度加以严格控制,一般电厂锅炉要求过热蒸汽温度偏差保持在±5℃以内。

影响过热蒸汽温度的因素较多,如蒸汽流量、燃烧工况等。表3-1列出了几种扰动对过热蒸汽温度的影响。

由于过热蒸汽系统是由多个热交换设备构成,因此,系统除存在较多干扰因素外,还具有较大的容量滞后,这给控制带来困难。一般,过热蒸汽系统可用来近似。根据减温器类型不同,τ、T 取值也有所不同,如表面式减温器的参数为60s,T=100s。

表3-1过热蒸汽温度和扰动因素关系

扰动因素温度变化/℃

锅炉负荷±10%±10

炉膛过量空气系数±10%±(10-20)

给水温度±10%±(4-5)

燃煤水分±1%±1.5

燃煤灰分±10%±5

目前,广泛采用减温水流量作为控制量,实现对过热蒸汽温度的调节。但该控制通道的容量滞后较大,仅采用单回路控制系统不能满足生产要求。为改善控制质量,采用减温器后

蒸汽温度T

2与过热蒸汽温度T

1

构成串级控制,如果3-1所示

图3-1过热蒸汽温度串级控制

可见,主回路以维持过热蒸汽量温度稳定为目标。副回路中,T

2

能发现反映减温水压力

等扰动对蒸汽温度的影响,并通过副回路控制器T

2

C及时抑制这些扰动。需注意的是,该串级控制方案使用的前提条件是减温器出口允许安装测温元件。

4机炉协调控制

单元机组由锅炉和汽轮机构成,其控制任务是及时适应外界负荷需求,并保持主汽压稳定。

由于锅炉和汽轮机在动态性能上存在较大差异,使单元机组控制存在困难。汽轮机是个快变对象,当电网负荷改变时,只要改变控制阀的开度,就可以迅速改变蒸汽量,立即适应负荷要求;而对于锅炉,在负荷变化时,即使立即调整了燃料量和给水量,由于燃烧过程和过热系统所具有的大容量滞后是时滞,使供给汽轮机的蒸汽量并不能立即变化。因此,如果汽轮机的进气阀开度已改变,流入汽轮机的蒸汽量也随之改变,而锅炉提供的蒸汽量还未变化,就需要利用主汽压力的改变来弥补这种供需差额,从而导致主汽压力产生较大的波动。可见,提高机组的适应能力和保持汽压稳定这两个控制目标之间存在着矛盾。

为适应电网负荷变化,根据单元机组的结构特点,设计出三种不同的负荷控制[5]方式:炉跟机运行方式、机跟炉运行方式和机炉协调运行方式。

4.1炉跟机运行方式

当出力指令变化时,首先通过调节蒸汽控制阀,改变蒸汽机进气量,使发电机输出的功率与出力指令一致,以迅速满足电网负荷要求。同时,蒸汽控制阀开度的改变,使主蒸汽压力也随之改变。主蒸汽压力作为锅炉燃烧控制的主要信号,将通过改变燃料量来保持器稳定,并跟踪汽轮机的负荷变化。显然,这种控制方式是先有汽轮机跟踪外界负荷需求,再让锅炉跟随汽轮机的变化。因此,称为“炉跟机”方式,其原理图如图4-1所示

图4-1炉跟机运行方式

这种控制方式充分利用了锅炉的蓄热能力,使机组能较迅速地跟踪出力指令的变化。在出力指令变化比较小时,锅炉的蓄热能力可以满足快速反应需求;但当出力指令变化比较大时,由于锅炉的蓄热能力有限和锅炉的大惯性特性,使主蒸汽压力波动比较大,不能及时满足汽轮机负荷需求,不利于锅炉的安全运行。因此,它适用于参加电网调频的机组。

4.2机跟炉运行方式

根据电网负荷要求,直接控制锅炉的燃料量。锅炉受热量的变化,引起主蒸汽压力改变。汽轮机压力控制器通过调节蒸汽控制阀开度来维持主蒸汽压力稳定,同时改变机组出力,使发电机组出力适应电网负荷需求。显然,这种控制方式是先有锅炉跟踪外界负荷需求,再让汽轮机跟随锅炉的变化。因此,称为“机跟炉”方式,其原理如图4-2所示

图4-2机跟炉运行方式

4.3机炉协调运行方式

为兼顾锅炉和汽轮机对电网负荷的适应能力,出力指令和主蒸汽压力信号同时作用到汽轮压力控制器过来了控制器,如图4-3所示。这种控制方式既避免了“炉跟机”方式中调用锅炉需热量过大而导致过大的主蒸汽压力波动,又克服了“机跟炉”方式中负荷变化响应缓慢的缺点。

图4-3机炉协同运行方式

当电网负荷增加时,出力指令通过汽轮机压力控制器,增加汽轮机的进气量,充分利用锅炉蓄热能力。同时,出力指令作用到锅炉控制器,使燃料增加,加大锅炉的出力。由于锅炉的容量滞后较大,所以其蒸汽量增加的速度不能及时满足汽轮机需求,导致主蒸汽压力降低。而主蒸汽压力变化又同时作用到汽机压力控制器和锅炉控制器,一方面使锅炉的燃料量进一步加大,另一方面减小蒸汽控制阀开度[6],限制主蒸汽压力的下降幅度。

这种运行方式还可以有效抑制锅炉自身扰动引起的出力波动。当锅炉燃料量自发增加时,主蒸汽压力升高,通过锅炉控制器减少燃料量,同时通过汽轮机压力控制器加大蒸汽控制阀开度,增加汽轮机进气量,从而迅速抑制主蒸汽压力的波动。

可见,这种运行方式综合了“炉跟机”和“机跟炉”各自的优点,兼顾了出力需求和主蒸汽压力稳定两方面,能确保机组在安全的前提下最大限度地适应负荷的需要。

5结论

本文对锅炉的燃料控制进行了阐述,从主蒸汽压力到经济性的燃烧以及炉膛压力的控制。对电厂的燃煤锅炉控制进行了解,产生了一种更经济的方式来节省能源以及能量的最大化利用。

对火力发电厂中,锅炉和汽轮发电机组的采用一机一炉方式,保持一定的平衡,作为一个整体分析,否则会影响系统的正常运行。

对锅炉的燃烧系统的温度控制的基本任务是使燃料所产生的热量能够满足蒸汽负荷的需求,同时要保证燃烧的经济性和锅炉的安全性,从蒸汽压力控制系统,经济燃烧控制系统炉膛负压控制系统等方面进行了比较,从而得出了最优的经济性的燃烧方案,对经济生产中有很大的作用。

对过热蒸汽系统的研究来确定它的最优在正常时的材料允许的最高温度。如果过热蒸汽温度过高,容易烧坏过热器,还会引起汽轮机内部零件过热,影响生产过程顺利进行;过度过低则会降低全厂热效率,引起汽轮机叶片磨损。因此,必须对过热蒸汽温度加以严格控制,一般电厂锅炉要求过热蒸汽温度偏差保持在±5℃以内。

单元机组由锅炉和汽轮机构成,其控制任务是及时适应外界负荷需求,并保持主汽压稳定。为适应电网负荷变化,根据单元机组的结构特点,设计出三种不同的负荷控制方式:炉跟机运行方式、机跟炉运行方式和机炉协调运行方式。

全面综合的阐述了电厂发电的燃烧温度控制,对机组运行的工作方式来获得最优的经济燃烧方案,这对当今特别是夏季高温电力紧缺的情况下如何能利用现有的资源来获取更多的电力有很多的参考作用。

参考文献:

[1]郭一南.过程控制系统[M].北京:机械工业出版,2009

[2]何衍庆.工业生产过程控制[M].北京:化学工业出版社,2004

[3]金以慧.过程控制[M].北京:清华大学出版社,1993

[4]王树青.工业过程控制工程[M].杭州:浙江大学出版社,2003

[5]张永德.过程控制装置[M].北京:化学工业出版社,2006

[6]孙优贤.工业过程控制技术:应用篇[M].北京:化学工业出版社,2006

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

燃气热水锅炉控制方案要求

燃气热水锅炉控制 方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求 一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和

各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,经过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网经过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据; (2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,经过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平衡等),能够大大地降低管网水泵的能源消耗; (3)异常报警,做到对管网异常及时准确响应; (4)能够监测各个主、支线管网,重要客户的实时用气量、对水、电、气实时采集,以便监管和控制。 二、燃气锅炉供热控制系统硬件部分: 1、PLC是整个控制系统的核心部件,采用西门子系列可编程逻辑控制器; 2、现场数据采集系统由温度传感器、压力传感器、燃气报警器、火焰监视器、水位传感器等组成;

锅炉燃烧系统

锅炉燃烧系统 一、基本知识点 1、发电能源的种类 火力发电→发电的主要形式; 水利发电、核能发电; 新能源发电:地面太阳能发电、卫星太阳能发电、地面风能发电、高空风能发电、地壳热能发电、岩浆热能发电、潮汐发电、波浪发电、海水温差发电、核聚变能发电等。 2、火力发电厂的生产过程中能量转换形式及设备 燃料的化学能→蒸汽的热能(锅炉); 蒸汽的热能→机械能(汽轮机); 机械能→电能(发电机)。 3、锅炉的作用 使燃料在炉内燃烧放热,并将锅内工质由水加热成具有足够数量和一定质量(温度、压力)的过热蒸汽,供汽轮机使用。 4、锅炉四大系统 ①制粉系统→将初步破碎的原煤磨制成符合锅炉燃烧要求的细小煤粉颗粒【燃煤炉】; ②燃烧系统→使燃料燃烧放出热量,产生高温火焰和烟气; ③烟风系统→供应助燃氧气、排除燃烧产生的烟气; ④汽水系统→通过换热设备将高温火焰和烟气的热量传递给锅炉内的工质。 5、锅炉容量 锅炉额定蒸汽参数,额定给水温度并使用设计燃料时,每小时的最大连续蒸发量。 De =130t/h De=36.1kg/s 6、蒸汽参数 锅炉出口处的蒸汽温度和蒸汽压力。 t=500℃,t=813K p=13.5MPa 7、锅炉的燃料 煤(主要燃料)、油、气体以及其他可燃物(如生活垃圾)。

简单蒸汽动力装置流程图

二、锅炉燃烧系统 1、锅炉燃烧设备的组成 炉膛+燃烧器+点火装置 2、锅炉燃烧设备的发展方向 高效、低污染的燃烧技术和设备 3、与炉内燃烧过程相关的问题 (1) 受热面积灰、结渣; (2) 受热面金属表面的高温腐蚀; (3) 蒸发受热面中水动力的安全性; (4) 氧化氮等污染物的生成; (5) 火焰在炉膛容积中的充满程度。 4、高炉煤气与转炉煤气特性 高炉煤气:炼铁过程中产生的副产品,主要成分为:CO, C02, N 2、H 2、CH 4等,其中可燃成 分CO 含量约占25%左右,H 2含量约占1.5~1.8%、CH 4的含量很少,CO 2, N 2的含量分别占15%,55% 左右,热值不高,仅为3500KJ/m 3左右,燃点530~650℃。 主要性质:无色无味有剧毒易燃易爆。 转炉煤气:炼钢过程中,铁水中的碳在高温下和吹入的氧生成一氧化碳和少量二氧化碳的混合气体。回收的炉气含一氧化碳60~80%,二氧化碳15~20%。热值较高,为8000KJ/m 3左右,燃点650~700℃。 主要性质:无色无味有剧毒易燃易爆。 5、气体燃烧器 (1) 按燃烧方法【主要分类方式】: ▼ 扩散式燃烧器:煤气中不预混空气,一次空气系数01=α,燃气经燃烧器喷入炉内,借助扩散作用与空气边混合边燃烧; ▼ 大气式(半预混式)燃烧器:燃气中预先混入一部分空气,一次空气系数75.045.01-=α; ▼ 无焰式(预混式)燃烧器:燃气与空气完全预混,一次空气系数11≥α。 (2) 按空气供给方式: ▼ 自然引风式:靠炉膛负压将空气吸入炉膛;

锅炉燃烧控制系统仿真

锅炉燃烧过程控制系统仿真 目的:通过该项目的训练,掌握串级控制、比值控制、前馈控制在锅炉燃烧过程控制系统的综合应用。 原理简述: 燃烧过程控制系统:燃油锅炉的燃烧过程控制主要由三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统以及炉膛负压控制系统。 1 、蒸汽压力控制和燃料空气比值控制系统 锅炉燃烧的目的是生产蒸汽供其他生产环节使用。一般生产过程中蒸汽的控制是通过压力实现的,后续环节对蒸汽的生产用量不同,反映在蒸汽锅炉环节就是蒸汽压力的波动。维持蒸汽压力恒定是保证生产正常进行的首要条件。 保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气的控制实现的。 因此,蒸汽压力是最终被控制量,可以根据生成情况确定; 燃料量是根据蒸汽压力确定的;空气供应量根据空气量与燃料量的合理比值确定。 2 、炉膛负压控制系统 锅炉炉膛负压过小时,炉膛内的热烟、热气会外溢,造成热量损失,影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会增加燃料损失、热量损失和降低热效率。 使外部大量冷空气进入炉膛,改变燃料和空气比值,

控制方案: 某锅炉燃烧系统要求对系统进行蒸汽压力控制。本项目采用燃烧炉蒸汽压力控制和燃料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。 已知控制系统传递函数: 燃料流量系统的数学模型:G(s)=s e s 31 122-+

空气流量模型:G(s)=s e s 21102-+ 引风量与负压关系模型:G(s)=s e s -+156 送风量对负压的干扰模型:G(s)=122 +s 并取: 燃料流量至蒸汽压力关系约为:G(s)=4 蒸汽压力至燃料流量关系约为:G(s)=1/4 燃料流量与控制流量比值:G(s)=2 空气流量与燃料流量比值:G(s)=1 实现步骤: 1、系统稳定性分析 作出伯德图,如果相角裕度Pm>0°或幅值裕度Gm>1,表示系统稳定。 (1) 燃料流量系统数学模型:G(s)=s e s 31122-+的伯德图: 空气流量数学模型G(s)=s e s 21102 -+的伯德图:

基于DCS的锅炉控制系统设计

DCS控制系统设计 一.被控对象: 图1 锅炉设备工艺 二.工艺要求 燃料和热空气按一定比例送入燃烧室燃烧,生成热量传递给蒸汽发生系统,产生饱和蒸汽Ds,然后经过热器,形成一定气温的过热蒸汽D,汇集至蒸汽母管。压力为Ph的过热蒸汽经负荷设备调节阀供给生产设备负荷用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱,排入大气。 三.DCS选型 本控制系统选择浙大中控Webfield JX-300XP系统。 四.硬件 ①控制站硬件 1.机柜:SP202 结构:拼装 尺寸:2100*800*600 ESD:防静电手腕 散热:两风扇散热 接地:工作接地,安全接地 2.机笼 电源机笼:四个电源模块,型号:XP521 I/O机笼:20个槽位,用于固定卡件 3.接线端子板 冗余端子板:XP520R 4.端子转接板 5.主控卡:XP243X 地址范围:2到127。 后备锂电池模块:JP2,保持参数不丢失。 6.数据转发卡:XP233

地址范围:0到15 7.I/O卡件 (a)I/O点数计算 Ⅰ.锅炉控制系统中数字量输入点数: 启动;停止;点火;手动关闭蒸汽阀 以上共计四个数字量输入。 Ⅱ.锅炉控制系统中数字量输出点数: 给风;1号风机;给燃料;2号风机;蒸汽阀 以上共计五个数字量输出。 Ⅲ.锅炉控制系统中模拟量输入点数: 汽包液位、温度、压力。 以上共有三个模拟量输入(为了使模拟信号可以远传,变送器均选择电压式)。 (b)卡件选择 Ⅰ.XP363:触点型开关量输入卡。8路输入,统一隔离。 Ⅱ.XP362:触点型开关量输出卡。8路输出,统一隔离。 Ⅲ.SP314X:电压信号输入卡。4 路输入,点点隔离,可冗余 Ⅳ.XP221:电源指示灯。 ②操作员站硬件 1.PC机: 显示器;主机;操作员键盘,鼠标;操作员站狗; 2.Windows XP操作系统 3.安装Advan Trol-Pro实时监控软件。 ③工程师站硬件 1.PC机 显示器;主机;工程师键盘,鼠标;工程师站狗 2.工程师站硬件可以取代操作员站硬件 3.Windows XP操作系统 4.安装Advan Trol-Pro实时监控软件 5.安装组态软件包 ④通信网络 (a)信息管理网 通讯介质:双绞线(星形连接),50Ω细同轴电缆、50Ω粗同轴电缆(总线形连接,带终端匹配器),光纤等; 通讯距离:最大 10km; 传输方式:曼彻斯特编码方式; (b)过程控制网络(SCnet Ⅱ网) 传输方式:曼彻斯特编码方式; 通讯控制:符合 TCP/IP 和 IEEE802.3 标准协议; 通讯速率:10Mbps; 节点容量:最多 15个控制站,32个操作站、工程师站或多功能站; 通讯介质:双绞线,50Ω细同轴电缆、50Ω粗同轴电缆、光缆;

发电厂燃煤锅炉燃烧PLC控制系统设计说明

发电厂燃煤锅炉燃烧控制系统设计 摘要 在热电厂中,以单位机组为控制对象有:锅炉汽包水位控制、燃烧过程控制以及过热蒸汽温度,过热蒸汽温度控制又包括过热蒸汽温度控制和再热蒸汽温度控制。其中,热电厂锅炉的燃烧控制对整个发电过程的安全性与经济性起着重要的作用,所以对它高效率的控制是现在热电厂的一个重要任务。 本文以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。 关键词:热电厂;锅炉燃烧;单片机;控制 Coal-fired power boilers burning single chip control system design Abstract Thermal power plant boiler combustion control plays an important role in security and economy of the entire power generation process, the control of its high efficiency thermal power plant is an important task. In this paper, the analysis and study of the entire combustion system,

锅炉燃烧过程控制系统设计毕业论文

锅炉燃烧过程控制系统设计毕业论文

毕业论文 锅炉燃烧过程控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

锅炉燃烧控制系统_毕业设计

锅炉燃烧控制系统 摘要 锅炉的燃烧控制对于锅炉的安全、高效运行和节能降耗都具有重要意义,其控制和管理随之要求也越来越高。本设计主要针对锅炉燃烧控制系统的工作原理,根据控制要求,设计了一套基于PLC的锅炉燃烧控制系统。 在控制算法上,综合运用了单回路控制、串级控制、比值控制、前馈控制等控制方式,实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效地克服了彼此的扰动,使整个系统稳定的运行。 在可编程控制器的选择上,采用了AB公司Logix5000系列PLC,设计了控制系统的硬件配置图、I/O模块接线图,并用其编程软件编写了实现控制算法的梯形图。同时,采用RSView32设计监控界面,使得在上位机上能够实时监控系统的运行状况并可以设置系统的工作参数,使对系统的控制简单易行。 关键词:锅炉燃烧控制系统,控制方式,PLC,监控

ABSTRACT The control of the boiler combustion which is for boilers safe, efficient operation and energy saving are of great significance, and its subsequent control and management is getting higher and higher requirements. According to the control requirements and the working principle, we design a system of a PLC based on the boiler combustion control system. In the control algorithm, we integratedly applied the single-loop control, cascade control, ratio control, feed-forward control and so on which is moded the control to achieve a fuel vapor pressure control regulator, air-conditioning of flue gas oxygen content control, citing the negative air volume control of the furnace pressure.It also effectively overcome the disturbance of each other, so that the operation of the entire system is stable. Choice in the programmable logic controller, we choose AB, Logix5000 series PLC, and applied it to the design of the control system hardware configuration diagram and I / O module wiring diagram. Then we use the preparation of its programming software control algorithm to achieve the ladder. At the same time, the use of RSView32 interface to design monitor makes PC can run real-time monitoring of system status and can set the system parameters, so that the system is easy to control. Keywords: boiler combustion control system, control, PLC ,supervisory control

锅炉温度控制系统设计方案

锅炉温度控制系统设计方案 第1章绪论 1.1课题背景及研究的意义 锅炉是工业生产中最常用的能量转换设备之一,它通过转化燃料中的化学能或利用电能转化为能,成为人们广为依赖的采暖工具。在电锅炉中,利用电阻在通电流状态下发热的原理,通过对电流的大小的控制对温度的控制。由于电流易控制的特点,电锅炉在小型锅炉和精密控温的到使用者的青睐。但是,在大部分城市中,由于国家实行“西气东输”计划,燃气价格为普通人家所接受,经数据统计和计算,燃气锅炉更便宜,比电锅炉应用更受欢迎。 锅炉温度的稳定是锅炉性能的一项重要指标,温度过高和温度过低都会给锅炉的稳定运行和生产造成重大的的影响,甚至发生安全事故。温度过高,导致锅炉金属材料和相关部件的超温过热,加速管材金属氧化,降低锅炉和相关部件的使用寿命;温度过低,假定在保持锅炉蒸发量不变的情况下,锅炉的损耗将大幅上升,能源利用率因此下降,而且负荷也将受到限制。所以,限定锅炉在安全温度成为每一个温度控制系统的核心部分。 随着科技发展,人们对采暖方式和热水方式渐渐发生变化,家用燃气锅炉进入寻常百姓家,但是国燃气锅炉的开发与应用还处于较落后的阶段,市场上的大多数此类商品还是以国外为主,所以燃气锅炉依然有广大市场与研究价值。 本设计以家用燃气锅炉为研究目标,使用AT89C51单片机为控制核心组成温度控制系统,采用热电阻感应温度的变化,单片机实现收集数据、处理数据、发送控制命令的功能,从各方面详细的说明单片机在温度控制的应用。 1.2 温度传感技术 自工业时代以来,随着大型机械的出现和广泛应用,温度对机械工作性能的影响越来越被人们所重视,对温度的未知可能造成机械损坏或发生重大事故。于是温度传感器便应运而生。温度传感器用在生活的方方面面,从冶金行业到每一个人身边中的一部分,它已经随着时代的步伐在进步。 目前使用的较为先进的温度传感器是数字传感器。数字传感器的优点是不需要像传统方式一样加入转换部分,利用当今成熟的集成技术,在其部已经集成了感应温度系统和温度转换系统,尤其是它单端数据输出的功能,极大减少对主控

锅炉燃烧系统的控制系统设计解析

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (6) 2.2.4影响炉内燃烧的因素 (7) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (25) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (28)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (34) 致谢 (35) 参考文献 (36)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

辅锅炉燃烧模拟控制系统设计

学校 毕业论文 题目:辅锅炉燃烧模拟控制系统设计Auxiliary boiler combustion control system simulation 系别: 专业: 班级: 姓名: 学号: 指导教师: 2011年月日

目录 前言 (3) 摘要 (3) 1 可编程序控制器的基本特点 (4) 2系统设计要求 (5) 2.1水位控制 (5) 2.2燃烧程序自动控制 (5) 2.3蒸汽压力控制 (7) 2.4自动保护和报警 (7) 3控制部分的设计 (7) 3.1硬件设计 (8) 3.2控制部分的软件设计 (9) 一、控制系统流程图 (10) 二、时序图 (11) 三、控制程序 (12) 四、控制程序的说明 (15) 4 结束语 (16) 参考文献 (16)

前言 在内燃机动力装置的船舶上,锅炉是船舶的重要辅机设备,主要产生蒸汽用于加热燃油、主机暖缸、驱动辅助机械及生活杂用。当前船舶机舱自动化的要求越来越高,锅炉的自动控制在实现无人机舱中是必不可少的。但是目前我国船舶(特别在远洋渔船)上,虽有一定程度的自动化控制,但控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。可编程序控制器控制系统的经济性能比高于接触器—继电器控制系统。 随着船舶技术的发展,船舶自动化的程度越来越高,而PLC因其可靠性高、运用灵活,在自动控制领域获得了广泛的应用。目前,在船舶自动化设备中,船舶电站自动化、分油机自动控制、锅炉自动控制等领域,都已成功地应用了可编程序控制器,相信随着市场的发展和技术的进步,PLC技术在船上会有更广阔的前景。 船舶辅锅炉是一个多输入、多输出且相互关联的复杂的控制对象,其实际操作必须遵循严格的步骤,在实习和教学环节中,实现每个人都进行实际操作有难度。因燃油运行成本且可能出现操作失误,会给实习和教学带来一定的困难和不安全因素。随着虚拟现实技术的产生,这些问题将逐步得到解决。以下将会用PLC设计一个辅锅炉模拟控制系统。 摘要 目前我国船舶自动化控制程度较低,控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。随着船舶自动化的发展,PLC技术越来越多的在船舶中得到应用。本文分析了PLC的特点以及在船用辅锅炉自动控制系统的应用,主要应用在船用辅锅炉锅炉水位自动控制、蒸汽压力自动控制、燃烧程序的自动控制、保护与报警,使锅炉实现自动控制,逐渐达到无人机舱的目的。 本文主要包括以下几方面内容:一、介绍可编程序控制器(PLC)的基本特点,使人了解PLC工作原理及方式;二、说明该控制系统的设计要求,也就是本文用S7—200 PLC实现自动锅炉控制要达到的目的;三、是本文最重要的一环,系统自动控制的设计包括硬件和软件方面。

基于DCS的燃气锅炉自动控制系统

基于DCS的燃气锅炉自动控制系统 作者:李婕姝杨润清来源:v黑龙江科技信息发布时间:2010-1-26 17:29:14 [收藏] [评论] 基于DCS的燃气锅炉自动控制系统 1 工艺介绍 本锅炉系统主要通过燃烧高炉煤气和焦炉煤气为某钢铁公司1000M3高炉提供动力,并季节性提供工业用暖。锅炉主要包括煤气(高炉煤气、焦炉煤气)系统、炉体部分、对流受热面(汽包及冷却壁,I、II 过热器,I、II省煤器,I、II空气预热器)、点火器、送引风设备等组成。 按照各部分的功能大致分为汽水系统、风烟系统、燃烧系统、减温减压及公用系统几个子系统。 本控制系统主要控制锅炉及相关辅助设备的生产过程,使其符合工艺所要求达到的蒸汽温度(450℃)、压力(3.82MPa)、流量(130t/h)、纯度(过热蒸汽)。 1.1 汽水系统 汽水系统是供给锅炉保护和产生蒸汽的除氧水,生成载热的过热蒸汽送到汽机膨胀做功或者经过减温减压后供热。来自除氧给水系统的除氧水经过调节后送到I、II省煤器预热,然后送到锅炉汽包和与汽包相连的锅炉冷却壁中,经过锅炉燃烧生成的高温烟气的加热生成不饱和蒸汽,不饱和蒸汽经过I级过热器、I级过热器蒸汽集箱,经过喷水减温器减温处理后,再经过II级过热器、II级过热器蒸汽集箱后生成饱和的过热蒸汽,然后送到蒸汽母管,一部分送到汽机膨胀做功,一部分进入减温减压系统, 一部分提供除氧汽动给水泵做功给水。 1.2 风烟系统 空气(冷风)经过净化后通过1#、2#送风机送到I、II空气预热器中进行预热成为热风,热风送到热风烧嘴和煤气混合燃烧;高炉煤气和焦炉煤气通过高炉煤气管道和焦炉煤气管道送到燃烧喷嘴和热风混合 燃烧,生成高温烟气,加热锅炉汽包中的除氧水使之成为不饱和蒸汽,然后高温烟气依次通过I过热器、II过热器、II省煤器、II空气预热器、I省煤器、I空气预热器将不饱和蒸汽加热成为高温高压的饱和蒸汽,并预热送到锅炉汽包中的除氧水和送到锅炉炉膛中的空气,最后通过引风机引至烟囱中排放。 1.3 燃烧系统 高炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角4个燃烧喷嘴),参与燃烧;进入锅炉和高炉煤气混合燃烧的热风分别进入锅炉的4个角(每角4个燃烧喷嘴),参与燃烧;焦炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角2个燃烧喷嘴),参与燃烧。正常情况下,燃料为高炉煤气,焦炉煤气只是在点火的时候用到,平时只是作为保安气(作为锅炉燃烧过程中的炉膛温度低时保护气)。 燃烧过程中通过热电偶和火焰观测器来检测炉膛温度变化。通过调节高炉煤气、焦炉煤气、风的配比来调节锅炉炉膛温度(燃料配比一般为100%高炉煤气,另外也有80%——90%高炉煤气加20%——10%焦炉煤气或者50%焦炉煤气)。整个燃烧过程中炉膛温度控制在1100±10℃左右。 1.4 减温减压及公用系统 本锅炉产生的过热蒸汽大部分送到汽机做功给高炉供风,其余的一部分送到中温中压联络管,另一部分送到1#、2#减温减压器经过工业水的减温减压后变为低温低压蒸汽,一部分送到厂区供热,另一部分通过加热蒸汽母管送到除氧器,一部分提供除氧汽动给水泵做功给水。 2.系统配置 2.1 DCS系统 计算机集散控制系统(DCS)由上位系统和下位系统组成。上位系统采用工业控制计算机,用Siemens 组态软件WinCC完成现场数据的实时显示、存储、报警处理、打印及控制参数设定。下位系统由Siemens PLC 构成,与现场设备相连。上位系统和下位系统之间的通讯采用Ethernet方式,其最高传输速率可达 10-100Mbit/s,完全满足对数据实时监控的要求。自动控制系统采用S7 400 系列PLC硬件组成基础自动

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

锅炉的燃烧系统

河北艺能锅炉有限责任公司

1.简介 燃烧系统是指为使燃料在锅炉炉膛内充分燃烧,并将燃烧生成的烟气排入大气所需的设备和相应的烟、风、煤(煤粉)管道的组合。燃烧系统应根据燃用燃料的类型,如固体、液体或气体燃料、电站锅炉的类型和燃烧方式,合理选择工艺流程、决定设备和管道的规格、数量,充分考虑必要的裕度,使锅炉和燃烧系统在最安全和经济的情况下运行。燃料系统的功能在于保证燃烧器燃烧所需的燃料。燃烧系统的任务是将燃料中蕴藏的化学能通过燃烧释放出来,转换成可被汽水吸收的热能。因此,燃烧系统的好坏将直接影响到锅炉的热效率。 组成介绍 送风系统 送风系统的功能在于向燃烧室里送入一定风速和风量的空气,其主要部件有:风机马达、壳体、风门控制器、风机叶轮、风枪火管、风门档板、扩散盘。 风机马达:主要为风机叶轮和高压油泵的运转提供动力,也有一些燃烧器采用单独电机提供油泵动力。某些小功率燃烧器采用单相电机,功率相对较小,大部分燃烧器采用三相电机,电机只有按照确定的方向旋转才能使燃烧器正常工作。 壳体:是燃烧器各部件的安装支架和新鲜空气进风通道的主要组成部分。从外形来看可以分为箱式和枪式两种,箱式燃烧器多数有一个注塑材料的外罩,且功率一般较小,大功率燃烧器多数采用分体式壳体,一般为枪式。壳体的组成材料一般为高强度轻质合金铸件。 风门控制器:是一种驱动装置,通过机械连杆控制风门档板的转动。一般有液压驱动控制器和伺服马达驱动控制器两种,前者工作稳定,不易产生故障,后者控制精确,风量变化平滑。 风机叶轮:通过高速旋转产生足够的风压以克服炉膛阻力和烟囱阻力,并向燃烧室吹入足够的空气以满足燃烧的需要。它由装有一定倾斜角度的叶片的圆柱状轮子组成,其组成材料一般为高强度轻质合金钢,也有注塑成形的产品,所有合格的风机叶轮均具有良好的动平衡性能。

基于PLC的锅炉燃烧控制系统

基于PLC的锅炉燃烧控制系统 1、引言 燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。

图1 燃烧控制系统结构图 2、控制方案 锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相

协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。 2.1 控制系统总体框架设计 燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。

图2 单元机组燃烧过程控制原理图

P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。 2.2 燃料量控制系统 当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中最基本也是最主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。

锅炉集中控制系统设计

锅炉集中控制系统 班级:电气08-11班 姓名:孙琛智 学号:7号 日期:2010年11月7日

1.燃煤锅炉的工作原理: 首先除氧水通过给水泵进入给水调节阀,通过给水调节阀进入省煤器,冷水在经过省煤器的过程中被由炉膛排出的烟气预热,变成温水进入汽包,在汽包内加热至沸腾产生蒸汽,为了保证有最大的蒸发面因此水位要保持在锅炉上汽包的中线位置,蒸汽通过主蒸汽阀输出。空气经过鼓风机进入空气预热器,在经过空气预热器的过程中被由炉膛排出的烟气预热,变成热空气进入炉膛。燃料进入炉膛被前面的火点燃,在燃烧过程中发出热量加热汽包中的水,同时产生热烟气。在引风机的抽吸作用下经过省煤气和空气预热器,把预热传导给进入锅炉的水和空气。通过这种方式使锅炉的热能得到节约。降温后的烟气经过除尘器除尘,去硫等一系列净化工艺通过烟囱排出。锅炉微机控制系统,一般由以下几部分组成,即由锅炉本体、一次仪表、控制系统、上位机、手自动切换操作、执行机构及阀、电机等部分组成,一次仪表将锅炉的温度、压力、流量、氧量、转速等量转换成电压、电流等送入微机。控制系统包括手动和自动操作部分,手动控制时由操作人员手动控制,用操作器控制变频器、滑差电机及阀等,自动控制时对微机发出控制信号经执行部分进行自动操作。微机对整个锅炉的运行进行监测、报警、控制以保证锅炉正常、可靠地运行,除此以外为保证锅炉运行的安全,在进行微机系统设计时,对锅炉水位、锅炉汽包压力等重要参数应设置常规仪表及报警装置,以保证水位和汽包压力有双重甚至三重报警装置,以免锅炉

发生重大事故。 2.燃煤锅炉的组成 锅炉按燃料种类分,大致有燃油锅炉,燃煤锅炉和燃气锅炉。所有的这些锅炉,虽然燃料及供给方式不同,但其结构大同小异,蒸汽发生系统和蒸汽处理系统是基本相同的。列举一个燃煤锅炉如图所示。 该系统所用的锅炉是以煤为燃料,两台20T/H的热水炉,一台 10T/H的热水炉和一台6T/H蒸汽量的水管锅炉,属中小型锅炉。以6T/H的蒸汽锅炉为例,工艺流程图所示,它由以下几个部分构成 1.汽包:由上下锅筒和沸水管组成。水在管内受管外烟气加热,因而在管簇内发生自然循环流动,并逐渐汽化,产生的饱和蒸汽聚集在锅筒罩面。为了得到干度比较大的饱和蒸汽,在上锅筒还装有汽水分离设备,下锅筒做为连接沸水管之用,同时储存水和水垢。

燃气蒸汽锅炉DCS控制系统

河南xxx工业有限责任公司 锅炉房3台10T蒸汽锅炉自控系统 控 制 方 案 xxxx电气系统有限公司

一:概述 xxxx电气有限公司是暖通、供暖节能、锅炉、热能设备等领域自动化控制的高科技股份制公司,是国内最大的锅炉电脑控制器厂家。 xx公司于1995年在全国率先推出锅炉电脑控制器,至今已发展到全系列燃煤、燃油(气)和电热锅炉的电脑控制、PLC控制、小型和大型DCS控制和供暖节能控制,控制锅炉的吨位达到150t/h,并且始终保持技术领先地位。目前xx公司产品已遍布全国,部分出口国外,近1000家国内锅炉厂和11家外资锅炉厂配套使用,已成为我国锅炉控制的主流产品和著名品牌,是中国锅炉行业“工业锅炉控制标准”起草单位。 公司资质: 中国锅炉行业“工业锅炉控制标准”起草单位 省级高新技术企业 国家级高新区企业 计算机软件企业 中国锅炉行业协会团体会员 二、控制对象和设备 10T燃油气两用饱和蒸汽锅炉3台,每台包括: ●程控器外置式燃烧器1台;风机功率12KW, ●给水泵2台,功率15kw(一主一备); ●循环泵 ●节能泵 由上述设备组成锅炉补水及蒸汽负荷输出系统。 三、关于标准 1、目前尚无锅炉控制器的国家标准或行业标准,我公司执行的是xxxx公司企业标准Q/3201RTG01-2000,是 目前国内唯一具有企业标准的锅炉电脑控制厂家。 2、我国工业锅炉控制装置的行业标准正在制定中,我公司为该标准的第一起草单位。 3、本控制方案依照国家有关标准和规程及xxxx公司企业标准编制,全面满足招标方要求。 四:系统设计原则 我方在进行本控制系统设计时,将严格遵循以下系统设计原则:

相关主题
文本预览
相关文档 最新文档