第一学期期中考试高三数学试题(文)
- 格式:doc
- 大小:136.53 KB
- 文档页数:4
格致中学二〇二四学年度第一学期期中考试高三年级数学试卷(测试120分钟内完成,总分150分,试后交答题卷)一、填空题:(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生在答题纸的相应位置直接填写结果.1. 已知复数2ii z -=(i 为虚数单位),则z 的虚部为________.【答案】2-【解析】【分析】根据除法运算可得12i z =--,进而可得虚部.【详解】因为复数2i12i iz -==--,所以z 的虚部为2-.故答案为:2-.2. 函数()ln f x x =的定义域为______【答案】(]01,【解析】【分析】根据解析式可得不等式组210,0,x x ì-³í>î解不等式组,即可得答案;【详解】Q 210,0,x x ì-³í>î01x Þ<£,故答案为:(]01,.3. 若直线1:210l x my ++=与2:31l y x =-垂直,则实数m =__.【答案】6【解析】【分析】根据两直线垂直时,斜率乘积为-1,解方程求得m 的值.【详解】由直线1:210l x my ++=且斜率存在,则直线12:1l y x m m=--,由直线1:210l x my ++=与2:31l y x =-垂直,则231m-´=-解得6m =.故答案为:6.4. 已知集合{}1A x a x a =££+,{40}B x x =-£<,若A B Í,则实数a 的取值范围是________.【答案】{}|41a a -£<-【解析】【分析】分析可知A ¹Æ,结合包含关系列式求解即可.【详解】因为集合{}1A x a x a =££+,{40}B x x =-£<,显然A ¹Æ,若A B Í,则410a a ³-ìí+<î,解得41a -£<-,所以实数a 的取值范围是{}|41a a -£<-.故答案为:{}|41a a -£<-.5. 等比数列{}n a 满足11a =,23520a a a +=,则1ii a+¥==å________.【答案】23【解析】【分析】求出q 值,再由无穷递缩等比数列的求和公式计算.【详解】23520a a a +=,则2341120a q a q +=,即3420q q +=,即()3120q q +=,因为0q ¹,则12q =-,∴111211312i i a a q +¥====-+å.故答案为:23.6. 在一次为期30天的博览会上,主办方统计了每天的参观人数(单位:千人),并绘制了茎叶图(如图),其中“茎”表示十位,“叶”表示个位,则这组数据的第75百分位数是________.2113683022445594111336789502455889【答案】50【解析】【分析】分析可知这组数据的第75百分位数是第23位数,结合茎叶图即可得结果.【详解】因为300.7522.5´=,可知这组数据的第75百分位数是第23位数,结合茎叶图可知第23位数是50,所以这组数据的第75百分位数是50.故答案为:50.7.二项式82x æçè的展开式的常数项是________.【答案】112【解析】【分析】写出二项式展开式的通项4883182r rr r TC x--+=,令4803r -=即可得到答案.【详解】二项式展开式的通项为48883188(2)2r rrr r rr T C x C x ---+==,令4803r -=,得6r =,所以26382112T C ==.故答案:112.【点睛】本题考查二项式定理的应用,涉及到求展开式中的特殊项,只需准确写出通项公式即可.8. 已知()()000,01P x y x <<是曲线1C =上一点,作曲线C 在点P 处的切线l ,l 与x 轴、y轴分别交于点A 、B ,O 为坐标原点,则OA OB +=________.【答案】1【解析】【分析】先将曲线C1+=转化为1y x =-,()01x <<,利用导数求出曲线C 在点P 处的切线斜率,得切线l 的方程及l 在x 轴、y 轴上的截距,化简OA OB +即得结果.【详解】因为()()000,01P x y x <<在曲线1C +=1=1+=1=平方,得1y x =-+,()01x <<12121y x ¢æö=-=ç÷èø¢,01x x k y ===-¢∴曲线C 在点P 处的切线l:()001y y x x æ-=-ççè,令0x =,()000011y y x y y x y æ-=-Þ=-+Þ=ççè1OB =-为令0y =,()001y x x æ-=--ççè,则1-=,(01x x -=-,x =∴OA =∴11OA OB +=+-=.故答案为:1.9. 如图(1),在长方体ABCD EFGH -中,2AB BC ==,1AE =,O 为上底面EFGH 的中心.现将矩形EFGH 绕点O 在原平面内顺时针旋转π(0)4q q <£角,连接AE 、DE 、AF 、BF 、BG 、CG 、CH 、DH ,得到如图(2)所示的十面体,若这个十面体的各个顶点都在球M 的球面上,则球M 的表面积是________.【答案】9π【解析】【分析】首先确定球心,再求球心到顶点的距离,即可求得外接球的半径,再代入球的表面积公式.32=,所以这个十面体的外接球的半径为32,从而其表面积234π9π2S æö=×=ç÷èø.故答案为:9π10. 已知())(0,02π)f x x w j w j =+><<,函数()y f x =的部分图像如图所示,已知点A 、D为()y f x =的图像与x 轴的交点,其中1,03D æöç÷èø,点B 、C 分别为()y f x =的图像的最高点和最低点,且212AB DC AB ×=-uuu r uuur uuur ,则j =________.【答案】5π6【解析】【分析】结合正弦函数的周期及向量数量积公式计算可得w ,再由函数零点即可得j .【详解】因为1,03D æöç÷èø,且0w >,可知f (x )的最小正周期2πT w=,所以1π1π1π,0,,,33232A B C w w w æöææ--+ç÷ççèøèè,所以ππ,,22AB DC w w ææ==ççèèuuu r uuu r .所以2222π1π33424AB DC w w æö×=-=-+ç÷èøuuu r uuu r ,化简得223π3082w -=.又0w >,所以π2=w ,又因为13是f (x )递减区间内的零点,则()π12ππ23k k j ´+=+ÎZ ,解得()5π2π6k k j =+ÎZ .因为02πj <<,所以5π6j =.故答案为:5π6.11. 已知k 为常数,若关于x 的不等式21()e ex kx k -£对任意的(0,)x Î+¥都成立,则实数k 的取值范围为______.【答案】1,02éö-÷êëø【解析】【分析】分析可知0k <,整理可得2211e 0e xkx k k æè-ö-£ç÷ø,换元令0x t k =<,构建()()2211e ,0e t f t t t k-=-<,利用导数求其最值,并结合恒成立问题分析求解.【详解】显然0k ¹,若0k >,当x 趋近于+¥,2()e xk y x k =-趋近于+¥,不合题意,可知0k <,因为21()e e x kx k -£,可得2211e 0e xk x k k æè-ö-£ç÷ø,由0x >,可得0x k <,令0x t k =<,可得()2211e 0e t t k--£,原题意等价于()2211e 0e tt k --£对任意的(),0t Î-¥都成立,构建()()2211e ,0e t f t t t k-=-<,则()()21e tt t f ¢-=,令()0f t ¢>,解得1t <-;令()0f t ¢<,解得10t -<<;可知()f t 在(),1¥--内单调递增,在()1,0-内单调递减,则()()24110e e f t f k £-=-£,解得12k ³-,所以实数k 的取值范围为1,02éö-÷êëø.故答案为:1,02éö-÷êëø.12. 从椭圆2222:1(0)x y C a b a b+=>>外一点P (x 0,y 0)向椭圆引两条切线,切点分别为A 、B ,则直线AB称作点P 关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆1C 、2C ,它们的中心都在坐标原点,对称轴都是坐标轴,离心率分别为1e 、2e ,2C 在1C 内,椭圆1C 上的任意一点M 关于2C 的极线为M l ,若原点O 到直线M l 的距离为定值1,则2212e e -的最大值为______.。
江苏省常州市2020届第一学期期中考试高三数学文试题2019.11第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={}2x x <,B ={﹣2,﹣1,0,2},则A B = .答案:{﹣1,0}考点:集合交集运算 解析:∵A ={}2x x <,∴A =(﹣2,2),又∵B ={﹣2,﹣1,0,2}, ∴A B ={﹣1,0}2.函数22log (76)y x x =+-的定义域是 . 答案:(﹣1,7)考点:函数的定义域解析:由题意得:2760x x +->,解得﹣1<x <7,故原函数的定义域是(﹣1,7).3.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,则S 6= .答案:2考点:正多边形面积解析:由题意知,该正六边形为1,是由6个全等的边长为1的等边三角形构成,故面积为:266142S =⨯=. 4.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = . 答案:3考点:导数的几何意义 解析:∵ln(1)y ax x =-+∴11y a x '=-+ 由切线方程为2y x =,可知21a =-,故a =3.5.已知点A(1,3),B(4,﹣1),则与向量AB 同方向的单位向量的坐标是 .答案:(35,45-) 考点:单位向量的坐标表示解析:∵点A(1,3),B(4,﹣1), ∴AB =(3,﹣4),AB 5=, 则AB AB=15(3,﹣4)=(35,45-). 6.已知()f x 是定义在R 上的奇函数,且当x <0时,()axf x e =-.若(ln 3)9f =,则a = . 答案:﹣2考点:奇函数的性质解析:∵()f x 是定义在R 上的奇函数,∴1ln 311(ln 3)(ln )()()933a af f e =-=--==解得a =﹣2. 7.已知关于x 的不等式101ax x -<+的解集是(-∞,﹣1)(12-,+∞),则实数a 的值为.答案:﹣2考点:分式不等式 解析:由题意知a <0,且112a =-,故a =﹣2. 8.已知a ,b 为单位向量,且0a b ⋅=,若52c a b =+,则cos<a ,c >= .答案:3考点:利用数量积求向量夹角 解析:∵52c a b =+,0a b ⋅=,∴22545493c a a b b =+⋅+==,2525a c a a b ⋅=+⋅=, ∴cos<a ,c >=5a c a c⋅=. 9.已知函数()Asin()f x x ωϕ=+(A >0,ω>0,ϕ<π)是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标变为原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()3g π=,则3()8f π= .考点:三角函数的图像与性质解析:∵函数()Asin()f x x ωϕ=+(A >0,ω>0,ϕ<π)是奇函数, ∴ϕ=0,又∵()f x 的最小正周期为π, ∴ω=2,即()Asin 2f x x =将()y f x =的图象上所有点的横坐标变为原来的2倍,得()g x 则()Asin g x x =∵()3g π=,∴Asin3π=A =2,故()2sin 2f x x =,∴33()2sin(2)88f ππ=⨯=. 10.函数()y f x =定义域为R ,(1)f x +为偶函数,且对121x x ∀<≤,满足2121()()f x f x x x --<0,若(2)f =1,则不等式2(log )1f x <的解集为 . 答案:(1,4)考点:函数的奇偶性与单调性的结合 解析:∵(1)f x +为偶函数 ∴()y f x =的对称轴为x =1 ∵对121x x ∀<≤,满足2121()()f x f x x x --<0,∴()f x 在(-∞,1)上递减,又()f x 对称轴为x =1,则()f x 在(1,+∞)上递增, ∴2(log )1f x <,(2)f =1,转化为0<2log x <2,解得1<x <4, 故原不等式的解集为(1,4).11.已知正实数x ,y 满足21xy x y --=,则2x y +的最小值为 .答案:264+考点:基本不等式解析:∵21xy x y--=∴(2)(1)3x y--=,且x>2,y>1,∴2(2)2(1)422(2)(1)4264x y x y x y+=-+-+≥--+=+当且仅当6262xy⎧=+⎪⎨+=⎪⎩时,取“=”.12.如图,在△ABC中,AB=3,AC=2,AD DC=,1AE EB2=,若BD AC5⋅=,则CE AB⋅=.答案:6考点:平面向量数量积解析:因为BD AC5⋅=,所以1(AC AB)AC52-⋅=,即21AC AB AC52-⋅=,把AC=2代入可得:AB AC3⋅=-,则22111CE AB(AB AC)AB AB AB AC3(3)6333⋅=-⋅=-⋅=⨯--=.13.已知A、B、C为△ABC的内角,若3tanA+tanB=0,则角C的取值范围为.答案:(0,6π]考点:诱导公式,两角和的正切公式,基本不等式,正切函数的图像与性质解析:因为3tanA+tanB=0,可知A、B中一个锐角,一个钝角,则角C必为锐角2tan A tan B2tan Atan C0tan A tan B13tan A1+==>-+,则tanA>0,A为锐角22tan A23tan C13tan A133tan Atan A==≤++3tan A3=取“=”,则0<C ≤6π. 14.若对任意的x ∈[1,e 2],都有3ln (1)a x a x ≤+恒成立,则实数a 的取值范围是 .答案:[﹣1,3e e-] 考点:函数与不等式(恒成立问题)解析:∵3ln (1)a x a x ≤+对任意的x ∈[1,e 2] 恒成立,∴3ln 1x xax-≤对任意的x ∈[1,e 2] 恒成立, 接下来研究3ln ()x x p x x -=,则23(1ln )()x p x x -'=,列表如下:又(1)1p =-,3()e p e e-=,2226()e p e e -=①当a >0时,max 3ln 3()1x x e aa x e --=≤,解得03ea e<≤-; ②当a =0时,0≤1成立; ③当a <0时,max 3ln ()1x xaa x-=-≤,解得10a -≤<. 综上所述,实数a 的取值范围是13e a e-≤≤-. 二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知函数2()22sin f x x x =+.(1)求()f x 的最小正周期及单调递增区间;(2)求()f x 在区间[0,2π]上的最大值.16.(本题满分14分)已知a、b、c分别为△ABC三个内角A、B、C的对边,且a cosB+12b=c.(1)求∠A;(2)若a=4,D是BC中点,AD=3,求△ABC的面积.17.(本题满分14分)某超市销售某种商品,据统计,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克,其中4≤x ≤l5)满足:当4≤x ≤9时,2(9)3by a x x =-+-(a ,b 为常数);当9≤x ≤15时,y =﹣5x +85,已知当销售价格为6元/千克时,每日售出该商品170千克.(1)求a ,b 的值,并确定y 关于x 的函数解析式;(2)若该商品的销售成本为3元/千克,试确定销售价格x 的值,使店铺每日销售该商品所获利润()f x 最大.18.(本题满分16分)已知点A(﹣1,0),B(0,﹣1),倾斜角为θ的直线OP 与单位圆在第一象限的部分交于点P ,PA 与y 轴交于点N ,PB 与x 轴交于点M .(1)设PN PA n =,PM PB m =,试用θ表示m 与n ;(2)设PO PM PN x y =+(x ,y ∈R),试用θ表示x +y ; (3)求x +y 的最小值.19.(本题满分16分)已知:定义在R 上的函数22()2x m f x x -=+的极大值为12.(1)求实数m 的值;(2)若关于x 的不等式22()(22)()20f x a f x a a --+->有且只有一个整数解,求实数a 的取值范围.20.(本题满分16分)已知函数()ln xf x x xe ax =-+(a ∈R).(1)若函数()f x 在[1,+∞)上单调递减,求实数a 的取值范围;(2)若a =l ,求()f x 的最大值.。
上海市第一中学2024-2025学年高三上学期期中考试数学试题2024.11一、填空题(本大题共12题,第1~6题每题4分,第7~12题每题5分.满分54分)1.已知集合,则______________2.设复数,则______________3.函数的最小正周期为______________4.角的始边与轴的正半轴重合,终边过点,则______________5.若实数x 、y 满足,则的最小值为______________6.已知,则在方向上的投影为______________7.方程的解集为______________8.若函数在区间[0,a ]上是严格减函数,则实数的最大值为______________9.法国数学家拉格朗日于1797年在其著作《解析几何函数论》中给出一个定理,如果函数满足条件:①在闭区间[a ,b ]上是连续不断的;②在区间(a ,b )上都有导数.则在区间上至少存在一个实数,使得,其中称为“拉格朗日”中值.函数在区间的“拉格朗日”中值______________10.如图,正六边形的边长为2,圆的圆心为正六边形的中心,半径为1,若点在正六边形的边上运动,动点A 、B 在圆上运动且关于圆心对称,则的取值范围是______________11.如图,互不相同的点和分别在角的两条边上,所有相互平行,且所有梯形的面积均相等.设,若,则数列的通项公式______________(0,4),[2,5]A B ==A B ⋂=(1i)2i z -=||z =π()tan 23f x x ⎛⎫=+⎪⎝⎭αx (3,4)-sin(π)α+=1xy =223x y +(2,3),(1,0)a b =-= a b|21||22|3x x ++-=cos sin y x x =-a ()y f x =(,)a b t ()()()()f b f a f t b a '-=-t sin y x =π0,2⎡⎤⎢⎥⎣⎦t =O M O O MA MB ⋅12n A A A 、、、、12n B B B 、、、、O n n A B 11n n n n A B B A ++n n OA a =121,2a a =={}n a n a =12.设函数是奇函数,当时,.若对任意的,不等式都成立,则实数的取值范围为______________二、选择题(本大题满分20分)本大题共有4题,每题5分.13.已知,则“”是“”的( )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要14.若函数在处的导数等于,则的值为( )A.0B.C. D.2a15.已知函数,实数,下列选项中正确的是( )A.若,函数关于直线对称B.若,函数在上是增函数C.若函数在上最大值为1,则D.若,则函数的最小正周期是16.已知,集合,.关于下列两个命题的判断,说法正确的是( )命题①:集合表示的平面图形是中心对称图形;命题②:集合表示的平面图形的面积不大于.( )()y f x =0x ≥()2221()232f x x a x a a =-+--x ∈R (1)()f x f x -≤a x ∈R 1x >21x >()y f x =0x x =a ()()0002limx f x x f x x∆→+∆-∆12a aπ(),()2sin 6y f x f x x ω⎛⎫==+⎪⎝⎭0ω>2ω=()y f x =5π12x =12ω=()y f x =[0,π]()y f x =[π,0]-43ω≤1ω=|()|y f x =2π()sin f x x =ππ,,{(,)2()()0,,}22D x y f x f y x y D ⎡⎤=-Γ=+=∈⎢⎥⎣⎦∣{(,)2()()0,,}x y f x f y x y D Ω=+≥∈∣ΓΩ25π12A.①真命题,②假命题B.①假命题,②真命题C.①真命题,②真命题D.①假命题,②假命题三、解答题(本大题满分76分)17.已知,且.(1)求向量与的夹角大小;(2)求.18.设常数.(1)若是奇函数,求实数的值;(2)设中,内角的对边分别为若,求的面积.19.已知递增的等差数列的首项,且成等比数列.(1)求数列的通项公式;(2)设数列满足为数列的前项和,求.20.为了助力企业发展,某地政府决定向当地企业发放补助款,其中对纳税额在3万元至6万元(包括3万元和6万元)的小微企业做统一方案.方案要求同时具备下列两个条件:①补助款(万元)随企业原纳税额(万元)的增加而增加;②补助款不低于原纳税额(万元)的,经测算政府决定采用函数模型(其中为参数)作为补助款发放方案.(1)已知某企业纳税额为4万元,计算该企业将获得的补助款;(2)判断使用参数是否满足条件,并说明理由;(3)求同时满足条件①、②的参数的取值范围.21.已知.(1)若,求曲线在点处的切线方程;(2)若函数存在两个不同的极值点,求证:;(3)若,数列满足.求证:当时,.||1,||2a b == ()(2)6a b a b +⋅-=-a b|2|a b +2,()cos cos ,k f x k x x x x ∈=+∈R R ()f x k 1.k ABC = A B C 、、a b c 、、,()1,f A a ==3b =ABCS {}n a 11a =124a a a 、、{}n a n a {}n b 2(1),n a n n n n b a T =+-{}n b n 2n T ()f x x x 50%()44x bf x x=-+b 12b =b ()ln 1f x a x ax =---0a =()y f x =(1,1)P ()y f x =12x x 、()()120f x f x +>1,()()a g x f x x ==+{}n a ()11(0,1),n n a a g a +∈=2n ≥212n n n a a a +++>2024学年第一学期高三年级数学期中考试参考答案一、填空题(本大题共12题,第题每题4分,第题每题5分.满分54分)1.3.4. 5.6. 7. 8.9. 10.[2,3]12.二、选择题(本大题满分20分)本大题共有4题,每题5分.13.A14.D15.C16.A三、解答题(本大题满分76分)17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.解(1);(218.(本题满分14分)第(1)小题6分,第(2)小题8分.解(1);(2).19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.解(1)由题可知,且,即,可得(2).20.(本题满分16分)本题共有3小题,第(1)题4分,第(2)题4分,第(3)题8分.解(1)(2)因为当时,,所以当时不满足条件②.(3)由条件①可知,在[3,6]上单调递增,在恒成立,在恒成立,所以1~67~12[2,4)π245(2,0)1,12⎡⎤-⎢⎥⎣⎦3π42arccos π⎡⎢⎣2π30k =S =10,1d a >=2142a a a ⋅=()()21113a a d a d ⋅+=+2*111,1,(1),n a d d a d a a n d n n N ===∴=+-⋅=∈()12222(1),222[1234(21)2]nnnn n b n T n n =+-=++++-+-+---+ ()2212122212n n n n +-=+=+--(4)54bf =-12b =33(3)42f =<12b =()44x bf x x=-+22214()044b x b f x x x '+⇒=+=≥[3,6]x ∈24x b ⇒≥-[3,6]x ∈94b ≥-由条件②可知,,即不等式在[3,6]上恒成立,等价于,当时,取最小值,所以综上,参数的取值范围是.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)解(1)当时,所以曲线在点处的切线方程为…………………………………………4分(2)由,令,则原方程可化为:①,则是方程①的两个不同的根所以,解得………………………………………………………3分所以因为,所以,所以 (6)分(3)由题意,,所以当时,,所以函数在区间上严格减,当时,,所以函数在区间上严格增,………………3分因为,所以,以此类推,当时,,………………………………………………4分()2x f x ≥44x bx+≤22114(8)1644b x x x ≤-+=--+3x =21(8)164y x =--+394394b ≤b 939,44⎡⎤-⎢⎥⎣⎦0a =()(1)1f x f ''==()y f x =(1,1)P y x =()0f x '=0aa x--=t=0t >20at t a -+=12t t ==214010a a⎧∆=->⎪⎨>⎪⎩102a <<()()()()1212122ln ln 2f x f x a x x a x x +=+-+-+-()()()222212121212ln 222t t a t t a t t a a=+--+-=+-102a <<12220a a+->->()()120f x f x +>()ln 1g x x =--()g x '=(0,1)x ∈()0g x '<()y g x =(0,1)(1,)x ∈+∞()0g x '>()y g x =(1,)+∞101a <<()()2132(1)1,(1)1a g a g a g a g =>==>=2n ≥()1(1)1n n a g a g +=>=又,所以函数在区间上严格减,当时,,所以,.....................................7分所以,即,故. (8)分2131124()2102f x x x'⎫---⎪⎝⎭=⨯--=<()y f x =(0,)+∞2n ≥()()(1)0n n n f a g a a f =-<=1n n a a +<()()1n n f a f a +>211n n n n a a a a +++->-212n n n a a a +++>。
天津市部分区2024~2025学年度第一学期期中练习高三数学(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,练习用时120分钟。
使用答题卡的地区,将答案写在答题卡上:不使用答题卡的地区,将答案写在练习卷上。
第Ⅰ卷(共45分)注意事项:本卷共9小题,每小题5分,共45分。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}0,1,2,3,4,5U =,集合{}0,3M =,{}3,4N =,则()U M N = ð()A .{}0,2,3,5B .{}0,1,3,4C .{}0,1,2,3,5D .{}0,2,3,4,52.已知()1,2a =- ,()1,1b = ,则a b -=()A B .1C .D .53.若x ,y ∈R ,则“22x y =是“33xy=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知等差数列{}n a 的前n 项和为n S ,若918S =,则28a a +=()A .4B .3C .2D .15.函数()f x 的部分图象如下图所示,则()f x 的解析式可能为()A .()()e e sin x xf x x -=-B .()()e e cos x xf x x -=-C .()()e e sin xx f x x--=D .()()e e cos xx f x x--=6.已知cos cos sin ααα=+,则tan 4πα⎛⎫-= ⎪⎝⎭()A .1-B .12-C .1D .1-7.已知0.13a =,b =,3log 1.3c =,则a ,b ,c 的大小关系为()A .a b c<<B .c b a<<C .c a b<<D .a c b<<8.已知函数()()2ln 1f x x a x =+-有极值点,则实数a 的取值范围为()A .(],0-∞B .(),0-∞C .10,2⎛⎫ ⎪⎝⎭D .1,2⎛⎤-∞ ⎥⎝⎦9.已知函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭在区间,012π⎛⎫- ⎪⎝⎭上单调递增,且在区间()0,π上有且仅有2个零点,则ω的取值范围为()A .47,33⎛⎫⎪⎝⎭B .47,33⎛⎤⎥⎝⎦C .4,23⎛⎫⎪⎝⎭D .4,23⎛⎤⎥⎝⎦第Ⅱ卷注意事项:本卷共11小题,共105分。
吴起高级中学2018—2019学年第一学期中期考试高三文数试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:(共12小题,每小题5分,共计60分)1.已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =()A. B. {12}, C. {0123},,, D. {10123}-,,,, 2.“(2x -1)x =0”是“x =0”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.复数1+2i 2-i=()A .iB .1+iC .-iD .1-i 4.下列函数中,定义域是R 且为增函数的是()A .y =e -xB .y =x3C .y =ln xD .y =|x |5.0sin 840 的值为 ( )A.0B.1C.12 D.6.函数y =x sin x 在[-π,π]上的图象是()7.如果log 12x < log 12y < 0,那么()A .y < x < 1B .x < y < 1C .1< x < yD .1< y < x8.设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)9.已知cos α=-35,α是第三象限角,则cos ⎝ ⎛⎭⎪⎫π4+α为()A .210B .-210C .7210D .-721010.钝角三角形ABC 的面积是12,AB=1,BC=,则AC=( )A. 5B.C. 2D. 111.最小正周期为π且图象关于直线x =π3对称的函数是()A .y =2sin ⎝ ⎛⎭⎪⎫2x +π3B .y =2sin ⎝ ⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π312.设函数f ’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是()A.()()1,01, -∞-B.()()+∞-,10,1C.()()0,11,--∞-D.()()+∞,11,0第Ⅱ卷(非选择题共90分)二、填空题:(共4小题,每小题5分,共计20分)13.函数y =ln xex的导函数为________________.14.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于________.15.已知函数f (x )=⎩⎪⎨⎪⎧log2x ,x>0,3x +1,x ≤0,则))41((f f 的值是________.16. 已知向量与的夹角为60°,且=(-2,-6),||=10, 则b a ⋅=________.三、解答题:(共6大题,共计70分)17.(10分)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .18. (12分)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.19.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cosB .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.20.(12分)已知=(sin x ,-cos x ),=(cos x, 3cos x ), 函数f (x )=.(1)求f (x )的最小正周期,并求其图象对称中心的坐标; (2)当0≤x ≤π2时,求函数f (x )的值域.21. (12分)已知函数f (x )=ln x -bx +c ,f (x )在点(1,f (1))处的切线方程为x +y +4=0.(1)求f (x )的解析式; (2)求f (x )的单调区间及最值.22.(12分)已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示,请根据图象:(1)写出函数f (x )(x ∈R)的增区间; (2)写出函数f (x )(x ∈R)的解析式;(3)若函数g (x )=f (x )-2ax +2(x ∈[1,2]),求函数g (x )的最小值.吴起高级中学2018—2019学年第一学期中期考试 高三文数答案1.【答案】C 【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以AB {0,1,2,3}=,故选C.2.解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x-1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件. 3.答案 选A. 4.答案:B 5.选D6.解析:选A 容易判断函数y =x sin x 为偶函数,排除D.当0<x <π2时,y =x sinx >0,当x =π时,y =0,排除B 、C ,故选A.7.解析:选Dlog 12x <log 12y <log 121,∴x >y >1.8.解析:选B 函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围.作图如下:可知f (x )的零点所在的区间为(1,2).故选B. 9.解析:选A ∵cos α=-35,α是第三象限的角,∴sin α=-1-cos2α=-1-⎝ ⎛⎭⎪⎫-352=-45,∴cos ⎝ ⎛⎭⎪⎫π4+α=cos π4cos α-sin π4sin α=22×⎝ ⎛⎭⎪⎫-35-22×⎝ ⎛⎭⎪⎫-45=210.10. 【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
怡海中学2024-2025学年度第一学期高三年级期中练习数学试卷一、选择题共10小题,每小题4分,共40分.在每小题中选出符合题目要求的一项.1. 已知集合{}{}|10,|11A x x B x x =-<<=-£<,则A B U ( )A. {}|10x x -£<B. {}|11x x -£<C. {}|10x x -<<D. {}|11x x -<<【答案】B 【解析】【分析】由并集的定义求解.【详解】集合{}{}|10,|11A x x B x x =-<<=-£<,则{}|11A B x x È=-£<。
故选:B.2. 若复数z 满足1i i z +=,则z =( )A. 1i - B. 1i -- C. 1i + D. 1i-+【答案】A 【解析】【分析】利用复数的四则运算求z ,根据共轭复数的定义求z 即可.【详解】由题设i 1i(i 1)i 1iz -==--=+,则z =1i -.故选:A3. 下列函数中,是偶函数且在()0,¥+上单调递增的是( )A. ()2f x x =- B. ()3f x x= C. ()cos f x x = D. ()2log f x x=【答案】D 【解析】【分析】根据相关幂函数单调性判断A 、B ;由余弦函数的性质判断C ;利用奇偶性定义及对数复合函数单调性判断D.【详解】A :()2f x x =-为偶函数,且在(0,+∞)上递减,不符合;B :()3f x x =为奇函数,不符合;C :()cos f x x =在(0,+∞)上不单调,不符合;D :()()22log log f x x x f x -=-==且定义域为{|0}x x ¹,即()2log f x x =为偶函数,由||t x =在(0,+∞)上递增,2log y t =在定义域上递增,故()f x 在(0,+∞)上递增,符合.故选:D4. 在四棱锥P ABCD -中,“//BC AD ”是“//BC 平面PAD ”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】【分析】利用线面平行的判定定理和性质定理,结合充分、必要条件的定义进行判定.【详解】由//BC AD ,BC Ë平面PAD ,AD Ì平面PAD ,得//BC 平面PAD .由//BC 平面PAD ,ÌBC 平面ABCD ,平面ABCD I 平面PAD AD =,得//BC AD .故“//BC AD ”是“//BC 平面PAD ”充要条件.故选:C.5. 在ABC V 中,a ,b ,c 分别为内角A ,B ,C 的对边,且cos cos 0a c B b C -+=,则C =( )A. 0° B. 60°C. 90°D. 120°【答案】C 【解析】【分析】利用正弦定理的边角变换与三角函数的和差公式得到sin cos 0B C =,进而得到cos 0C =,从而得解.【详解】因为cos cos 0a c B b C -+=,所以由正弦定理得sin sin cos sin cos 0A C B B C -+=,则sin cos sin cos sin sin cos sin cos C B B C A C B B C -==+,的所以sin cos 0B C =,因为0180B °<<°,所以sin 0B ¹,则cos 0C =,所以90C =°.故选:C.6. 已知角α的终边不在坐标轴上,则下列一定成等比数列的是( )A sin ,cos ,tan a a aB. sin ,tan ,cos a a aC. 22sin ,cos ,tan a a aD. 22cos ,sin ,tan a a a【答案】D 【解析】【分析】对于ABC ,举反例排除即可;对于D ,利用三角函数的基本关系式即可判断.【详解】角a 的终边不在坐标轴上,有cos 0a ¹,sin 0a ¹,tan 0a ¹,sin tan cos aa a=,对于A ,令π4a =,则sin tan 1a a a ===,21cos ,sin tan 12a a a ===2cos sin tan a a a ¹,A 不是;对于B ,令π4a =,则21tan 1,cos sin 2a a a ==,即2tan cos sin a a a ¹,B 不是;对于C ,令π6a =,则2222111sin (),cos tan 243a a a =====,于是2223111cos,sin tan 44312a a a ==´=,即222cos sin tan a a a ¹,C 不是;对于D ,sin cos tan a a a =,则222sin cos tan a a a =,则22cos ,sin ,tan a a a 一定成等比数列,D 是.故选:D7. 已知函数()1x f x a -=过定点M ,点M 在直线1mx ny +=上且,0m n >,则12m n+的最小值为( )A. 3+B. 4+C. 3D. 4+【答案】A 【解析】【分析】由指数函数性质确定定点坐标,结合题设有1m n +=,应用基本不等式“1”的代换求目标式最小值.【详解】由题设,()1x f x a-=恒过点(1,1)M ,则1m n +=,.所以12122()333n m m n m n m n m n +=++=++³+=+,当且仅当1,2m n =-=所以目标式最小值为3+故选:A8. 霉菌有着很强的繁殖能力,主要依靠孢子进行繁殖.已知某种霉菌的数量y 与其繁殖时间t (天)满足关系式:t y ma =.若繁殖5天后,这种霉菌的数量为20,10天后数量为40,则要使数量达到200大约需要( )(lg 20.3»,结果四舍五入取整)A. 20天 B. 21天C. 22天D. 23天【答案】C 【解析】【分析】利用待定系数求出参数,再求解自变量t 的值,利用对数运算即可求得结果.【详解】由题可得:5102040ma ma ì=í=î,两式相除可得52a =,即152a =,设繁殖t 天后数量达到200,则200t ma =,又520ma =,则520020tmama=,∴510t a a =,则510t a -=,即515210t -æö=ç÷èø,∴2log 1015t=-,∴2lg1015log 105555522lg 20.3t =+=´+=´+»,则要使数量达到200大约需要22天.故选:C.9. 北京市餐饮品牌《南城香》每个门店,当客人点完餐之后,服务人员给10分钟计时沙漏,保证在10分钟之内上完餐.沙漏是古代的一种计时仪器,根据沙子从一个容器漏到另一容器的时间来计时.如图,沙漏可视为上下两个相同的圆锥构成的组合体,下方的容器中装有沙子,沙子堆积成一个圆台,若该沙漏高为8,沙子体积占该沙漏容积的37128,则沙子堆积成的圆台的高为( )A. 1B. 32C. 2D. 43【答案】A 【解析】【分析】若圆锥体积为V ,沙子体积为1V ,根据题设可得12764V V V -=,结合圆台和圆锥中的等比性质求圆台的高.【详解】由题意,若圆锥体积为V ,沙子体积为1V ,则113737212864V V V V =Þ=,故12764V V V -=,设沙子堆积成的圆台的高为h ,沙漏下圆锥的高为4,结合圆台、圆锥的性质,有3427()464h -=,所以43144h h -=Þ=.故选:A10. 已知函数()332x x x a f x x ax aì-+³=í-<î,有最大值,并将其记为()F a ,则说法正确的是( )A. a 的最小值为―2,()F a 的最大值为2B. a()F a C. a()F a 的最大值为2 D. a 的最小值为―2,()F a 【答案】B 【解析】【分析】先求出()33f x x x =-+的增减情况,再结合题意可得到21a -££,从而可求解.【详解】由题意知,当x a ³时,()33f x x x =-+,求导得()()()233311f x x x x =-+=+-¢,当(),1x Î-¥-,()0f x ¢<,当()1,1x Î-,()0f x ¢>,当()1,x Î+¥,()0f x ¢<,所以f (x )在区间(),1-¥-,()1,+¥单调递减,在()1,1-单调递增,由题意知当x a <时,()2f x x a =-为增函数,因为函数f (x )有最大值,则可得当x =1时,()1132f =-+=,此时,令()332f x x x =-+=,解得x =1,或2x =-,令332a a a a -+=-,解得a =a =当20a -££时,此时f (x )的最大值为()2F a =,当2a £-时,此时f (x )的最大值为()()33F a f a a a ==-+,当0a <<时,此时f (x )的最大值为()2F a =,当a =f (x )的最大值为()F a =,当a >f (x )无最大值,综上:a()F a 故B 正确.故选:B.二、填空题共5小题,每小题5分,共25分.11. 已知向量,a b rr 满足()1,1,2,1a b a b ==-×=r r r r ,则+=r r a b __________.【答案】【解析】【分析】根据平面向量数量积运算法则求出答案.【详解】因为()1,2b =-r,所以b ==r ,故a b +====rr r.故答案为:12. 二项式1nx x æö-ç÷èø展开式的各二项式系数之和为32,n =______;该展开式中3x 项的系数为_______.【答案】①. 5②. -5【分析】根据二项式系数和为2n 求出n ,再写出展开式的通项,利用通项计算展开式中3x 项的系数.【详解】二项式1nx x æö-ç÷èø展开式的各二项式系数之和为32,则有232n =,得5n =;二项式51x x æö-ç÷èø展开式的通项为()5521551C 1C rr r r r rr T x x x --+æö=-=-ç÷èø,05r ££且N r Î,令523-=r ,解得1r =,所以展开式中3x 项的系数为()151C 5-=-.故答案为:5;-5.13. 在ABC V 中,5,3,2a c B C ===,则ABC V 的面积为______.【答案】【解析】【分析】应用正弦定理、倍角正弦公式得6cos b C =,再由余弦定理及倍角余弦公式求得cos C =,进而得b =,且sin C =,最后应用三角形面积公式求面积.【详解】由sin sin b cB C =,结合题设有36cos sin 22sin cos sin b b b C C C C C==Þ=,又2222cos 3430cos 2b a c ac B C =+-=-,即236cos C 3430cos 2C =-,所以222236cos 6460cos cos 3C C C =-Þ=,在三角形中2B C =,必有C 为锐角,所以cos C =,故b =,且sin C =,故△ABC 的面积为11sin 522ab C =´´=故答案为:14. 设公比不为1的等比数列{}n a 满足1238a a a =-,且324,,a a a 成等差数列,则公比q =___________,数列{}n a 的前4项的和为___________.【答案】 ①. 2-②. 5-【解析】【分析】由等比数列的性质及等差中项,并结合等比数列通项公式列方程求基本量,进而写出前4项即可【详解】由题设31232282a a a a a ==-Þ=-,且34224a a a +==-,所以222242(2)(1)0a q q q q q a q +=-Þ+-=+-=,又1q ¹,故2q =-,所以12341,2,4,8a a a a ==-==-,则前4项的和为5-.故答案为:2-,5-15. 已知函数()πsin (0,0π)2f x x l j l j æö=+><<ç÷èø的部分图象如图1所示,A B 、分别为图象的最高点和最低点,过A 作x 轴的垂线,交x 轴于A ¢,点C 为该部分图象与x 轴的交点.将绘有该图象的纸片沿x 轴折成直二面角,如图2所示,此时AB =,则下列结论正确的有_____________①l =②5φπ6=③图2中,5AB AC ×=uuu r uuu r ④图2中,S 是A BC ¢V 及其内部的点构成的集合.设集合{}2T Q S AQ =Σ,则T 表示的区域的面积大于π4【答案】①②③【解析】【分析】在图2中,以点O 为坐标原点,OC uuu r 、A A ¢uuur的方向分别为y ¢、z ¢轴的正方向建立空间直角坐标系O x y z ¢¢¢-,根据已知条件求出l 的值,即可判断①;结合j 的取值范围求出j 的值,可判断②;利用空间向量数量积的坐标运算可判断③;求出cos BA C ¢Ð,结合扇形的面积公式可判断④.【详解】函数()f x 的最小正周期为2π4π2T ==,在图2中,以点O 为坐标原点,OC uuu r 、A A ¢uuur的方向分别为y ¢、z ¢轴的正方向建立如图所示的空间直角坐标系O x y z ¢¢¢-,设点()0,,0A t ¢,则点()0,,A t l ,(),2,0B t l +,AB ===,因为0l >,解得l =,故①正确;所以π()2x f x j æö=+ç÷èø,则(0)f j ==,可得1sin 2j =,又因为函数()f x 在0x =附近单调递减,且0j p <<,所以56pj =,故②正确;所以π5π()26x f x æö=+ç÷èø,由π5π()26t f t æö=+=ç÷èøπ5πsin 126t æö+=ç÷èø,又因为点A 是函数()f x 的图象在y 轴左侧距离y 轴最近的最高点,则π5ππ262t +=,可得23t =-,因为点C 是函数()f x 在y 轴右侧的第一个对称中心,所以,π5ππ26C x +=,可得13C x =,翻折后,则有20,3A æ-çè、20,,03A æ¢ö-ç÷èø,4,03B ö÷ø、10,,03C æöç÷èø、所以(0,1,AC =uuur ,2,AB =uuu r,所以在图2中,2AB AC ×uuu r uuu r,故③正确;在图2中,设点(),,0Q x y 2£,可得22213x yæö++£ç÷èø,(0,1,0)A C ¢=uuuu r ,A B ¢=uuu u r ,cos ||||A C A B BA CA C AB ¢¢×¢Ð===>¢¢×uuuu r uuu u ruuuur uuu u r ,易知BA C ¢Ð为锐角,则π04BA C ¢<Ð<,所以,区域T 是坐标平面x Oy ¢¢内以点A ¢为圆心,半径为||1A C ¢=,且圆心角为BA C ¢Ð的扇形及其内部,故区域T 的面积21ππ1248T S <´´=,故④错误.故答案为:①②③.【点睛】关键点点睛:本题考查翻折问题,解题的关键在于建立空间直角坐标系,通过空间向量法来求解相应问题.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在△ABC 中,角C 为锐角且满足2cos22sin C C =.(1)求C ;(2)若6b =,且ABC V的周长为6,求ABC V 的面积.【答案】(1)π6C = (2)【解析】【分析】(1)由倍角公式和同角三角函数的商数关系,化简2cos22sin C C =得21tan 3C =,角C 为锐角,有tan C =,可求角C ;(2)6b =,得+=a c,余弦定理得223626c a a =+-´´,求出a ,由公式1sin 2ABC S ab C =△求ABC V 的面积.【小问1详解】由2cos22sin C C =可得222cos sin 2sin C C C -=,则22cos 3sin C C =,得21tan 3C =,因为角C 为锐角,有tan C =,可得π6C =.小问2详解】因为周长6a b c ++=+ ,6b =,所以+=a c ①,又因为π6C =,所以22222cos 3626c a b ab C a a =+-=+-´´ ②,【。
2021-2022学年上学期期中考试高三数学(文科)试题考试时间:120分钟 分数:150分本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一.选择题(本大题共12小题,每小题5分,共60分)1. 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则U C A =( )A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}2. 131ii +- = ( )A. 1+2iB. -1+2iC. 1-2iD. -1-2i3. 已知实数x , y 满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z=y-x 的最大值为 ( )A. 1B. 0C. -1D. -2 4. “p ⌝为假命题”是“p q ∧为真命题”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为( ) A. 32π B. 16π C. 12π D. 8π(5题图) (6题图)是否开始k=1,s=1k<5?输出s结束 k=k+1s=2s-k6. 执行如图所示的程序框图,输出的s 值为 ( ) A. -10 B. -3 C. 4 D. 57. 已知x 与y 之间的几组数据如表:x 0 1 2 3 y267则y 与x 的线性回归方程y b x a ∧∧∧=+必过点 ( )A. (1,2)B. (2,6)C. (315,24) D. (3,7)8. 下列函数中,在定义域内与函数3y x =的单调性与奇偶性都相同的是 ( )A. sin y x =B. 3y x x =-C. 2x y =D.2lg(1)y x x =++9. 对于使()f x N ≥成立的所有常数N 中,我们把N 的最大值叫作()f x 的下确界.若,a b ∈(0, +∞),且2a b +=,则133a b +的下确界为 ( ) A. 163 B. 83 C. 43 D. 2310.如图所示的数阵中,每行、每列的三个数均成等差数列.如果数阵中111213212223313233a a a a a a aa a ⎛⎫ ⎪ ⎪ ⎪⎝⎭所有数的和等于36,那么22a = ( )A. 8B. 4C. 2D. 111.三棱锥P-ABC 的侧棱PA 、PB 、PC 两两垂直,侧面面积分别是6,4,3,则三棱锥的体积是 ( )A. 4B. 6C. 8D.1012.函数()f x 的定义域为R ,f(0)=2,对x R ∀∈,有()()1f x f x '+>,则不等式()1x xe f x e >+ 的解集为 ( ) A. {}|0x x > B. {}|0x x < C. {}|11x x x <->或 D. {}|10x x x <->>或1第Ⅱ卷(非选择题)二.填空题(本大题共4小题,每小题5分,共计20分)13.已知-向量a 与b 的夹角为60°,且a =(-2,-6),10b =,则ab =14.已知数列{}n a 是等比数列,且1344,8a a a ==,则5a 的值为15.抛物线2(0)y ax a =<的焦点坐标为 16.将边长为2的等边∆ABC 沿x 轴正方向滚动,某时刻A 与坐标原点重合(如图),设顶点(,)A x y 的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:①f(x)的值域为[0,2]; ②f(x)是周期函数且周期为6 ; ③()(4)(2015)f f f π<<;④滚动后,当顶点A 第一次落在x 轴上时,f(x)的图象与x 轴所围成的面积为833π+.其中正确命题的序号为三.解答题(本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题12分)在∆ABC 中,内角A,B,C 的对边分别为,,a b c .已知3cos 3cos c b C c B =+(I )求sin sin C A 的值 (II)若1cos ,233B b =-=,求∆ABC 的面积。
河北省玉田县第一中学2024-2025学年度第一学期高三期中考试数学试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:集合与常用逻辑用语、等式与不等式、函数与导数、三角函数与解三角形、平面向量、复数.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合{}{}N 10,42,N A x x B x x n n =∈≤==-∈,则A B = ( )A. ∅B. {}2,6,10C. {}2,2,6,10- D. {}0,2,4,6,8,10【答案】B【解析】【分析】列举法写出集合A ,其中2,6,10满足42,N n n -∈,利用交集概念求出答案.【详解】{}0,1,2,3,4,5,6,7,8,9,10A =,其中2,6,10满足42,N n n -∈,故{}2,6,10A B = .故选:B 2. 已知向量()0,1a =- ,()2,1b =r ,若()a b a λ-⊥ ,则λ=( )A. 1- B. 1 C. 13 D. 13-【答案】A【解析】【分析】先表示出a b λ- 的坐标,然后根据垂直对应的坐标关系求得结果.【详解】因为()()()0,12,12,1a b λλλλ-=--=--- ,且()a b a λ-⊥ ,所以()()20110λλ-⨯+--⨯-=,解得1λ=-,故选:A.3. 若()f x 与()g x 均为定义在R 上的奇函数,则函数()()()h x f x g x =的部分图象可能为( )A. B. C. D.【答案】B【解析】【分析】先分析ℎ(x )的奇偶性,然后直接判断即可.【详解】因为()f x 与()g x 均为定义在R 上的奇函数,所以()()()()()(),,000f x f x g x g x f g -=--=-==,又因为()()()h x f x g x =的定义域为R 且关于原点对称,且()()()()()()()()h x f x g x f x g x f x g x h x ⎡⎤⎡⎤-=--=--==⎣⎦⎣⎦,所以ℎ(x )为偶函数,故图象关于y 轴对称且()()()0000h f g ==,符合要求的只有选项B ,故选:B.4. 当0x >时,函数2221log 2xf x a x x -⎛⎫⎛⎫-=++ ⎪ ⎪⎝⎭⎝⎭,且(1)6f >,则a 的取值范围是()A. (2,2)- B. (,2)(2,)-∞-+∞ C. (1,1)- D. (,1)(1,)-∞-+∞ 【答案】D【解析】【分析】利用()22222112log 2522f f a a -⎛⎫⎛⎫=-=++ ⎪= ⎪⎝⎭⎭+⎝,结合题中条件即可求解.【详解】令21x x -=,解得2x =,或1x =-,又0x >,则2x =,故()222262112g 5l 2o 22f f a a -⎛⎫⎛⎫=-=++ ⎪ ⎪⎝⎭⎝=+>⎭,解得1a <-,或1a >,即a 的取值范围是(,1)(1,)-∞-+∞ .故选:D.5. 已知cos()2sin(),tan tan m αβαβαβ+=-=,则tan tan αβ-=( )A. 12m - B. 13m - C. 12m- D. 13m-【答案】C【解析】【分析】利用两角和与差的正弦公式,余弦公式化简,再利用商数关系弦化切,即可求解.【详解】因为cos()2sin()αβαβ+=-,所以cos cos sin sin 2sin cos 2cos sin αβαβαβαβ-=-,同时除以cos cos αβ,得1tan tan 2tan 2tan αβαβ-=-,即1tan tan 1tan tan 22m αβαβ---==,故选:C.6. 设1z 的实部与虚部相等,且实部不为0,2z 的虚部是实部的2倍,且2z 在复平面内对应的点位于第三象限,则“1z 在复平面内对应的点位于第一象限”是“12z z 在复平面内对应的点位于第二象限”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据“1z 在复平面内对应的点位于第一象限”与“12z z 在复平面内对应的点位于第二象限”互相推出的情况判断属于何种条件.【详解】根据题意,不妨设()1i R,0z a a a a =+∈≠,()22i 0z b b b =+<,若1z 在复平面内对应的点位于第一象限,则0a >,则()()()()121i 12i i 1i 31i 2i 12i 12i 12i 55z a a a a a z b b b b b +-++⎛⎫==⋅=⋅=⋅- ⎪+++-⎝⎭,所以12z z 的实部305a b <,虚部05a b->,故对应点在第二象限,所以“1z 在复平面内对应的点位于第一象限”可以推出“12z z 在复平面内对应的点位于第二象限”;若12z z 在复平面内对应的点位于第二象限,由上可知1231i 55z a z b ⎛⎫=⋅- ⎪⎝⎭,所以3a 5b <0−a 5b >0且0b <,可得a >0,所以1z 在复平面内对应的点位于第一象限,所以“12z z 在复平面内对应的点位于第二象限”可以推出“1z 在复平面内对应的点位于第一象限”;由上可知,属于充要条件,故选:C.7. 函数π3πsin 3cos 4,[,22y x x x =-∈-的所有零点的和为( )A. 2πB. 3πC. 4πD. 6π【答案】C【解析】【分析】利用函数的零点与两函数的交点横坐标的关系,借助于函数图象的对称性,即可求得.【详解】由sin 3cos 40y x x =-=可得sin 3cos 4x x =,则函数π3πsin 3cos 4,[,22y x x x =-∈-的零点即函数sin y x =与函数3cos 4y x =在π3π[,]22-上的交点的横坐标.对于函数3cos 4y x =,其最小正周期为π2,当ππ[,]24x ∈--时,函数单调递减,函数值从3减小到-3,当π[,0]4x ∈-时,函数单调递增,函数值从-3增大到3.类似可得函数3cos 4y x =在区间ππ3[0,],[,π],[π,π]222上的图象变化情况.如图分别作出sin y x =和3cos 4y x =在π3π[,]22-上的图象如下.由图可知,两函数在π3π[,]22-上的图象关于直线π2x =对称,故两者的交点,,,A B C D 与,,,H G F E 也关于直线π2x =对称,故A B C D E F G Hx x x x x x x x +++++++()()()()A H B G C F D E x x x x x x x x =+++++++ππππ22224π.2222=⨯+⨯+⨯+⨯=即函数π3πsin 3cos 4,,22y x x x ⎡⎤=-∈-⎢⎥⎣⎦的所有零点的和为4π.故选:C.8. 已知12,,,log m n n m n a n b m c m <<<===,则,,a b c 的大小关系是( )A. a b c>> B. b a c >>C. c a b>> D. c b a>>【答案】A【解析】【分析】利用幂函数、指数函数、对数函数的性质计算大小即可.【详解】因为12m n <<<,所以,,log x x n y n y m y x ===在(0,+∞)上均单调递增,所以111,1,log log 1m n n n a n n b m m c m n =>>=>>=<=,即,a c b c >>,对于,a b ,构造函数()()2ln 1ln x x f x f x x x-='=⇒,易知e 0x >>时,f ′(x )>0,即此时函数单调递增,则()()ln ln m n f m f n m n <⇒<,所以ln ln ln ln n m n m m n m n <⇒<,因为ln y x =在(0,+∞)上单调递增,所以n m m n <,综上a b c >>.故选:A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若复数1z ,2z 是方程28170x x -+=的两个根,则( )A. 12z z -为纯虚数B. 1217z z =C. 1z =D. 12z z =【答案】ABD【解析】【分析】解方程28170x x -+=得12,z z ,通过计算逐一验证选项即可.【详解】方程28170x x -+=,()2418740-⨯∆=-=-<,方程28170x x -+=的根为82i 2±,即方程28170x x -+=的根为4i +,4i -,不妨设14i z =+,24i z =-,则122i z z -=为纯虚数,故A 正确;()()2124i 4i 16i 17z z +-=-==,故B 正确;1z ==C 错误;24i z =+,则12z z =,故D 正确.故选:ABD.10. 如图,在ABC V 中,3AB AC ==,2BC =,点,D G 分别边,AC BC 上,点,E F 均在边AB 上,设DG x =,矩形DEFG 的面积为S ,且S 关于x 的函数为()S x ,则( )A. ABC V 的面积为B. ()1S =C. ()S x 先增后减D. ()S x【答案】ACD【解析】【分析】根据面积公式即可求解A ,根据相似即可得CH DG CM AB ⋅==,MH =,进而可得()233)2S x x x ⎫=-+<<⎪⎭,根据二次函数的性质即可求解BCD.【详解】取BC 中点N ,连接AN ,则AN BC ⊥,且AN ==所以ABC V的面积为122⨯⨯=A 正确.过C 作CH AB ⊥,垂足为H ,设CH 与DG 交于点M ,由等面积法可得12AB CH ⋅=,则CH =由CM DG CH AB =,得CH DG CM AB ⋅==,则MH CH CM =-=,所以())22333)2S x DG DE DG MH x x x x ⎫=⋅=⋅=-=-<<⎪⎭,则()1S =,则()S x 在30,2⎛⎫ ⎪⎝⎭上单调递增,在3,32⎡⎫⎪⎢⎣⎭上单调递减,所以()S x,B 错误,C ,D 均正确.故选:ACD11. 已知0x >,0y >,且不等式()()()2221140x x y y m m xy +++--≥恒成立,则( )A. m的最小值为2- B. m的最大值为2+C. m的最小值为2- D. m的最大值为2+【答案】AB 的.。
2021年秋期高中三年级期中质量评估数学试题(文)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上。
写在本试卷和草稿纸上无效。
4.考试结束,只交答题卡。
第I卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有A.7个B.8个C.15个D.16个2.设iz=4+3i,则z=A.-3-4iB.-3+4iC.3-4iD.3+4i3.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即F(1)=F(2)=1,F(n)=F(n-l)+F(n-2)(n≥3,n∈N*),此数列在现代物理“准晶体结构”、化学等领域都有着广泛的应用。
若此数列的各项除以2的余数构成一个新数列{a n},则数列{a n}的前2021项的和为A.2020B.1348C.1347D.6724.已知命题p:“∃x0∈R,0x e-x0-1≤0”,则¬p为A.∀x∈R,e x-x-1≥0B.∀x∈R,e x-x-1>0C.∃x0∈R,0x e-x0-1≥0D.∃x0∈R,0x e-x0-1>05.已知f(x)=14x2+sin(2+x),f'(x)为f(x)的导函数,则y=f'(x)的图象大致是6.设a=log32,b=log52,c=log23,则A.a>c>bB.b>c>aC.c>b>aD.c>a>b7.设变量x ,y 满足约束条件x 1x 2y 30x y 0≥⎧⎪-+≥⎨⎪-≥⎩,则目标函数z =2x -y 的最小值为A.-1B.0C.1D.38.若实数a ,b 满足a>0,b>0,则“a>b ”是“a +lna>b +lnb ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知x>1,y>0,且1211x y+=-,则x +2y -1的最小值为 A.9 B.10 C.11 D.2+26 10.已知OA 、OB 是两个夹角为120°的单位向量,如图示,点C 在以O 为圆心的AB 上运动。
2024~2025学年度第一学期期中教学质量检测高三数学试题(答案在最后)2024.11本试卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在“贴条形码区”.2.做选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再改涂其它答案标号.3.非选择题须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡中各题目指定的区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.否则,该答题无效.4.考生必须保持答题卡的整洁;书写要求字体工整,符号规范,笔迹清楚.一、选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{P x y ==,{Q y y ==,则()R P Q =ð()A.∅B.[)1,+∞C.(),0-∞ D.(],1-∞-2.若复数12i=-z (i 为虚数单位),则z =()A.21i 55- B.21i 55+ C.33i 55- D.33i 55+3.已知角α的顶点与原点重合,始边与x 轴正半轴重合,终边经过点()1,2--,则tan 2α=()A.34B.43C.34-D.43-4.已知函数()f x 的定义域为R ,满足()()()2024f x y f x f y +-+=⎡⎤⎣⎦,则下列说法正确的是()A.()f x 是偶函数B.()f x 是奇函数C.()2024f x +是奇函数D.()2024f x +是偶函数5.向量()1,2a = ,()1,1b =- ,则a 在b上的投影向量是()A.2-B.5-C.11,22⎛⎫-⎪⎝⎭D.12,55⎛⎫--⎪⎝⎭6.已知函数()21,11,11x x f x x x ⎧-≤⎪=⎨>⎪-⎩,则()()3f f =()A.8B.34-C.109-D.127.已知πcos 5a =,πsin 4b =,3log 2c =,则()A.b a c<< B.b c a<< C.c a b<< D.c b a<<8.如图,在ABC V中,AC =,AB =,90A ∠=︒,若PQ 为圆心为A 的单位圆的一条动直径,则BP CQ ⋅的最大值是()A.2B.4C.D.1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.命题“x ∀∈R ,210x x ++>”的否定形式是“x ∃∈R ,210x x ++≤”B.当()0,πx ∈时,4sin sin y x x=+的最小值为4C.tan 25tan 20tan 25tan 201︒+︒+︒︒=D.“ππ4k θ=±(k ∈Z )”是“π4k θ=(k ∈Z )”的必要不充分条件10.已知函数()cos f x x x =+,则()A.函数()f x 在π2,6π3⎡⎤⎢⎥⎣⎦上单调递减B.函数()f x 的图象关于点5π,06⎛⎫⎪⎝⎭对称C.函数()f x 的图象向左平移m (0m >)个单位长度后,所得的图象关于y 轴对称,则m 的最小值是π3D.若实数m 使得方程()f x m =在[]0,2π上恰好有三个实数解1x ,2x ,3x ,则1238π3x x x ++=11.设数列{}n a 前n 项和为n S ,满足()()214100n n a S -=-,*N n ∈且10a >,10n n a a -+≠(2n ≥),则下列选项正确的是()A.223n a n =-B.数列n S n ⎧⎫⎨⎬⎩⎭为等差数列C .当10n =时,n S 有最大值D.设12n n n n b a a a ++=,则当8n =或10n =时,数列{}n b 的前n 项和取最大值三、填空题:本题共3小题,每小题5分,共15分.12.已知a ,b 都是正数,且230a b ab +-=,则a b +的最小值为______.13.已知函数()21ln 22xf x x ax =-+在区间()2,+∞上没有零点,则实数a 的取值范围是______.14.已知函数e 1()e 1x x f x -=+,()(1)2g x f x =-+,则()g x 的对称中心为______;若12321()()()()n n a g g g g n n n n-=+++⋅⋅⋅+(*n ∈N ),则数列{}n a 的通项公式为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知在ABC V 中,角A ,B ,C ,所对的边分别为a ,b ,c,)2cos cos cos b B a C c A =+.(1)求角B ;(2)过点A 作AD BC ∥,连接CD ,使A ,B ,C ,D 四点组成四边形ABCD ,若AB =,2AC =,CD =,求AD 的长.16.已知数列{}n a 的前n 项和为n S ,22n n a S =+,(*n ∈N ).(1)求数列{}n a 的通项公式;(2)记2log n n c a =,数列n n c a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若关于n 的不等式()()221n n n T n λ+-≤+恒成立,求实数λ的取值范围.17.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩(1)请在网格纸中画出()f x 的简图,并写出函数的单调区间(无需证明);(2)定义函数()()2241,2012,022f x x x xg x x x ⎧--+-≤≤⎪=⎨-<≤⎪⎩在定义域内的0x ,若满足()00g x x =,则称0x 为函数()g x 的一阶不动点,简称不动点;若满足()()00g g x x =,则称0x 为函数()g x 的二阶不动点,简称稳定点.①求函数()g x 的不动点;②求函数()g x 的稳定点.18.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要24min.(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求t 为何值时高度差h 最大.(参考公式:sin sin 2cossin 22θϕθϕθϕ+--=,cos cos 2sin sin 22θϕϕθθϕ+--=)19.已知a ∈R ,函数()ln af x x x=+,()ln 2g x ax x =--.(1)当()f x 与()g x 都存在极小值,且极小值之和为0时,求实数的值;(2)若()()()12122f x f x x x ==≠,求证:12112x x a+>.2024~2025学年度第一学期期中教学质量检测高三数学试题2024.11本试卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在“贴条形码区”.2.做选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再改涂其它答案标号.3.非选择题须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡中各题目指定的区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.否则,该答题无效.4.考生必须保持答题卡的整洁;书写要求字体工整,符号规范,笔迹清楚.一、选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC 【10题答案】【答案】BCD 【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】13+【13题答案】【答案】[)2,-+∞【14题答案】【答案】①.(1,2)②.42n a n =-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)π6B =(2)1AD =或2.【16题答案】【答案】(1)2n n a =(2)3,2⎡⎫+∞⎪⎢⎣⎭.【17题答案】【答案】(1)作图见解析,单增区间为[]1,0-,()0,∞+,()f x 的单减区间为(],1-∞-(2)①23-;②32-,23-和1.【18题答案】【答案】(1)π5545cos12H t=-,[]0,24t∈.(2)π2π45cos123h t⎛⎫=-⎪⎝⎭,[]0,24t∈;8mint=或20mint=【19题答案】【答案】(1)1(2)证明见解析。
临沂市高三教学质量检测考试数学2024.11本试卷共4页,19题,全卷满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则( )A .B .C .D .2.已知非零实数a ,b 满足,则( )A .B .C .D .3.在平行四边形ABCD 中,点E 为线段CD 的中点,记,,则( )A .B .C .D .4.已知函数,则不等式的解集是( )A .B .C .D .5.已知,,则( )ABCD .16.“”是“不等式在上恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知函数()与函数的图象在区间内交点的坐标分别为{}26A x x x =-<{}3,2,1,1,2,3B =---A B = {}2,1,1,2,3--{}2,1,1,2--{}1,1,2,3-{}1,1,2-a b >11a b<22a b>33a b>22ac bc>AB m = AD n =AE = 12m n - 12m n- 12m n + 12m n+ ()341xf x x =--()0f x >()0,2()(),02,-∞+∞ ()1,0-()(),10,-∞-+∞ ()1sin 3αβ-=tan 2tan αβ=()sin αβ+=3a <220x ax -+≥()0,+∞sin 1y x ω=+0ω>1221x x y +=+()2π,2π-,,…,,则的值可能是( )A .2B .4C .5D .88已知数列的前n 项和为,,,,(),则( )A .341B .340C .61D .60二、选择题:本题共3小题,每小题6分,共18分。
菏泽市2024—2025学年度第一学期期中考试高三数学试题(答案在最后)本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}202,0M x x N x x x =∈<<=-≤Z ∣∣,则M N = ()A.{}0,1 B.{}1 C.{}1,1- D.∅2.已知函数()21f x +的定义域为[]1,2,则函数()1f x -的定义域为()A.[]1,2B.[]4,6 C.[]5,9 D.[]3,73.已知2025π1sin sin 22αα⎛⎫-+=⎪⎝⎭,则cos2sin cos ααα=+()A.12-B.12C.0D.14.“函数()32f x x ax =-在[]2,3-上单调递增”是“3a ≤”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分又不必要条件5.过曲线9log =y x 上一点A 作平行于两坐标轴的直线,分别交曲线3log y x =于点,B C ,若直线BC 过原点,则其斜率为()A.1B.3log 22C.ln33D.2log 366.函数()11ln sin 21x f x x x+=--的零点个数为()A.1B.0C.3D.27.自然界中许多流体是牛顿流体,其中水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低速流动的气体等均为牛顿流体;高分子聚合物的浓溶液和悬浮液等一般为非牛顿流体,非牛顿流体在实际生活和生产中有很多广泛的应用,如工业制造业常利用某些高分子聚合物做成“液体防弹衣”,已知牛顿流体符合牛顿黏性定律,即在一定温度和剪切速率范围内黏度值是保持恒定的:τηγ=,其中τ为剪切应力,η为黏度,γ为剪切速率;而当液体的剪切应力和剪切速率存在非线性关系时液体就称为非牛顿流体.其中宾汉流体(也叫塑性流体),是一种粘塑性材料,是非牛顿流体中比较特殊的一种,其在低应力下表现为刚体,但在高应力下表现为粘性流体(即粘度恒定),以牙膏为例,当我们挤压它的力较小时,它就表现为固体,而当力达到一个临界值,它就会变成流体,从开口流出.如图是测得的某几种液体的流变τγ-曲线,则其中属于牙膏和液体防弹衣所用液体的曲线分别是()A.①和④B.③和④C.③和②D.①和②8.已知函数()()1e xf x x =-,点(),m n 在曲线()y f x =上,则()()f m f n -()A.有最大值为1e-,最小值为1 B.有最大值为0,最小值为1e-C.有最大值为0,无最小值D.无最大值,有最小值为1e-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0c b a <<<,则()A.ac bc <B.333b c a +< C.a c ab c b+>+D.<10.已知函数()21,2,5,2x x f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则()A.1a ≤- B.[]1,4c ∈ C.()20,5ad ∈ D.222a b +=11.把一个三阶魔方看成是棱长为1的正方体,若顶层旋转x 弧度π02x ⎛⎫<<⎪⎝⎭,记表面积增加量为()S f x =,则()A.π663f ⎛⎫=⎪⎝⎭B.()f x 的图象关于直线π3x =对称C.S 呈周期变化D.6S ≤-三、填空题:本题共3小题,每小题5分,共15分.12.命题:“所有能被4整除的正整数能被2整除”的否定是______.13.已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象与曲线()y f x =关于原点对称,则()0f =______.14.已知22,e x ⎡⎤∈⎣⎦时,2log 2axx x ax ≥⋅,则正数a 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.15.记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知πsin sin ,63C C b ⎛⎫+== ⎪⎝⎭,ABC V的面积为.(1)求C ;(2)求ABC V 的周长.16.已知函数()π2sin 43⎛⎫=- ⎪⎝⎭f x x .(1)求()f x 的单调递减区间;(2)若ππ,68x ⎡⎤∈-⎢⎣⎦,求()()23-=+f x y f x 的最大值.17.记锐角ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos c CA b B-=.(1)求B ;(2)延长AC 到D ,使2,15AC CD CBD =∠= ,求tan A .18.已知函数()()2e xf x x a =-.(1)求()f x 的单调区间;(2)设12,x x 分别为()f x 的极大值点和极小值点,记()()()()1122,,,A x f x B x f x .证明:直线AB 与曲线()y f x =交于另一点C .19.已知函数()()sin tan sin 2f x x x x =+-,其中01x <<,(1)证明:21cos 12x x >-;(2)探究()f x 是否有最小值,如果有,请求出来;如果没有,请说明理由.菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD 【10题答案】【答案】BCD 【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】存在能被4整除的正整数不能被2整除【13题答案】【答案】3-【14题答案】【答案】222log e e 四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.【15题答案】【答案】(1)π3C =(2)10+【16题答案】【答案】(1)π5ππ11π,224224k k ⎡⎤++⎢⎣⎦,()k ∈Z (2)0【17题答案】【答案】(1)45B =(2)2+【18题答案】【答案】(1)单调增区间为()(),2,,a a ∞∞--+,单调减区间为(2,)a a -(2)证明见解析【19题答案】【答案】(1)证明见解析(2)没有,理由见解析。
2024学年第一学期浙江省9+1高中联盟高三年级期中考试数学考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;4.参加联批学校的学生可关注“启望教育”公众号查询个人成绩分析.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1A =-,{}0,1,2B a =-且A B ⊆,则a 等于()A .1B .1-C .3-D .32.设复数1z ,2z 在复平面内对应的点关于实轴对称,12i z =-,则12z z =()A .34i55-B .34i55+C .41i5+D .41i5-3.若命题“x ∃∈R ,220x x a ++<成立”是真命题,则实数a 的取值范围是()A .1a ≤B .1a <C .1a ≥D .1a >4.在ABC V 中,D 是BC 上一点,满足2BD DC =,M 是AD 的中点,若BM BA BC λμ=+ ,则λμ+=()A .54B .78C .56D .585.已知圆锥的侧面展开图是一个面积为π的半圆,则该圆锥的高为()A2B.2C.2D .126.函数()()sin 20y x ωϕω=+>的部分图象如图所示,直线12y =与其交于A ,B 两点,若3AB π=,则ω=()A .4B .3C .2D .17.已知函数()x xf x e e -=+,若3log 0.6a =,0.013b =,5log 3c =,则有()A .()()()f a f b f c >>B .()()()f b f c f a >>C .()()()f b f a f c >>D .()()()f c f a f b >>8.已知函数()()221f x a x bx a =-+-+(a ,b ∈R 且2a ≠)在区间[]1,2上有零点,则22a b +的最小值为()A .32B .12C .2D .1二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A .数据1,2,2,3,4,5的极差与众数之和为7B .若随机变量X 服从二项分布()~20,X B p ,且()8E X =,则() 4.8D X =C .X 和Y 是分类变量,若()()()()()22n ad bc a b c d a c b d χ-=++++值越大,则判断“X 与Y 独立”的把握性越大D .若随机变量X 服从正态分布()2~2,X N σ,且()50.2P X >=,则()150.6P X -<<=10.已知数列{}n a 的前n 项和为n S ,满足13a =,且()()*1310n n n a na n ++-=∈N ,则下列结论中正确的是()A .{}n na 为等比数列B .n a n ⎧⎫⎨⎬⎩⎭为等比数列C .3nn a n =⋅D .()1213344n n n S +-=⋅+11.已知曲线C 的方程为:()()2222104340x y y x y y ⎧+=≥⎪⎨⎪+=<⎩,()1,0M -,()1,0N ,过M 的直线交曲线C 于A 、B 两点(A 在B 的上方),已知AMN α∠=,ANM β∠=,下列命题正确的是()A .()sin sin 2sin αβαβ+=+B .tan3tan 22αβ+的最小值是2C .ABN周长的最大值是4+D .若3πα=,将AMN 沿MN 翻折,使面AMN ⊥面MNB,则折后32AB =三、填空题:本大题共3小题,每小题5分,共15分.12.双曲线221425y x -=的渐近线方程为.13.已知212nx x ⎛⎫ ⎪⎝⎭-展开式的二项式系数之和为64,则展开式中3x 项的系数为.(用数字作答)14.一只盒子中装有4个形状大小相同的小球,小球上标有4个不同的数字.摸球人不知最大数字是多少,每次等可能地从中摸出一个球,不放回.摸球人决定放弃前面两次摸出的球,从第3次开始,如果摸出的球上标有的数字大于前面摸出的球上的数字,就把这个球保存下来,摸球结束,否则继续摸球.问摸球人最后保存下来是数字最大的球的概率是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,满足cos sin 0a C a C b c +--=.(1)求角A ;(2)若4a =,ABC V的面积为2,求sin sin B C 的值.16.已知函数()22ln f x x ax x =-+,其中a ∈R .(1)若曲线()y f x =在点()()1,1f 处的切线垂直于直线20x y +=,求a 的值;(2)讨论函数()f x 的单调性.17.如图,三棱锥P ABC -中,CP CA CB ==,平面PAC ⊥平面ABC ,平面PBC ⊥平面ABC .(1)证明:PC ⊥平面ABC ;(2)若ACB ∠为钝角,且二面角B PA C --的大小为45°,求cos ACB ∠.18.在平面直角坐标系xOy 中,圆C 的方程为:()22116x y ++=,定点()10F ,,B 是圆C 上任意一点,线段BF 的垂直平分线l 和半径BC 相交于点T .(1)求点T 的轨迹W 的方程;(2)已知点()2,0A -,过点F 的一条直线,斜率不为0,交曲线W 于P 、Q 两点,直线AP ,AQ 分别与直线3x =交于M ,N 两点,求证:直线FM 与直线FN 的斜率之积为常数.19.一般地,任何一个复数i a b +(a ,b ∈R )可以写成()cos i sin r θθ+,其中r 是复数的模,θ是以x 轴非负半轴为始边,射线OZ 为终边的角,称为复数的辅角.我们规定在02θπ≤<范围内的辅角称为辅角主值,通常记作arg z ,如arg10=,argi 2π=,()arg 13π=.发现()()()()12111222121212cos sin cos sin cos isin z z r r r r θθθθθθθθ⋅=+⋅+=+++⎡⎤⎣⎦,就是说两个复数相乘,积的模等于各复数模的积,积的辅角等于各复数辅角的和.考虑如下操作:从写有实数0,1部.设n 为正整数,重复n 次上述操作,可得到n 个复数,将它们的乘积记为n z .(1)写出一次操作后所有可能的复数;(2)当2n =,记n z 的取值为X ,求X 的分布列;(3)求2n z 为实数的概率n Q .1.D 【解析】略2.A 【解析】略3.B 【解析】略4.C 【解析】略5.A 【解析】略6.C 【解析】略7.B 【解析】略8.D【详解】()()4222224242min 441311204111x x x a xb x a b x x x x -+-++-=⇒+==-≥-+-+,故选D 9.BD 【解析】略10.BCD 【解析】略11.ABC【详解】()sin 1222sin sin MN ca AM AN αβαβ+===++即:()sin sin 2sin αβαβ+=+,故A 正确;由()2sincos2sincoscossin 22222sin sin 2sin cos cos sin sin 2222222αβαβαβαβαβαβαβαβαβαβαβαβαβαβ++++++===+--+-+-+⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭cos cos sin sin 1tantan222222coscossinsin1tan tan 222222αβαβαβαβαβαβ--=++得:1tan tan 223αβ⋅=故tan 3tan222αβ+≥=,当tan12α=,1tan23=β时取到最小值是2,故B 正确;ABN 周长4BM MA AN NB BM NB=+++=++设(),B x y ,则BM NB +==≤故ABN 周长的最大值是4+,C 正确;设AB 的方程是:13x y +=与22143x y +=联立得:2590y --=解得:5A y =-(舍去)或A y =,折后AB ==故D 错误.12.25y x =±【分析】根据双曲线渐近线方程的求法求得正确答案.【详解】由220425y x -=得224,25a b ==,即2,5a b ==,焦点在y 轴上,所以渐近线方程为25y x =±.故答案为:25y x =±13.160-【解析】略14.512【详解】标有数字的4只球排序共有44A 24=种情况.要摸到标有数字最大的球,有以下两种情况:①标有数字最大的球第3次摸到,其他的小球随意在哪个位置,有33A 6=种情况.②标有数字最大的球第4次摸到,标有数字第二大的球在第1次或第2次被摸出,其他的球在哪次摸出任意,有222A 4=种情况.故所求概率为6452412+=.15.(1)2A π=(2)sin sin 16B C =【详解】解:(1)cos sin 0a C a C b c +--= sin cos sin sin sin sin 0A C A C B C ∴+--=()sin cos sin sin sin sin 0A C A C A C C ∴+-+-=即sin cos sin sin sin cos sin cos sin 0A C A C A C C A C +---=sin 0C ≠ sin cos 1A A ∴-=sin 42A π⎛⎫∴-=⎪⎝⎭()0,A π∈ 44A ππ∴-=2A π∴=(2)2A π=,122bc ∴=bc ∴由正弦定理可知:2216sin sin sin bc a B C A ==sin sin B C ∴=16.(1)72a =(2)答案见解析【详解】解:(1)()22ln f x x ax x =-+ ,()22f x x a x'∴=-+()y f x = 在点()()1,1f 处的切线与直线20x y +=垂直,()11222f a '∴=-+=72a ∴=.(2)()()222220x ax f x x a x x x-+'=-+=>当2160a ∆=-≤,即44a -≤≤时,() 0f x '≥,()y f x ∴=在()0,∞+上单调递增;当2160a ∆=->,即4a <-或4a >时,关于x 的方程2220x ax -+=有两个同号的根.当4a <-时,关于x 的方程2220x ax -+=有两个负根,()y f x ∴=在()0,∞+上单调递增;当4a >时,关于x 的方程2220x ax -+=有两个正根,14a a x =,24a a x =,()y f x ∴=在()10,x ,()2,x +∞上单调递增,在()12,x x 上单调递减.综上,当4a ≤时,()y f x =在()0,∞+上单调递增;当4a >时,()y f x =在()10,x ,()2,x +∞上单调递增在()12,x x 上单调递减17.(1)证明见解析(2)1cos 3θ=-【详解】解:(1)在平面ABC 内取点O ,过O 作OM AC ⊥于M ,过O 作ON BC ⊥于N . 平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,OM ∴⊥平面PAC ,又PC ⊂平面PAC ,OM PC ∴⊥.同理可证ON PC⊥又ON OM O = ,PC ∴⊥平面ABC(2)法一:过点B 作BH AC ⊥于点H ,过H 作HQ PA ⊥于点Q ,连接BQPC ⊥ 平面ABC ,BH ⊂平面ABC ,PC BH ∴⊥,又AC PC C ⋂= ,BH ∴⊥平面PAC ,则BQH ∠为二面角B PA C --的平面角,即45BQH ∠=︒设2PC AC BC ===,ACB θ∠=,则2sin BH θ=,2cos CH θ=-,2sin QH θ=,1cos 3θ=-或cos 1θ=(舍去),综上1cos 3θ=-解:(1)同上(2)法二:如图,以C 为坐标原点建立空间直角坐标系,设2PC AC BC ===,则()0,0,0C ,()2,0,0A ,()2cos ,2sin ,0B θθ,()002P ,,,易知,面PAC 的法向量()0,1,0m =,设面PAB 的法向量为(),,n x y z =r,则()()()()()2,0,2,,2202cos 2,2sin ,0,,2cos 22sin 0PA n x y z x z AC n x y z x y θθθθ⎧⋅=-⋅=-=⎪⎨⋅=-⋅=-+=⎪⎩22cos 1,,12sin n θθ-⎛⎫∴= ⎪⎝⎭则cos ,2m n m n m n⋅==⋅,1cos 3θ∴=-或cos 1θ=(舍),综上1cos 3θ=-.18.(1)22143x y +=(2)证明见解析【详解】解:(1)由题意:点T 在线段BF 的垂直平分线上,则TB TF =,可得42TC TF TC TB CB CF +=+==>=.由椭圆定义可得,点T 的轨迹是以()1,0C -,()10F ,为焦点的椭圆,且椭圆长轴长为24a =,焦距为22c =,所以点T 的轨迹W 的方程为22143x y +=(2)由(1)知()2,0A -,()10F ,,设直线:1PQ x my =+,()11,P x y ,()22,Q x y ,联立221143x my x y =+⎧⎪⎨+=⎪⎩消去x ,整理得()2234690m y my ++-=,则122634m y y m +=-+,122934y y m =-+根据题意可设()3,M M y ,()3,N N y ,则由11322M y yx =++,可得11115523M y y y x my ==++,同理可得2253N y y my =+,所以直线FM 与直线FN 的斜率之积,()()()12122121212002525113131433439N M FM FN y y y y y y k k my my m y y m y y --=⋅=⋅=⋅--+++++22222229251125925925349644918273643616393434m m m m m m m m m ⎛⎫- ⎪-⨯⨯+⎝⎭=⋅=⋅=-=---++⨯⎛⎫⎛⎫-+-+ ⎪ ⎪++⎝⎭⎝⎭.所以直线FM 与直线FN 的斜率之积为定值2516-19.(1)1,i,1+i +(2)答案见解析(3)1111323n n Q -⎛⎫=+⎪⎝⎭【详解】解:(1)一次操作后可能的复数为:1,i,1+i ,(2)一次操作后复数的模所有可能的取值为是:1,12,2由1212z z z z ⋅=⋅,故X 的取值为12,3,4()119P X ==,(29P X ==,()229P X ==.()139P X ==,(29P X ==,()149P X ==,所以X 的分布列为(3)若2n z 为实数,则()2arg 0n z =或π.而1,i,1i +的辅角主值分别是0,2π,0,2π,3π,6π,设在n 次操作中,得到i 的次数为n a ,得到1+的次数为n b ,i 的次数为nc 于是()200222arg 363n n n n n n n b c z a b c k a k πππππ+⎛⎫=⋅+⋅+⋅-=+- ⎪⎝⎭,从而{}0020,13n nn b c a k t ++-=∈,即()0023n n n b c t k a +=+-因此,所有的概率n Q 即为2n n b c +是3的倍数的概率,下面研究1n Q +与n Q 之间的关系.(ⅰ)2n n b c +是3的倍数,且第1n +次操作得到的复数是1,i (概率为23);(ⅱ)2n n b c +被3除余1,且第1n +次操作得到的复数是1+(概率为16);(ⅲ)2n n b c +被3除余2,且第1n +i +(概率为16);因此由全概率公式可以得到:()1211113626n n n n Q Q Q Q +=+-=+变形得1111326n n Q Q +⎛⎫-=- ⎪⎝⎭,其中123Q =,故1111323n n Q -⎛⎫=+⎪⎝⎭。
北京市朝阳区2024-2025学年度第一学期期中质量检测高三数学试卷 2024.11(考试时间120分钟 满分150分)本试卷分为选择题40分和非选择题110分第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{02}A x x =≤≤,集合{13}B x x =<<,则AB =( ) A.{12}x x <≤ B.{02}x x ≤≤ C.{03}x x ≤< D.{13}x x << 2.若函数4()(0)f x x x x =+>在x a =处取得最小值,则a =( )A.1 C.2 D.43.下列函数中,既是奇函数又在区间(,0)−∞上单调递增的是( )A.2x y =B.ln ||y x =C.tan y x =D.2y x x=−4.如图,在ABC △中,13BD BC =,12AE AC =,则( ) A.1133BD AB AC =− B.2233BD AB AC =− C.2136DE AB AC =−+ D.2136DE AB AC =− 5.已知单位向量i ,j 满足0i j ⋅=,设向量2c i j =−,则向量c 与向量i 夹角的余弦值是( )A.5−B.5− C.5 D.5 6.《九章算术》是我国古代数学名著,书中有如下的问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”.由此推算,在这5天中,织布超过1尺的天数共有( )A.1天B.2天C.3天D.4天7.已知α,β均为第二象限角,则“sin sin αβ>”是“cos cos αβ>”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知函数e ,0,()0.x x f x x ⎧≤⎪=⎨>⎪⎩若直线y x m =+与函数()y f x =的图象有且只有一个公共点,则实数m 的取值范围是( )A.(,1](2,)−∞+∞ B.(,1)[2,)−∞+∞ C.(,0](2,)−∞+∞ D.(,0)[2,)−∞+∞9.在三棱锥O -ABC 中,棱OA ,OB ,OC 两两垂直,点P 在底面ABC 内,已知点P 到OA ,OB ,OC 所在直线的距离分别为1,2,2,则线段OP 的长为( )A.22C.3D.92 10.数学家康托尔创立了集合论,集合论的产生丰富了现代计数方法.记S 为集合S 的元素个数,()S ϕ为集合S 的子集个数,若集合A ,B ,C 满足: ①99A =,100B =;②()()()()A B C B C Aϕϕϕϕ++=, 则A B C 的最大值是( )A.99 B .98 C .97 D .96第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11.计算2i 1i=−________. 12.在ABC △中,已知3cos 5A =,则sin A =__________;tan(π)A −=________. 13.已知数列{}n a 的前n 项和为2n S An Bn =+(A ,B 为常数),写出一个有序数对(),A B =________,使得数列{}n a 是递增数列.14.某种灭活疫苗的有效保存时间T (单位:h )与储藏的温度t (单位:℃)满足函数关系e kt b T +=(k ,b 为常数,其中e 2.71828=).已知该疫苗在0℃时的有效保存时间是1440h ,在5℃时的有效保存时间是360h ,则该疫苗在10℃时的有效保存时间是________h.15.对于无穷数列{}n a ,若存在常数0M >,对任意的*n ∈N ,都有不等式21321n n a a a a a a M +−+−++−≤成立,则称数列{}n a 具有性质P .给出下列四个结论: ①存在公差不为0的等差数列{}n a 具有性质P ;②以1为首项,(||1)q q <为公比的等比数列{}n a 具有性质P ;③若由数列{}n a 的前n 项和构成的数列{}n S 具有性质P ,则数列{}n a 也具有性质P ;④若数列{}n a 和{}n b 均具有性质P ,则数列{}n n a b 也具有性质P .其中所有正确结论的序号是________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)在ABC △中,cos cos 2a C c A a +=.(I )求b a的值;(II )若π6A =,c =b 及ABC △的面积. 17.(本小题15分)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,//AB CD ,AD CD ⊥,2AB AD ==,3CD PD ==.(I )求证:AB ⊥平面P AD ;(Ⅱ)求平面P AB 与平面PCD 的夹角的余弦值;(Ⅲ)记平面P AB 与平面PCD 的交线为l .试判断直线AB 与l 的位置关系,并说明理由.18.(本小题13分)已知函数()ln(1)()f x ax x a =−+∈R .(I )若1a =,求()f x 的最小值;(II )若()f x 存在极小值,求a 的取值范围.19.(本小题14分) 设函数2π()sin 2cos 2cos sin 0,||2f x x x ωϕωϕωϕ⎛⎫=+><⎪⎝⎭. (I )若1ω=,π6ϕ=,求π2f ⎛⎫ ⎪⎝⎭的值;(II )已知()f x 在区间ππ,63⎡⎤−⎢⎥⎣⎦上单调递增,且π3x =是函数()y f x =的图象的对称轴,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求ω,φ的值. 条件①:当π6x =−时,()f x 取到最小值; 条件②:π532f ⎛⎫= ⎪⎝⎭; 条件③:()f x 在区间ππ,36⎡⎤−−⎢⎥⎣⎦上单调递减. 注:如果选择的条件不符合要求,第(II )问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.20.(本小题15分)已知函数()e cos x f x x =+.(I )求曲线()y f x =在点(0,(0))f 处的切线方程;(II )讨论()f x 在区间(π,)−+∞上的零点个数;(III )若()f m n =,其中0m >,求证:2n m −>.21.(本小题15分)若有穷正整数数列A :1a ,2a ,3a ,…,2(3)n a n ≥满足如下两个性质,则称数列A 为T 数列: ①2122(1,2,3,,)i i i a a i n −+==; ②对任意的{1,2,3,,21}i n ∈−,都存在正整数j i ≤,使得112()i j j j j i j a a a a a ++++−=++++. (I )判断数列A :1,1,1,3,3,5和数列B :1,1,2,2,4,4,4,12是否为T 数列,说明理由; (II )已知数列A :1a ,2a ,3a ,…,2(3)n a n ≥是T 数列.(i )证明:对任意的{2,3,,1}i n ∈−,2232i i a −=⨯与22132i i a −+=⨯不能同时成立;(ii )若n 为奇数,求2462n a a a a ++++的最大值.(考生务必将答案答在答题卡上,在试卷上作答无效)。
盐城市2024-2025学年高三年级第一学期期中考试数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷;2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分;3.答题前,务必将自己的学校、班级、姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上。
第Ⅰ卷(选择题 共58分)一、选择题:本大题共8小题,每小题5分,计40分.每小题给出的四个选项中,只有一项是符合要求的,请在答题纸的指定位置填涂答案选项.1.已知集合{}1,1A =-,(){},,B x y x A y A =∈∈,则AB =( )A.AB.BC.∅D.R2.已知复数1z i =+,则z z ⋅=( )A. 1C. 2D.3.在ABC △中,“sin cos A B =”是“π2C =”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件4.若()sin 1αβ+=,则sin 2α=( ) A.sin 2βB.cos 2βC.sin 2β-D.cos 2β-5.已知数列{}n a 满足14a =,142n na a +=-,则{}n a 的2024项的和为( ) A. 2024B. 2025C. 2026D. 20276.若实数x ,y 满足2291x y +=,则3x y +的最小值为( )A. 1B.1-D.7.人脸识别就是利用计算机检测样本之间的相似度,余弦距离是检测相似度的常用方法.假设二维空间中有两个点()11,A x y ,()22,B x y ,O 为坐标原点,定义余弦相似度为()cos ,cos ,A B OA OB =,余弦距离为()1cos ,A B -.已知(),cos sin A αα,)1B-,若A ,B 的余弦距离为13,则3c s 2πo α⎛+⎫= ⎪⎝⎭( )A.7-B.1-C.1 D.78.已知点O 为ABC △的外心,且向量()1AO AB AC λλ=+-,R λ∈,若向量BA 在向量BC 上的投影向量为15BC ,则cos B 的值为( )D.12二、多项选择题(本大题共3小题,每小题6分,共18分。
哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2 B. ()1,2- C. (],4∞- D. (]1,4-2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2iB. 2i- C. 2- D. 23. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 294. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-6.设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 中点,点M 为边BC 上一动点,则MD MC ⋅的最小值为( )A 27B. 0C. 716-D. 916-8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设的.某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35B. 42C. 49D. 56二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列D. {}n a 的前n 项和115344n n S +=⨯-10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++=,则AOC 与AOB 的面积之比为3511. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,则30,2ω⎛⎤∈ ⎥⎝⎦12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax xx f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根在C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.14. 已知ABC的面积S =,3A π∠=,则AB AC ⋅=________;15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 的通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.的的哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2B. ()1,2- C. (],4∞- D. (]1,4-【答案】D 【解析】【分析】解不等式可得集合,A B ,根据集合的并集运算即得答案.【详解】因为{}(]2log 20,4A x x =≤=,{}()2201,2B x x x =--<=-,所以(]1,4A B =- ,故选:D.2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2i B. 2i- C. 2- D. 2【答案】D 【解析】【分析】先求出复数z ,得到z 的共轭复数,即可得到答案.【详解】因为复数z 满足i 2i z =+,所以2i12i iz +==-,所以z 的共轭复数12i z =+.其虚部为:2.故选:D3. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 29【答案】D 【解析】【分析】求出基本量,即可求解.【详解】解:2642=10a a a +=,所以45a =,又59a =,所以544d a a =-=,所以510592029a d a +=+==,故选:D 4. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】26k πθπ=+,Z k ∈时,1sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,526k πθπ=+,Z k ∈时,551sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,所以“26k πθπ=+,Z k ∈”是“1sin 2θ=”的充分而不必要条件,故选:A .5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln 2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-【答案】C 【解析】【分析】选项A ,由sin ||sin |2|33πππ-≠-+可判断;选项B ,代入2x =,可判断;选项C ,结合定义域和()()f x f x -=-,可判断;选项D ,由1ab=-得0a b +=且0b ≠,可判断【详解】由于5sin |||2|sin()333ππππ-=-+==,所以函数sin ||y x =的周期不是2π,故选项A 是假命题;当2x =时22x x =,故选项B 是假命题;函数2()ln2x f x x+=-的定义域(2,2)-关于原点对称,且满足()()f x f x -=-,故函数()f x 是奇函数,即选项C 是真命题;由1a b =-得0a b +=且0b ≠,所以“0a b +=”的必要不充分条件是“1ab=-”,故选项D 是假命题故选:C6. 设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 【答案】C 【解析】【分析】根据等差中项的定义,利用对数的运算得到21a b +=,然后利用这一结论,将目标化为齐次式,利用基本不等式即可求最小值.【详解】解:0,a b >>Q 是lg 4a 与lg 2b 的等差中项,2lg4lg2,lg 2lg 2b a a b +∴=+∴=,即222a b +=,即21a b +=,则212122(2)559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22a b b a=,即13a b ==时取等号.故选C .【点睛】本题主要考查利用基本不等式求最值中的其次化方法,涉及等差中项概念和对数运算,难度中等.当已知a b k αβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0m nm n a b+>,为常数)的最小值时常用()1m n m n a b a b k a b αβ⎛⎫+=++ ⎪⎝⎭方法,展开后对变量部分利用基本不等式,从而求得最小值;已知k abαβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0ma nb m n +>,为常数)的最小值时也可以用同样的方法.7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 的中点,点M 为边BC 上一动点,则MD MC⋅的最小值为( )A. 27 B. 0C. 716-D. 916-【答案】D 【解析】【分析】根据图形特点,建立直角坐标系,由题设数量关系得出A ,B ,C 的坐标,再设出点M 的坐标,将所求问题转化为函数的最小值即可.【详解】解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,如图所示 ,由题意可知,()0,4A ,()3,0C ,3,22D ⎛⎫⎪⎝⎭,设(),0M t ,其中[]3,3t ∈- ,则3,22MD t ⎛⎫=- ⎪⎝⎭,()3,0MC t =- ,故()22399993222416MD MC t t t t t ⎛⎫⎛⎫⋅=-⨯-=+=--⎪ ⎪⎝⎭⎝⎭ ,所以当94t = 时,MD MC ⋅ 有最小值916-.故选:D.8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35 B. 42C. 49D. 56【答案】B【解析】【分析】根据题意列出方程,利用等比数列的求和公式计算n 轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n 轮传染,则每轮新增感染人数为0nR ,经过n 轮传染,总共感染人数:1200000111n nR R R R R +-++++=- ,∵0R 3=,∴当感染人数增加到1000人时,113=100013n +--,化简得3=667n ,由563243,3729==,故得6n ≈,又∵平均感染周期为7天,所以感染人数由1个初始感染者增加到1000人大约需要6742⨯=天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得50分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列 D. {}n a 的前n 项和115344n n S +=⨯-【答案】AB 【解析】【分析】推导出1113()22n n a a ++=+,11322a +=,从而数列1{}2n a +为首项为32,公比为3的等比数列,由此利用等比数列的性质能求出结果.【详解】解: 数列{}n a 满足:11a =,1310n n a a +--=,*n ∈N ,131n n a a +∴=+,1113(22n n a a +∴+=+,11322a +=,为∴数列1{}2n a +为首项为32,公比为3的等比数列,故A 正确;113133222n n n a -+=⨯=⨯,∴11322n n a =⨯-,故B 正确;数列{}n a 是递增数列,故C 错误;数列1{}2n a +的前n 项和为:13(13)3132(31)313444n n n n S +-'==-=⨯--,{}n a ∴的前n 项和1111332424n n n S S n n +'=-=⨯--,故D 错误.故选:AB .10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++= ,则AOC 与AOB 的面积之比为35【答案】BD 【解析】C 为钝角,从而否定A ;利用向量的和、差的模的平方的关系求得26a b -= ,进而判定B ;注意到a 与a b λ+ 同向的情况,可以否定C ;延长AO 交BC 于D ,∵,AO OD共线,利用平面向量的线性运算和三点共线的条件得到58BD BC = ,进而35CD DB =,然后得到35ODC ADC OBD ABD S S S S == ,利用分比定理得到35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,从而判定D.【详解】0a b ⋅> 即0BC CA ⋅> ,∴0CB CA ⋅< ,∴C 为钝角,故A 错误;2222222810a b a b a b -++=+=+= ,2224a b +== ,21046a b -=-=,a b -=B 正确;(1,2)a b λλλ+=++r r,当0λ=时,a 与a b λ+ 同向,夹角不是锐角,故C 错误;∵2350OA OB OC ++=,∴3522AO OB OC =+ ,延长AO 交BC 于D ,如图所示.∵,AO OD共线,∴存在实数k ,3522k k OD k AO OB OC ==+ ,∵,,D B C 共线,∴35122k k +=,∴14k =,∴3588OD OB OC =+ ,∴555888BD OD OB OB OC BC =-=-+= ,∴35CD DB =.∴35ODC ADC OBD ABD S S S S == ,∴35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,故D 正确.故选:BD.11. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x在π3⎡-⎢⎣上单调,则30,2ω⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】将0x =代入()f x 求出函数值,根据ϕ的范围即可判断选项A ;根据偶函数的性质即可判断选项B ;根据()f x 在[],a b 上单调,则2Tb a ≥-即可判断选项C ;根据整体思想以及正弦函数的性质即可判断选项D.【详解】对于选项A ,若()0f =,则2cos ϕ=cos ϕ=,∵[]0,πϕ∈,∴π6ϕ=,则A错误;对于选项B ,若函数()y f x =为偶函数,则0ϕ=或πϕ=,即2cos 1ϕ=,则B 正确;对于选项C :若()f x 在[],a b 上单调,则π2T b a ω-≤=,但不一定小于π2ω,则C错误;在对于选项D :若2ϕπ=,则()2sin f x x ω=-,当ππ,34x ⎡⎤∈-⎢⎥⎣⎦时,ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦,∵()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,∴ππ32ππ42ωω⎧-≥-⎪⎪⎨⎪≤⎪⎩ ,解得30,2ω⎛⎤∈ ⎥⎝⎦,则D 正确.故选:BD .12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax x x f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线【答案】ABC 【解析】【分析】A 选项,根据()0f x ≥,得到1a ≥,画出函数图象,可得单调区间;B 选项,结合函数图象得到方程()f m =的根的个数;C 选项,分[0,6π)x ∈和[]6π,7πx ∈两种情况,得到00tan x x =或0001cos sin x x x -=;D 选项,设()f x 上一点()111,sin M x ax x -,分M 为切点和不是切点,结合函数图象可得过()f x 图象上任何一点,最多可作函数()f x 的8条切线.【详解】A 选项,因为函数()0f x ≥,[6π,7π]x ∈时,由于1cos 0x -≥恒成立,故3π(1cos )y a x =-要想恒正,则要满足0a ≥,[0,6π]x ∈时,sin 0y ax x =-≥恒成立,cos y a x '=-,当1a ≥时,cos 0y a x '=-≥在[)0,6π恒成立,故sin y ax x =-在[)0,6π单调递增,又当0x =时,0y =,故sin 0y ax x =-≥在[)0,6π上恒成立,满足要求,当01a <<时,令cos 0y a x '=-=,故存0π0,2x ⎛⎫∈ ⎪⎝⎭,使得0cos a x =,当()00,x x ∈时,0'<y ,当0π,2x x ⎛⎫∈ ⎪⎝⎭时,0y '>,故sin y ax x =-在()00,x x ∈上单调递减,又当0x =时,0y =,故()00,x x ∈时,sin 0y ax x =-<,不合题意,舍去,综上:1a ≥,当6πx →时,sin 6πy ax x a =-→,(6)3π[1cos(6π)]0f a π=-=,且(7π)3π[1cos(7π)]6πf a a =-=,画出函数图象如下,故()f x 的单调递增区间为(0,6π),(6π,7π),A 错误;B 选项,可以看出方程()f x m =最多有两个实数解,不可能有三个实数根,B 错误;C 选项,当[)0,6πx ∈时,()cos f x a x '=-,则()00cos f x a x '=-,则函数()f x 在0x x =处的切线方程为()()()0000sin cos y ax x a x x x --=--,将()0,0代入切线方程得()()0000sin cos ax x x a x --=--,解得00tan x x =,当[]6π,7πx ∈时,()3πsin f x a x '=,则()003πsin f x a x '=,则函数()f x 在0x x =处的切线方程为()()0003π1cos 3πsin y a x a x x x --=-⎡⎤⎣⎦,将()0,0代入切线方程得,0001cos sin x x x -=,其中06πx =满足上式,不满足00tan x x =,故C 错误;D 选项,当[)0,6πx ∈时,设()f x 上一点()111,sin M x ax x -,()cos f x a x '=-,当切点为()111,sin M x ax x -,则()11cos f x a x '=-,在故切线方程为()()()1111sin cos y ax x a x x x --=--,此时有一条切线,当切点不为()111,sin M x ax x -时,设切点为()222,sin N x ax x -,则()22cos f x a x '=-,此时有()2211221sin sin cos ax x ax x a x x x ---=--,即12212sin sin cos x x x x x -=-,其中1212sin sin x x t x x -=-表示直线MN 的斜率,画出cos ,[0,6π)y x x =∈与y t =的图象,最多有6个交点,故可作6条切线,[]6π,7πx ∈时,当切点不为()111,sin M x ax x -时,设切点为()()22,3π1cos N x a x -,则()3πsin f x a x '=,()223πsin f x a x '=,()7π3πsin 7π0f a '==,()6π3πsin 6π0f a '==,13π13π3πsin 3π22f a a ⎛⎫⎪==⎭'⎝,结合图象可得,存在一个点()()22,3π1cos N x a x -,使得过点()()22,3π1cos N x a x -的切线过[)0,6πx ∈上时函数的一点,故可得一条切线,当M 点在[]6π,7πx ∈时的函数图象上时,由图象可知,不可能作8条切线,综上,过()f x 图象上任何一点,最多可作函数f(x)的8条切线,D 正确.故选:ABC【点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x =';(2) 已知斜率k 求切点()()11,A x f x ,即解方程()1f x k '=;(3) 已知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,A x f x ,利用()()()10010f x f x k f x x x -=='-求解.Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.【答案】12n -【解析】【分析】当1n =时求得1a ;当2n ≥时,利用1n n n a S S -=-可知数列{}n a 为等比数列,利用等比数列通项公式可求得结果.【详解】当1n =时,1121a a =-,解得:11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,12n n a a -∴=,则数列{}n a 是以1为首项,2为公比的等比数列,11122n n n a --∴=⨯=.故答案为:12n -.14. 已知ABC 的面积S =,3A π∠=,则AB AC ⋅=________;【答案】2【解析】【分析】由三角形的面积可解得4bc =,再通过数量积的定义即可求得答案【详解】由题可知1sin 2S bc A =3A π∠= ,所以解得4bc =由数量积的定义可得1cos 422AB AC bc A ⋅==⨯= 【点睛】本题考查三角形的面积公式以及数量积的定义,属于简单题.15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.【答案】19-【解析】【分析】由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案.【详解】2sin 63πα⎛⎫+= ⎪⎝⎭ ,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭,1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.【答案】21223n +-【解析】【分析】设n A 中有n c 项为0,其中1和1-的项数相同都为n b ,由已知条件可得()111222n n n b c n ---+=≥①,()112n n n b b c n --=+≥②,进而可得()1122n n n b b n --+=≥③,再结合12n n n b b ++=④可得()11122n n n b b n -+--=≥,分别研究n 为奇数与n 为偶数时{}n b 的通项公式,运用累加法及并项求和即可求得结果.【详解】因为()11,1A =-,依题意得,()21,0,0,1A =-,()31,0,1,1,1,1,0,1A =---,显然,1A 中有2项,其中1项为1-,1项为1,2A 中有4项,其中1项为1-,1项为1,2项为0,3A 中有8项,其中3项1-,3项为1,2项为0,由此可得n A 中共有2n 项,其中1和1-的项数相同,设n A 中有n c 项为0,所以22nn n b c +=,11b =,从而()111222n n n b c n ---+=≥①,因为()f A 表示把A 中每个1-都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,为则()112n n n b b c n --=+≥②,①+②得,()1122n n n b b n --+=≥③,所以12nn n b b ++=④,④-③得,()11122n n n b b n -+--=≥,所以当n 为奇数且3n ≥时,()()()324122411222122211143n n n n n n n n n b b b b b b b b ------+=-+-+⋅⋅⋅+-+=++⋅⋅⋅++=+=-,经检验1n =时符合,所以213n n b +=(n为奇数),当n 为偶数时,则n 1-为奇数,又因为()1122n n n b b n --+=≥,所以111121212233n n n n n n b b ----+-=-=-=,所以2+1,321,3n n n n b n ⎧⎪⎪=⎨-⎪⎪⎩为奇数为偶数,当n 为奇数时,+112121233n n n n n b b ++-+=+=,所以{}n b 的前2n 项和为21211352112345621222422()()()()2+2+2++2143n n n n n b b b b b b b b -+---⨯-++++++++===- .故答案为:21223n +-.【点睛】本题的解题关键是根据题目中集合的变换规则找到递推式,求出通项公式,再利用数列的特征采取分组求和解出.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值【答案】(I )6π(II )max 3()2f x =【解析】【详解】(1)由2a =x )2+(sin x )2=4sin 2x ,2b =(cos x )2+(sin x )2=1,及a b =r r,得4sin 2x =1.又x ∈0,2π⎡⎤⎢⎥⎣⎦,从而sin x =12,所以x =6π.(2) ()·=f x a b =x ·cos x +sin 2xsin 2x -12cos 2x +12=sin 26x π⎛⎫- ⎪⎝⎭+12,当x ∈0,2π⎡⎤⎢⎥⎣⎦时,-6π≤2x -6π∴当2x -6π=2π时,即x =3π时,sin 26x π⎛⎫-⎪⎝⎭取最大值1.所以f (x )的最大值为32.18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取PC 的中点M ,根据题意证得//AE MF 且AE MF =,得到四边形AEMF 为平行四边形,从而得到//AE ME ,结合线面平行的判定定理,即可得证;(2)以D 为坐标原点,建立空间直角坐标系,求得向量1,1)2PB =- 和平面PAD 的一个法向量n =,结合向量的夹角公式,即可求解.【小问1详解】证明:取PC 的中点M ,连接,MF EM ,在PCD 中,因为,M F 分别为,PC PD 的中点,可得//MF CD 且12MF CD =,又因为E 为AB 的中点,所以//AE CD 且12AE CD =,所以//AE MF 且AE MF =,所以四边形AEMF 为平行四边形,所以//AE ME ,因为ME ⊂平面PCE ,AF ⊄平面PCE ,所以//AF 平面PCE .【小问2详解】解:因为底面ABCD 是菱形,且60DAB ∠= ,连接BD ,可得ABD △为等边三角形,又因为E 为AB 的中点,所以DE AB ⊥,则DE DC ⊥,又由PD ⊥平面ABCD ,以D 为坐标原点,以,,DE DC DP 所在的直线分别为,x y 和z 轴建立空间直角坐标系,如图所示,因为底面ABCD 是菱形,且60DAB ∠= ,1PD AD ==,可得11(0,0,0),,0),,0),(0,0,1)22D A B P -,则11,1),,0),(0,0,1)22PB DA DP =-=-=,设平面PAD 的法向量为(,,)n x y z =,则1020n DA x y nDP z ⎧⋅=-=⎪⎨⎪⋅==⎩ ,取x =,可得3,0y z ==,所以n =,设直线PB 与平面PAD 所成的角为θ,则sin cos ,n PB n PB n PB θ⋅==== ,所以直线PB 与平面PAD19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =- (2)1133n n n T -+=-【解析】的【分析】(1)利用累加法求出na n,进而得n a ;(2)求得1213n n n b --=,利用错位相减法可求出答案.【小问1详解】因为()1111111n n a a n n n n n n +-==-+++,所以11221111221n n n n n a a a a a a a a n n n n n ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 1111111121212n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-+=- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以21n a n =-.【小问2详解】因为312n n S -=,所以当1n =时,1111a S b ==,得11b =;当2n ≥时,1113131322n n n n n n n a S S b -----=-=-=,所以1213n n n b --=(1n =时也成立).因为012135333n T =++++ 所以12311352133333n nn T -=++++ ,所以1012111121222212133121333333313n n n nnn n T --⎛⎫- ⎪--⎝⎭=++++-=+⨯-- 112122112333n n nn n --+=+--=-,故1133n n n T -+=-.20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.【答案】(1)2π3B = (2)[)8,12【解析】【分析】(1)选①时:利用面积和数量积公式代入化简即可;选②时:利用正弦定理代入,结合余弦定理得到;选③时:正弦定理进行边角转换,结合角度的范围即可确定角B .(2)结合(1)的角度,和边的大小,用余弦定理进行代换,结合基本不等式即可得到最终范围.【小问1详解】2ABC BC S ⋅=可得:1cos 2sin sin 2B ac B ac B =⋅=,故有sin tan cos BB B ==又∵()0,πB ∈,∴2π3B =;选②,∵()()()sin sin sin sin sin sin sin B A B A C C A +-=+,由正余弦定理得222c ac b a +=-,∴2221cos 22a cb B ac +-==-,又()0,πB ∈,∴2π3B =;选③,∵()2cos cos c a B b C +=-,由正弦定理可得()sin 2sin cos sin cos C A B B C +=-,∴()2sin cos sin cos sin cos sin sin A B B C C B C B A =--=-+=-,∵()0,πA ∈,∴sin 0A ≠,∴1cos 2B =-,又()0,πB ∈,∴2π3B =.【小问2详解】由余弦定理得2222cos 12c a b ac B ac +=+=-∵0ac >,∴2212a c +<.又有222222122c a c a ac c a +=++≤++,当且仅当2a c ==时取等号,可得228c a +≥.即22a c +的取值范围是[)8,12.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 的通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .【答案】(1)25n a n =或2n a n =(N n +∈) (2)当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+【解析】【分析】(1)设出公差d ,根据已知条件列出相应的等式即可求解.(2)由题意可以先求出{}n b 的通项公式,再对n 进行讨论即可求解.【小问1详解】设等差数列{}n a 的公差为d ,∵2112a a a d ==+,∴1a d =,∵1a ,32a -,4a 成等比,∴()21432a a a =-,即()()2111322a a d a d +=+-,得()22432d d =-,解得25d =或2d =,∴当125d a ==时,25n a n =;当12d a ==时,2na n =;∴25n a n =或2n a n =(N n +∈).【小问2详解】因为等差数列{}n a 的公差为整数,由(1)得2n a n =,所以()()2212n n n S nn +==+,则()()112n S n n +=++,∴()()()()()()()12121111111111nn n n n n n b n n n n n n n ⎡⎤++-+⎛⎫=-=--=-++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦.①当n 为偶数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++--+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++----+++-+ 1111n =-++1n n =-+.②当n 为奇数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++-+++-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++-+++----+ 1111111n n n =-+---+231n n +=-+.所以当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+.22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 的取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.【答案】(1)递增区间为10,3⎛⎫ ⎪⎝⎭,递减区间为1,3⎛⎫+∞ ⎪⎝⎭(2)1,2⎛⎤-∞- ⎥⎝⎦(3)证明见解析【解析】【分析】(1)求定义域,求导,由导函数的正负求出单调区间;(2)转化为1ln 0x m x x ⎛⎫+-< ⎪⎝⎭在()1,x ∈+∞上恒成立,令()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,分0m ≥和0m <两种情况,求导,结合导函数特征,再分类讨论,求出m 的取值范围;(3)在(2)基础上得到12ln x x x<-,赋值得到211212ln 1n n n n n n n n n +++<-=++,利用累加法得到结论.【小问1详解】当3m =-时,()ln 3,0f x x x x =->,则()1133x f x x x-'=-=,令()0f x ¢>,得103x <<;令()0f x '<,得13x >,所以()f x 的单调递增区间为10,3⎛⎫ ⎪⎝⎭,单调递减区间为1,3⎛⎫+∞ ⎪⎝⎭.【小问2详解】由()m f x x <,得1ln 0x m x x ⎛⎫+-< ⎪⎝⎭,设()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,当()1,x ∈+∞时,1ln 0,0x x x>->,所以当0m ≥时,()0g x >,不符合题意.当0m <时,()2111g x m x x ⎛⎫=++ ⎝'⎪⎭22mx x m x ++=,设()()2,1,h x mx x m x =++∈+∞,其图象为开口向下的抛物线,对称轴为12x m=-0>,当112m ->,即102m -<<时,因为()1210h m =+>,所以当11,2x m ⎛⎫∈-⎪⎝⎭时,()0h x >,即()0g x '>,此时()g x 单调递增,所以()()10g x g >=,不符合题意.当1012m <-≤,即12m ≤-时,()h x 在()1,+∞上单调递减,所以()()1210h x h m <=+≤,所以()0g x '<,所以()g x 在()1,+∞上单调递减,所以()()10g x g <=,符合题意.综上所述,m 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.【小问3详解】由(2)可得当1x >时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,即12ln x x x<-,令*1,n x n n+=∈N ,则211212ln 1n n n n n n n n n +++<-=++,所以22223351212ln ,2ln ,,2ln 111222n n n n n++<<⋅⋅⋅<+++,以上各式相加得22223135212lnln ln 121122n n n n n++⎛⎫++⋅⋅⋅+<++⋅⋅⋅+ ⎪+++⎝⎭,即22223135212ln 121122n n n n n ++⎛⎫⨯⨯⋅⋅⋅⨯<++⋅⋅⋅+⎪+++⎝⎭,所以()22235212ln 11122n n n n++<++⋅⋅⋅++++.【点睛】导函数证明数列相关不等式,常根据已知函数不等式,用关于正整数的不等式代替函数不等式中的自变量,通过多次求和(常常用到裂项相消法求和)达到证明的目的,此类问题一般至少有两问,已知的不等式常由第一问根据特征式的特征而得到.。
江苏省震泽中学第⼀学期⾼三数学⽂科期中考试卷江苏省震泽中学07-08学年第⼀学期期中测试数学(⽂)试卷命题⼈:姚迎春审核⼈:包君⼀、填空题:(5×14=70)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U 则≥-+=≥= 2. 等差数列{}n a 中,12010=S ,那么29a a +的值是3.直线2(1)(3)750m x m y m ++-+-=与直线(3)250m x y -+-=垂直的充要条件是4.复数21i -的值为5.下列函数中,在其定义域内既是奇函数,⼜是减函数的是①0.5log y x =()0≠x ② x xy +=1 ()0≠x ③ x x y --=3 ④ x y 9.0=6.与直线2x -y -4=0平⾏且与曲线x y 5=相切的直线⽅程是. 7.函数y 的定义域和值域分别是和 8.在ABC ?中,60=∠C ,则=+++ac bc b a 9.圆064422=++-+y x y x 截直线x-y-5=0所得弦长等于 10. P 是椭圆221169x y +=上的动点, 作PD⊥y 轴, D 为垂⾜, 则PD 中点的轨迹⽅程为 .11.已知双曲线22x -my 2=1的⼀条准线与抛物线y 2=4x 的准线重合,则双曲线的离⼼率为12.若,a b 是正常数,a b ≠,,(0,)x y ∈+∞,则222()a b a b x y x y++≥+,当且仅当a bx y =时上式取等号. 利⽤以上结论,可以得到函数29()12f x x x =+-(1(0,)2x ∈)的最⼩值为,取最⼩值时x 的值为.13.⼀⽔池有两个进⽔⼝,⼀个出⽔⼝,每⽔⼝的进出⽔速度如图甲、⼄所⽰.某天0点到6点,该⽔池的蓄⽔量如图丙所⽰.(⾄少打开⼀个⽔⼝)给出以下3个论断:①0点到3点只进⽔不出⽔;②3点到4点不进⽔只出⽔;③4点到6点不进⽔不出⽔,则⼀定能确定正确的诊断是.14. 如图,⼀个粒⼦在第⼀象限运动,在第⼀秒末,它从原点运动到(0,1),接着它按如图所⽰的x 轴、y 轴的平⾏⽅向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒移动⼀个单位,那么第2008秒末这个粒⼦所处的位置的坐标为______。
姜堰市罗塘中学~第一学期期中考试
高 三 数 学 试 题(文科)
时间:120分,满分:160分
一、填空题(每题5分) 1、=-)600sin(0
2、设πln =a ,()2
ln π=b ,πln =c ,则a 、b 、c 大小顺序为
3、若向量)1,1(=a ,()1,1-=b ,)2,4(=c
,若b n a m c +=,则=+n m
4、已知直线a x y +=与曲线)2ln(+=x y 相切,则a 的值为
5、公差不为零的等差数列的前项和为.若是的等比中项,
648=S ,则=
6、ABC ∆中a b c 分别是角A 、角B 、角C 的对边,若8=a ,9=b ,060=∠B ,
则该三角形有 解
7、若0 =++c b a ,b a ,成0
60夹角,b a ,的模分别为3和4,则c 的大小为
8、设是公差不为0的等差数列,且成等比数列,设的前
项和,则的最小值为
9、若),5[+∞∈x ,则1
1
-+
x x 的最小值为 10、已知a ,b ,c ,d 为实数,且c >d .则“a >b ”是“a -c >b -d ”的 条件(填 “充分而不必要条件”“必要而不充分条件”“充要条件”“ 既不充分也不必要条件”中的一个)
11、若圆02
2
=--+q mx y x 关于直线032=+-y x 对称,则mq 的取值范围为
{}n a n n S 4a 37a a 与10S {}n a 12a =136,,a a a {}n a n n S n S
12、若函数24)(x x f -=的定义域为],[b a ,值域为]2,0[,定义区间],[b a 的长度
为a b -,则区间],[b a 长度的最小值为
13、设是公比为的等比数列,,令)3,2,1(1 =-=n a b n n ,若数列
有连续四项在集合}2,1,3,5,7{--中,则q = .
14、圆C 的半径为1且与直角坐标系的两坐标轴共有两个公共点,其中一个点的坐
标为)0,1(,则符合条件的圆共有 个. 二、解答题(本大题共6小题)
15、(12分)已知向量)1,(sin θ=a
,)cos ,1(θ=b ,0<θ<π
(1)若b a
⊥,求θ;
(2)设x b a =⋅ ,y b a =+
,将y 表示成x 的函数)(x f y =,求函数
)(x f y =的值域.
16、(14分)若锐角ABC ∆中,6=c ,060=C ,求b a +的取值范围。
17、(14分)解关于x 的不等式02
>+-a x ax )(R a ∈
{}n a q ||1q >{}n b
18、(16分)设数列{}n a 满足:)(42
n S a n n -=,0n a >. (1)求{}n a 的表达式;
(2)将数列{}按如下规律分为123456789101112(),(,),(,,),(),(,),(,,),a a a a a a a a a a a a …,
分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{}n b ,求2009b 的值;
19、(16分)已知圆C 1:12
2=+y x ,圆C 2:4)4(2
2
=+-y x
(1)判断两圆位置关系;
n a
(2)若直线l 为过点P(3,0)且与圆C 1相切的直线,求直线l 的方程;
(3)在x 轴上是否存在一定点Q(m,0),使得过Q 点且与两圆都相交的直线被两圆所截得的弦长始终相等?若存在,求出Q 点的坐标,若不存在,请说明理由
20、(18分)设函数x x q px x f ln 2)(--
=,且2)(--=e
p
qe e f , 其中是自然对数的底数. (1)求p 与q 的关系;
(2)若在其定义域内为单调函数,求p 的取值范围; (3)设,若在上至少存在一点,使得>成立,求 实数p 的取值范围.
e ()
f x 2()e
g x x
=
[]1,e 0x 0()f x 0()g x。