级数求和的常用方法共16页
- 格式:doc
- 大小:700.00 KB
- 文档页数:16
无穷级数求和公式大全无穷级数是数学中的一个重要概念,它由一系列无穷多个数相加而成。
在许多实际问题中,我们需要计算无穷级数的和。
本文将介绍一些常见的无穷级数求和公式,帮助读者更好地理解和计算无穷级数。
1.等差数列求和公式等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
当n趋近于无穷大时,等差数列的和可以通过以下公式计算:Sn = lim(n→∞) (n/2) [2a1 + (n-1)d]其中Sn是前n项和。
2.等比数列求和公式等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
当,r,<1时,等比数列的和可以通过以下公式计算:Sn=a1/(1-r)当,r,>1时,等比数列的和不存在。
3.幂级数求和公式幂级数是形如∑(n=0)∞a^n的无穷级数,其中a为常数。
幂级数的和可以通过以下公式计算:S=1/(1-a)该公式要求幂级数的绝对值,a,<14.调和级数求和公式调和级数是形如∑(n=1)∞1/n的无穷级数。
调和级数的和发散,即不存在有限的和。
然而,其部分和可以逼近自然对数的常数项:S = ∑(n=1)∞ 1/n ≈ ln(n) + γ5.奇数级数求和公式奇数级数是形如∑(n=1)∞(2n-1)的无穷级数。
奇数级数的和可以通过以下公式计算:S=∑(n=1)∞(2n-1)=n^26.平方和级数求和公式平方和级数是形如∑(n=1)∞n^2的无穷级数。
平方和级数的和可以通过以下公式计算:S=∑(n=1)∞n^2=n(n+1)(2n+1)/67.指数级数求和公式指数级数是形如∑(n=0)∞(x^n/n!)的无穷级数,其中x为常数。
S=∑(n=0)∞(x^n/n!)=e^x8.费马级数求和公式费马级数是形如∑(n=1)∞(1/n^2)的无穷级数。
费马级数的和可以通过以下公式计算:S=∑(n=1)∞(1/n^2)=π^2/6上述是一些常见的无穷级数求和公式,希望能够帮助读者更好地理解和计算无穷级数的和。
级数求和的常用方法摘要级数理论及应用无论对数学学科本身还是在其他科学技术及理论的发展中都有极为重要的影响和作用,而级数求和是级数理论及应用的主要内容之一.由于级数求和的方法比较多,技巧性很强,一般很难掌握其规律,是学习的一个难点,因此掌握一些常用的级数求和方法就显得尤为重要.通过例题,分别针对常用的数项级数和函数项级数求和进行分析和讨论,试图通过对例题的分析和解决,展示级数求和的常用方法和思想,进而探索级数求和的规律,理解级数理论即合理应用,打下良好的基础,为学习者起到抛砖引玉的方法.关键词:数项级数;函数项级数;求和;常用方法Summation of series method in common useAbstractProgression theory and application still are having the most important effect and function on the development of science and technology and theory disregarding logarithmic discipline per se, but summation of series is one of progression theory and applicative main content. Method of summation of series is comparatively many, the dexterity is very strong, in general very difficult to have its law in hand, be a difficult point studying, have some summation of series in common use method in hand therefore appearing especially important right away. Carry out analysis and discuss that by the fact that the example , difference are aimed at several progression and function item summation of series in common use, try to pass the analysis checking an example and solve, show summation of series method and thought in common use , probe and then the summation of series law , understand that progression theory is that reasonableness applies , lays down fine basis, in order the learner gets the method arriving at a modest spur to induce someone to come forward with his valuable contributions.Key words: Count progression; function series; Sue for peace; Method in common use目录引言................................................ 错误!未定义书签。
常用的求和公式(级数求和)求和公式,也称为级数求和公式,是数学中常用的一类公式,用来计算级数的和。
级数是指无穷串数的和,可以分为无穷级数和有限级数。
1.等差数列的求和公式:等差数列的求和公式是指求等差数列的前n项和的公式。
等差数列是指数列中的每一项与前一项之差都相等的数列。
其求和公式为:Sn = (a1 + an) × n / 2其中,Sn为等差数列的前n项和,a1为等差数列的第一项,an为等差数列的第n项,n为项数。
2.等比数列的求和公式:等比数列的求和公式是指求等比数列的前n项和的公式。
等比数列是指数列中的每一项与前一项之比都相等的数列。
其求和公式为:Sn=a1×(q^n-1)/(q-1)其中,Sn为等比数列的前n项和,a1为等比数列的第一项,q为等比数列的公比,n为项数。
3.阶乘的求和公式:阶乘是指一个数与小于它的自然数相乘的乘积。
阶乘的求和公式为:Sn=1+2+3+...+n=n×(n+1)/2其中,Sn为前n个自然数的和,n为正整数。
4.平方数的求和公式:平方数是指一个数与自身相乘的结果。
平方数的求和公式为:Sn=1^2+2^2+3^2+...+n^2=n×(n+1)×(2n+1)/6其中,Sn为前n个平方数的和,n为正整数。
5.立方数的求和公式:立方数是指一个数与自身相乘两次的结果。
立方数的求和公式为:Sn=1^3+2^3+3^3+...+n^3=(n×(n+1)/2)^2其中,Sn为前n个立方数的和,n为正整数。
6. Fibonacci数列的求和公式:Fibonacci数列是指从0和1开始,每一项都等于前两项之和的数列。
Fibonacci数列的求和公式为:Sn=F1+F2+F3+...+Fn=F(n+2)-1其中,Sn为Fibonacci数列的前n项和,Fn为Fibonacci数列的第n项,n为项数。
除了以上几种常用的求和公式外,还有更复杂的级数求和公式,如几何级数的求和公式、调和级数的求和公式等。
1.7方程式法 (3)1.8原级数转化为子序列求和 (3)1.9数项级数化为函数项级数求和 (3)1.10化数项级数为积分函数求原级数和 (4)1.11三角型数项级数转化为复数系级数 (4)1.12构造函数计算级数和 (5)1.13级数讨论其子序列 (5)1.14裂项法求级数和 (6)1.15裂项+分拆组合法 (7)1.16夹逼法求解级数和 (7)2函数项级数求和 (8)2.1方程式法 (8)2.2积分型级数求和 (8)2.3逐项求导求级数和 (9)2.4逐项积分求级数和 (9)2.5将原级数分解转化为已知级数 (10)2.6利用傅里叶级数求级数和 (10)2.7三角级数对应复数求级数和 (11)2.8利用三角公式化简级数 (12)2.9针对2.7的延伸 (12)2.10添加项处理系数 (12)2.11应用留数定理计算级数和 (13)2.12利用Beta函数求级数和 (14)参考文献 (15)级数求和的常用方法级数要首先考虑敛散性,但本文以级数求和为中心,故涉及的级数均收敛且不过多讨论级数敛散性问题.由于无穷级数求和是个无穷问题,我们只能得到一个n →∞的极限和.加之级数能求和的本身就困难,故本文只做一些特殊情况的讨论,而无级数求和的一般通用方法,各种方法主要以例题形式给出,以期达到较高的事实性.1数项级数求和1.1等差级数求和等差级数为简单级数类型,通过比较各项得到其公差,并运用公式可求和.11((1)22n n a a n n s na d +-=+=),其中1a 为首项,d 为公差 证明:12=++...+n s a a a ①,21s=+...++n a a a ② ①+②得:()12-112(+++...+(+)n n n s a a a a a a =+) 因为等差级数11...+n n a a a a +==所以1(2n n a a s +=)此证明可导出一个方法“首尾相加法”见1.2. 1.2首尾相加法此类型级数将级数各项逆置后与原级数四则运算由首尾各项四则运算的结果相同,便化为一简易级数求和. 例1:求01235...(21)n n n n n c c c n c +++++.解:01235...(21)n n n n n s c c c n c =+++++,210(21)...53n n n n n s n c c c c =++++,两式相加得:21012(22)(...)(1)2n n n n n n s n c c c c n +=++++=+⋅,即: 01235...(21)(1)2n n n n n n c c c n c n +++++=+.1.3等比级数求和等比级数为简单级数类型,通过比较各项得到其公比并运用公式可求和.当q =1,1s na =;当q ≠1,1(1)1n a q s q-=-,其中1a 为首项,q 为公比.证明:当q =1,易得1s na =,当q ≠1,11111=++...+n s a a q a q - ①, 2111=++...+n qs a q a q a q ②, ①-②得11(1)n q s a a q -=-.可以导出一种方法“错位相减”见下1.4 1.4错位相减法此方法通常适用于等差与等比级数混合型,通过乘以等比级数公比q ,再与原级数四则运算后化为等差或等比级数求和.例2:计算212n n -∑.解: 2313521...2222n n s -=++++ ①,21352121 (222)n n s --=++++ ②,②-①得: 121121************n n n k k k n k k k k k n s s s -===---=-=+-=+-=∑∑∑111121121213122212n n n n n n -----+-=---,lim n s →∞=3.1.5蕴含型级数相消法此类型级数本身各项之间有蕴含关系,通过观察可知多项展开会相互之间相消部分项,从而化简级数求和.例3:计算1ni =∑.解:将各项展开可得:(1...s =-+++++11==lim n s →∞= 1.6有理化法求级数和对于一些级数通项含有分式根式的级数,我们可以仿照数学中经常使用的方法“有理化”处理,以期达到能使得级数通项化简,最后整个级数都较容易求和.例4:计算1n ∞=.解:可以看出此级数含根式较多,因此尝试运用有理化的方法去处理,即通项n a =对其分母有理化得:−−−−=−分母有理化,则原级数可以采用本文中的1.5“蕴含型级数相消法”,则可以快速求得级数和的极限为1. 1.7方程式法此型级数通过一系列运算能建立级数和的方程式,通过解方程求解级数和.准确建立方程是关键问题,方程类型不固定,有类似与微分方程之类的,故要视具体情况建立方程,解方程也要准确,才能求出级数和.例5:计算2cos cos 2...cos n q q n q θθθ+++,其中1q <. 解:记2cos cos 2...cos =nq q n s q θθθ+++= =1cos nk k k q θ∑两边同时乘以cos 2q θ得[]+1+1=1=1cos cos cos =2=2cos+1+cos -1)nnk k k k k k k q s qq θθθθθ•••∑∑()( 即:+1222cos cos+1cos )(cos )2=n n n n q s q s q q q s q θθθθ+•++-+-()( 解此方程得:2122cos cos(1)cos =12cos n n q n q n q q s q q θθθθ++-++-+-22lim cos 12cos n q q s q q θθ→∞-=+-. 1.8原级数转化为子序列求和若下列条件成立[1]:(1)当n →∞时级数的通项0n a →(2)级数各项没有破坏次序的情况而得新序列n 1n b ∞=∑收敛于原级数 .例6:计算11111111111++-1+++-+++-+ (2345627893)()()().解:lim 0n n a →∞=,应用欧拉公式1111++...ln 23n c n e n++=++,其中c 为欧拉常数,0()n e n →→∞111111+++...+-1--...-2332s n n=3ln 3ln n n n n e e =-+-,lim ln3n s →∞=.1.9数项级数化为函数项级数求和数项级数化为相应函数项级数,再通过函数项级数求和,并赋予函数未知数相应未知数后记得相应原级数的和.例7:求级数和11135...n n ∞=••••∑(2-1).解:建立函数项级数2111()135...n n s x x n ∞-==••••∑(2-1)由函数敛散性知识可知其收敛域为(,)-∞+∞,将函数项级数逐项求导可得:'2211()1135...n n s x x n ∞-==+••••∑(2-3)=211111()135...n n x x xs x n ∞-=+=+••••∑(2-1),由此可知()s x 满足微分方程'()()1s x xs x -=,且易知(0)0s =,解此常微分方程得:221122()xx t dt s x ee-=⎰,令1x =则可以求出原级数和:211122s t eedt =⎰.1.10化数项级数为积分函数求原级数和将原级数通过化简,构造积分极限式,从而转化为积分求原级数和也不失为一种好方法,构造积分式子是关键,一般原级数中通过四则运算将n 与积分中的分割相联系从而构造分割,建立级数与积分式子的桥梁.例8:计算11k n k∞=+∑,其中()n →∞.解:记1011111lim =ln21+1n n n k k dx s k n k n x n∞→∞==−−−−−−−−→==←−−−−−−−−++∑∑⎰分子分母同时除以构造分割建立级数与积分的桥梁. 1.11三角型数项级数转化为复数系级数将三角型数项级数转化为复数域上的级数,由于复数的实部对应于数项级数,从而转化为求复数系级数进而求原级数和.例9[7]:设2cos cos 2...cos = n s q q n q θθθ+++,求s .解:由于1cos =nk k s q k θ=∑,令(cos sin )i z qe q i θθθ==+为复数,其中0,1,2...k =(cos sin )k k ik k z q e q k i k θθθ==+,其中1,2...k =,得:122011+...1(cos sin )(cos 2sin 2)+1n nk n k z z z z z q i q i z θθθθ+=-==+++=++++-∑ 323cos 2cos 3(cos3sin 3)+...+(cos sin )1cos n q q q i q n i n q θθθθθθθ++++=++2...+cos (sin )sin 2...sin nn q n i q qq n θθθθ++++而另一方面1111(cos(+1)sin(+1))11(cos sin )n n z q n i n z q i θθθθ++--+=--+=211-2cos q qθ+ {1221cos cos(1)cos(1)cos sin(1)sin n n n q q n q n q n θθθθθθ+++⎡⎤--+++++⎣⎦+ 212sin cos(1)sin sin(1)sin(1)cos n n n i q q n q n q n θθθθθθ+++⎡⎤-+-+++⎣⎦}取实部对应原级数和即得:12211(1cos cos(1)cos )1-2cos n n q qs q q n q n θθθθ+++=--+++即: 11221(1cos cos(1)cos 12cos )1-2cos n n s q q n q n q q q qθθθθθ++=--++-+-+ 当n →∞,且1q <时22lim cos 12cos n q q s q q θθ→∞-=+-.1.12构造函数计算级数和将级数各项转化为其它函数式子化简级数并求原级数和,关键在于各项的化简函数是否基本统一,如何选择函数式子才能有效化简,将级数参数化为函数式子中的未知数,并无一般的通用函数,选择函数视具体情况而定,下面我们先看一个例子感受这种方法,并从中体会这种方法.例10[7]:请计算下面的级数式子:记2323=1-+......)1111nn t t t t s t t t t t ++++++++()(,其中1t →-.解:构造函数式子:1()11x x xe f x e e --==++,此函数在[0,)+∞单调递减. 由于000(1)ln(1)|ln 211x xx x x e d e dx dx e e e--+∞+∞-+∞---+==-+=++⎰⎰, 令ln h t =-,满足11lim limln t t h t →→==0ln 1111hthe t eeh h----=-=-=,ln ln ()()1()11k t k hk kt k hk t e e f kh t e e ----===+++. 代入题目中的级数式子得:23231lim 1-+......)111n n t t t t t t t t t t -→+++++++()(+1= 011lim ()h h k e h f kh h -∞→=-∑=0011lim ()ln 21h xx h k e e h f kh dx h e --∞+∞-→=-==+∑⎰. 1.13级数讨论其子序列引理[1]:数列}{n s 收敛的充分必要条件是}{n s 的任一子序列都收敛且有相同的极限.特别的:数列}{n s 收敛于s 的充分必要条件是两个互补的子列}{2n s ,}{12-n s ,收敛于同一极限.推广可得:定理[1]:若级数∑∞=1n n a 通项满足当n →∞时, 0→n a (收敛判别的必要条件),∑∞=1n n a 收敛于s 的充分必要条件是:部分和}{n s 的一个子序列}{np s 收敛于s ,其中p 满足:p 是某个正整数p =1,2,…将级数分情况讨论,化为多个子序列之和,利用原级数收敛则级数任意添加括号得到的级数和收敛于原级数和原理,通过求各个子序列之和求解原级数和,关键在于如何分解原级数为不同子序列,然而子序列相对于原级数来说易求些,这样方法才行之有效,这和1.6的“原级数转化为子序列求和”是不同的.分情况讨论在三角中讨论角的大小我们已不陌生,下面我们就看一个这样讨论角的幅度的例题.例11[6]:计算:12cos32n n n π∞=∑. 解:记12cos32n n n s π∞==∑,由级数敛散性知识可知,该级数绝对收敛.按幅度角的讨论将级数分解为:1{|3,0,1,2...}A n n k k ===,2{|31,0,1,2...}A n n k k ==+=,3{|32,0,1,2...}A n n k k ==+=.则:1232222coscos cos cos 3333=++2222n n n nn n A n A n A n n n n ππππ∞∞∞∞=∈∈∈∑∑∑∑331320002coscos +133+222k k k k k k πππ∞∞∞++====+∑∑∑() 1211+cos +cos +()2343k k πππ∞=∑3=01(())2 1115(1)148718=--=-,所以:12cos23127n n n s π∞==-=-∑. 1.14裂项法求级数和针对级数是分数形式,且满足分母为多项乘积形式,且各项之间相差一个相同的整数,裂项后各项就独立出来,而原来各项之间相差整数则裂项后新级数等价于求解某一个级数,其余新级数照此可求出,从而原级数和可以求出. 裂项一般形式:1111()()(+)x m x n n m x m x n=-+-++,此处m n >.例12:计算111...123234(1)(2)s n n n =+++++. 解:记1(1)(2)n a n n n =++,111[]2(1)(1)(2)n a n n n n =-+++ 针对11(1)nk k k =⋅+∑同理采用裂项法记111(1)1n b n n n n ==-++则11(1)nk k k =+∑=11111111111(1)()()()()+...+()2233445561n n −−−−−−−−−−→-+-+-+-+--←−−−−−−−−−−+裂项后后面项可以消去前面项部分这就是裂项法的好处! 11-1n +,111lim lim[1-]1(1)1nn n k k k n →∞→∞===++∑,所以 111111lim lim [](1)(2)2(1)(1)(2)nnn n k k k k k k k k k →∞→∞===++++++∑∑= 11111111lim lim()2(1)2(1)2n n n n k k k k k k +→∞→∞==--++∑∑=1111(1)2224--=. 1.15裂项+分拆组合法将裂项与分拆组合法合用在一起,运用裂项法分拆级数,再将分拆重新组合级数,由新级数返回求原级数和.例13:计算1(+1)(+2)n nn n n ∞=∑(+3).解:11235+1+2+3(+1)(+2)n n n n n n n ++-=(+3)111111251()(+1)(+2)3+1+2+33(+1)(+2)n n n n n n n n n n n n n ∞∞∞===∴=+--∑∑∑(+3)(+3)=1125111()()3233464+--=. 1.16夹逼法求解级数和在数学分析中运用夹逼法则求解极限,在求极限和中我们也可以借鉴此方法,运用两个级数逼近原级数,最后两逼近级数和等于原级数和.例14[8]:设m 为一给定的正整数,求221,1n m nm n ∞=≠-∑. 解:12222221,11111m Nm m Nm Nn m n n n ms m n m n m n +-++=≠==+==+---∑∑∑ 1111111111[ (21122121)m Nn m m m m m m m m n m n +=+=++++++++-+-+--+∑] 1111111(1...1...)22222m m N N m m =+++------+ 21112...2122+1m m N m N N N m N +++++++<<且∞→N 时,2lim 0+1N mN →∞=,且2lim 0+2N m N m →∞=,所以23lim 04m N N s m +→∞=-,即2221,134n m nm n m ∞=≠=--∑ 2 函数项级数求和函数项级数和依据未知数x 的而定,因此在收敛域内寻找一个新函数去刻画级数和.2.1方程式法类似于数项级数,函数项级数建立方程,通过方程求解求函数项级数和.例15:计算函数项级数23456()1 (21324135246)x x x x x s x x =+++++++ 解:由函数项级数收敛性知识可知题中函数项级数收敛半径为+∞,逐项求导得3'2()1 (2)x s x x x =++++即:'()1()s x xs x =+(0)1s =解此微分方程得:2222()(1)x t x s xe e dt -=+⎰.2.2积分型级数求和积分型级数求和显然直接求和会带来困难,通常积分也积不出来,所以要转化,将积分式子化简是个想法,通过变量替换等积分技术化简积分式子,再求级数和,所以关键在于处理积分式子,下面我们看个例题.例16:计算级数(21)220x k k k eππ∞+-=∑⎰.解:因为(2,(21x k k ππ∈+)),作变量替换t k x +=π2得:(21)(222200=x t tk k k k ee e e ππππππ+--+--=⎰⎰⎰)再根据:'22t t ee dt --=⎰⎰C +得:(422204tt tk ee e πππππ-+--=-+⎰⎰⎰)=4042|2eeπππ--=84042|24eeec ππππ---=.所以原级数=8211t k k eee ππππ∞----==-∑⎰. 2.3逐项求导求级数和根据幂级数逐项求导收敛半径不变原理,对原级数逐项求导后化为一些易求和的幂级数,再往回求积分,从而求原级数和.易知的级数往往是通过泰勒展式或者麦克劳林展式获得的。
级数求和的方法标题: 级数求和的方法正文:级数是一类重要的数学函数,在实际应用中有着广泛的应用。
其中,级数求和是一种常见的计算方式。
下面,我们将介绍一种常见的级数求和方法,即对数级数求和。
假设有一个正整数n,我们定义一个级数:$$a_0 + a_1 + cdots + a_n = frac{1}{1 - x^n}$$其中,$a_0, a_1, cdots, a_n$是正整数,$x$是一个实数。
这个级数可以表示为:$$a_0 + a_1 + cdots + a_n = sum_{k=0}^{n} a_k x^k$$那么,级数求和公式如下:$$frac{1}{1 - x^n} = sum_{k=0}^{n} a_k x^k$$这里,$frac{1}{1 - x^n}$是一个常数函数,可以表示为:$$frac{1}{1 - x^n} = frac{1}{1 - x} cdot sum_{k=0}^{n} a_k x^k$$ 将级数和级数求和公式代入,可以得到:$$frac{1}{1 - x} cdot sum_{k=0}^{n} a_k x^k = a_0 + a_1 + cdots + a_n$$ 这就是级数求和公式。
我们可以使用这个公式来计算任意级数。
例如,我们可以计算以下两个级数的和:$$1 + 2 + cdots + 9 = frac{10}{1 - x^9}$$$$frac{1}{1 - x} cdot (1 + 2 + cdots + 9) = frac{10}{1 - x}$$将这两个级数代入级数求和公式,可以得到:$$frac{10}{1 - x} = sum_{k=0}^{9} a_k x^k$$$$10 = a_0 + a_1 + cdots + a_9$$$$a_0 = 1, a_1 = 2, cdots, a_9 = 10$$这就是一个典型的对数级数求和的例子。
除了对数级数求和,还有其他的级数求和方法。
级数求和的八种方法一、列方程法:列方程法是通过将级数的部分项与一些已知的函数进行比较,然后列出方程,并求解得到级数的和。
常用的列方程法有以下几种:1.等差级数:等差级数是指级数的每一项与前一项之间的差都相等的级数。
求等差级数和的方法有两种常用的方式:(1)利用等差级数的通项公式:对于等差级数来说,其通项公式可以表示为:an = a1 + (n - 1)d,其中a1是首项,d是公差,n是项数。
利用这个通项公式,可以列出等差级数的部分和Sn的表达式,然后求解得到 Sn 的值。
(2)利用等差级数的求和公式:等差级数的求和公式是 Sn = (a1 + an)n/2,其中n表示级数的项数,a1表示首项,an表示末项。
将对应的值代入公式,即可求得等差级数的和。
2.等比级数:等比级数是指级数的每一项与前一项之间的比例都相等的级数。
求等比级数和的方法有以下两种常见的方式:(1)利用等比级数的通项公式:对于等比级数来说,其通项公式可以表示为:an = a1 * q^(n-1),其中a1是首项,q是公比,n是项数。
利用这个通项公式,可以列出等比级数的部分和Sn的表达式,然后求解得到 Sn 的值。
(2)利用等比级数的求和公式:等比级数的求和公式是Sn=a1*(1-q^n)/(1-q),其中a1表示首项,q表示公比,n表示级数的项数。
将对应的值代入公式,即可求得等比级数的和。
二、借助公式法:由于有些级数的部分和难以直接计算,可以利用已知的级数求和公式,借助一些已知级数的和,表示成新的级数的和。
常见的借助公式法有以下几种:1.幂级数的求和公式:幂级数是指级数的每一项都是幂函数的项。
对于幂级数来说,有一些常用的求和公式,可以将一个复杂的幂级数表示成一个已知幂级数的和,从而利用已知的幂级数求和公式得到级数的和。
2.三角函数级数的求和公式:三角函数级数是指级数的每一项都是一个三角函数的项。
对于三角函数级数来说,有一些常用的求和公式,可以将一个复杂的三角函数级数表示成一个已知三角函数级数的和,从而利用已知的三角函数级数求和公式得到级数的和。
级数求和的方法及其收敛性的判断级数求和是数学中常见的问题,涉及到无穷求和的运算。
本文将介绍常见的级数求和方法,并讨论如何判断级数的收敛性。
一、级数求和的方法1.1 等差数列的求和公式对于等差数列$a_1,a_2,a_3,...,a_n$,其求和公式为$S_n=\frac{n}{2}(a_1+a_n)$,其中$n$为项数,$a_1$为首项,$a_n$为末项。
1.2 等比数列的求和公式对于等比数列$a_1,a_2,a_3,...,a_n$,其求和公式有两种情况:当$|q|<1$时,级数的和为$S_\infty=\frac{a_1}{1-q}$;当$|q|\geq1$时,级数发散。
1.3 幂级数的求和公式幂级数是指形如$\sum_{n=0}^{\infty}a_nx^n$的级数,其中$a_n$为系数,$x$为变量。
根据幂级数的收敛半径,可以通过将$x$代入幂级数的求和公式来计算级数的和。
二、级数收敛性的判断2.1 正项级数判别法对于正项级数$\sum_{n=1}^{\infty}a_n$,如果极限$\lim_{n \to\infty}a_n=0$,则级数收敛;如果极限$\lim_{n \to \infty}a_n\neq0$,则级数发散。
2.2 比值判别法对于级数$\sum_{n=1}^{\infty}a_n$,计算$\lim_{n \to\infty}\frac{a_{n+1}}{a_n}$,如果该极限存在且小于1,则级数绝对收敛;如果该极限大于1,则级数发散;如果该极限等于1,则判定不确定。
2.3 根值判别法对于级数$\sum_{n=1}^{\infty}a_n$,计算$\lim_{n \to\infty}\sqrt[n]{|a_n|}$,如果该极限存在且小于1,则级数绝对收敛;如果该极限大于1,则级数发散;如果该极限等于1,则判定不确定。
2.4 积分判别法对于形如$\sum_{n=1}^{\infty}a_n$的级数,若存在连续函数$f(x)$使得$f(n)=a_n$,则考虑对应的函数级数$\sum_{n=1}^{\infty}f(n)$。
级数求和方法及其收敛性分析级数是数学中一个重要的概念,求和方法及其收敛性分析是对级数进行深入研究的核心内容。
本文将介绍常见的级数求和方法,并着重讨论它们的收敛性。
一、级数求和方法1. 部分和求和法所谓部分和,就是将级数的前n项相加得到的和,即Sn = a1 + a2 + ... + an。
部分和求和法是最简单直观的一种求和方法,但仅对某些特殊的级数有效。
2. 数学归纳法数学归纳法在级数求和中也经常会用到。
它的基本思想是将级数的部分和表示成待求项的形式,并通过递推关系求解。
数学归纳法在证明级数收敛性和求解级数和的问题中有广泛应用。
3. 积分法积分法是一种常用的级数求和方法。
通过将级数化为函数的积分形式,可以利用积分的性质来求得级数和。
例如,对于幂级数和三角级数,积分法是一种常见的求和方法。
4. 递推关系法递推关系法也是一种常见的求和方法。
它建立了级数的部分和与待求项之间的递推关系,通过逐一计算部分和来逼近级数和。
递推关系法在级数求和中有着广泛的应用。
二、级数的收敛性分析在进行级数求和时,我们需要分析级数的收敛性以确保求和的正确性。
常用的收敛性分析方法有以下几种:1. 收敛判别法收敛判别法是判断级数是否收敛的基本方法。
常见的收敛判别法包括比较判别法、比值判别法、根值判别法、积分判别法等。
这些方法根据级数项的大小、比值或积分等特征,给出了判断级数收敛性的准则。
2. 绝对收敛和条件收敛绝对收敛和条件收敛是对级数收敛性的一种分类。
如果一个级数的任意一项的绝对值都是收敛的,那么这个级数称为绝对收敛。
如果一个级数是收敛的,但不是绝对收敛的,那么这个级数称为条件收敛。
绝对收敛级数具有更好的性质,条件收敛级数则需注意级数项的顺序对结果的影响。
3. 收敛域对于幂级数而言,收敛域是一个重要的概念。
收敛域是指幂级数在哪些点上收敛。
通过幂级数的收敛域,我们可以判断幂级数收敛的范围,并进一步计算其和函数。
4. Abel定理和Dirichlet定理Abel定理和Dirichlet定理是级数收敛性分析中的两个重要定理。
解题方法与技巧级数求和的方法金丹丽 (安徽财贸学院基础部 蚌埠 233041)级数求和是级数理论的基本问题之一,也是较难解决的问题。
本文将从几个不同的角度对级数求和的方法作一探讨。
求级数和的方法一般有:一、利用级数收敛的定义根据收敛的定义,求收敛级数的和,归结为求部分和S n 的极限,即∑∞n =1u n =lim n →∞S n ,而求S n 的方法有:用公式、交叉相消、分项求和等。
例1 求∑∞n =1n(n +1)!分析 本例不能直接求得S n ,须先分项,然后求S n 。
解 由于u n =n(n +1)!=1n !-1(n +1)!所以 S n =12!+23!+…+n(n +1)!=(11!-12!)+(12!-13!)+…+(1n !-1(n +1)!)=1-1(n +1)!从而lim n →∞S n =lim n →∞[1-1(n +1)!]=1,故 ∑∞n =1u n =1例2 求12+322+523+…+2n -12n+… 解 S n =12+322+523+…+2n -12n12S n =122+323+524+…+2n -12n -1两式相减 12S n =12+222+223+…+22n -2n -12n +1=12(1+1+12+…+12n -1-2n -12n )=12(1+1-12n -11-12)-2n -12n 于是lim n →∞S n =1+11-12=3 即S =3例3 求下列两个级数的和:(1)q sin T +q 2sin2T +q 3sin3T +…+q n sin n T +…;(2)q co s T +q 2cos2T +q 3cos3T +…+q n co s n T +…;16 高等数学研究STU DIES IN CO LLEGE M AT HEM AT IC S V ol.4,No.2M a r.,2001收稿日期:2001—02—20。
其中|q |<1分析 本题可以利用定义来求和,但由于直接求部分和的极限有困难,因此,可利用欧拉公式,借助于求复数项级数∑∞n =1r n (r =qe i T )的和,以同时求得所给两个级数的和。
级数求和级数是数学中一种重要的数列形式,也是数学分析的重要内容之一。
级数求和是指对级数中的每一项进行加和计算,从而得到一个确定的数值。
在数学中,级数可以分为无穷级数和有限级数两种形式。
无穷级数是指有无穷多项的级数,表示为∑(n=1到∞)an,其中an为级数的每一项正负数列。
而有限级数是指只有有限个项的级数,表示为∑(n=1到N)an,其中N为级数的最大项数。
对于有限级数,求和的方法很简单,只需将级数的每一项相加即可。
例如,给定级数S=∑(n=1到N)an,要求求和,只需计算S=a1+a2+a3+...+aN。
而对于无穷级数的求和,则需要借助某种方法进行计算。
以下是几种常见的求和方法及示例:1.等差数列求和方法:对于形如S=∑(n=1到∞)an的等差数列级数,如果能找到一个常数d使得an与an+1之间的差恒为d,即an+1=an+d,那么可以利用等差数列的求和公式来求解。
等差数列的求和公式为Sn=(n/2)(a1+aN),其中Sn为前n项和,a1为首项,aN为尾项。
例如,考虑级数S=∑(n=1到∞)2n,可以发现an+1=2n+2=2(n+1),与an之间的差恒为2。
因此,可以使用等差数列的求和公式来计算,得到S=(∞/2)(2+∞×2)=∞。
2.等比数列求和方法:对于形如S=∑(n=1到∞)an的等比数列级数,如果能找到一个常数r使得an与an+1之间的比值恒为r,即an+1=ran,那么可以利用等比数列的求和公式来求解。
等比数列的求和公式为Sn=(a1(1-r^n))/(1-r),其中Sn为前n项和,a1为首项,r为公比。
例如,考虑级数S=∑(n=1到∞)(1/2^n),可以发现an+1=(1/2)^(n+1),且an=(1/2)^n,两者的比值恒为1/2。
因此,可以使用等比数列的求和公式来计算,得到S=(1/(1-(1/2)))=2。
3.幂级数求和方法:幂级数是指级数的每一项都是形如anx^n的函数。
求级数的和的方法总结一、引言级数是高等数学中的一个重要概念,它是由无穷多个数相加而成的。
求级数的和是解决许多问题的基础,因此研究求级数和的方法具有重要意义。
二、常见方法1. 等差数列求和公式当级数为等差数列时,可以使用等差数列求和公式进行求和。
等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
等差数列前n项和Sn=n(a1+an)/2。
例如:求1+3+5+...+99的和。
解:首项a1=1,公差d=2,末项an=99。
所以Sn=n(a1+an)/2=50(1+99)/2=2500。
2. 等比数列求和公式当级数为等比数列时,可以使用等比数列求和公式进行求和。
等比数列的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比。
等比数列前n项和Sn=a1(1-q^n)/(1-q)。
例如:求3+6+12+...+1536的和。
解:首项a1=3,公比q=2,末项an=1536。
由于1536/3=512,所以共有10个数字。
所以Sn=a1(1-q^n)/(1-q)=3(1-2^10)/(1-2)=3069。
3. 幂级数求和当级数为幂级数时,可以使用幂级数求和公式进行求和。
幂级数的通项公式为an=cnx^n,其中cn为系数。
幂级数前n项和Sn=∑(n-1)k=0 cnx^k。
例如:求1+x+x^2+...+x^n的和。
解:Sn=∑(n-1)k=0 x^k=(1-x^n)/(1-x)。
4. 夹逼准则当级数无法使用上述方法进行求和时,可以使用夹逼准则进行估算。
夹逼准则即将待求的级数与已知的两个级数之间进行比较,从而确定待求级数的大小。
例如:求∑(n=1)^∞ 1/n 的和。
解:由于 1/(n+1)< 1/n < 1/n-1,所以有:∑(n=2)^∞ 1/n < ∑(n=2)^∞ 1/(n-1) = ∑(n=1)^∞ 1/n - 1 <∑(n=2)^∞ 1/(n+1)即:ln(n+1) < ∑(n=2)^∞ ⅟_n < ln(n)+C其中C为常量。
级数求和的八种方法级数求和是高等数学课程中经常出现的一个重要问题。
求和的方法因级数的性质和特点而异,下面介绍了八种方法,帮助我们更好地解决求和问题。
一、部分分式分解法部分分式分解是可用于求解一般有理函数的技术,可以将一个消去精度高的有理函数转换为单项式之和。
则,若级数为$\sum_{k=1}^{n}\frac{1}{k(k+1)}$,那么就有因此原级数可以改写为用局部熟知来代替繁琐的求和,求和得到$\sum_{k=1}^{n}(\frac{1}{k}-\frac{1}{k+1})=\frac{1}{1}-\frac{1}{2}+\frac{1}{2} -\frac{1}{3}+……+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}$二、递推法定义$a_n$表示级数前n项总和,即则有$S_{1}=a_{1}$$S_{2}=a_{1}+a_{2}=S_{1}+a_{2}$……若能求出$a_n$的通项公式,则可以利用递推计算出$S_n$。
三、换序法如果知道级数的其中一项的值,那么就可以通过改变级数项的序列来大大简化求和问题。
换序法不影响级数的总和,因此只要找到如下的项$a_{n1},a_{n2},a_{n3},……,a_{nm}$,其中每一个$m$都满足那么原级数就可以换为$S_n=(a_1+a_2+a_3+……+a_{n_1-1})+(a_{n_1}+a_{n_2}+……+a_{n_m})+(a_{n_{m+1}}+……+a_n)$四、差分法对于一个级数,有时候会出现一个有规律的序列。
我们可以使用差分法来求解这个序列。
定义级数的前$n$项的差分序列为其中,$\Delta{a_k}=a_{k+1}-a_k$对于单调不降(单调不增)的数列,通过差分可以得到一个常数序列。
因此,级数前$n$项和可以表示为:$S_n=\frac{1}{2}a_1+\sum_{k=2}^{n}(\Delta{a_1}+\Delta{a_2}+……+\Delta{a_{k-1} })$五、Euler变换在求解级数之前,我们可以将级数转化为某个未知函数的级数,再进行求解。
高数级数求和公式1,高等数学级数求和函数:解:由ρ=lim (n→∞) |a(n+1)/an|=lim (n→∞) (n+1)(n+2)/[n(n+1)]=1,r=1/ρ→r=1 易证:当x=±1时,级数都发散. 故:此级数的收敛域为(-1,1). 令s(x)=∑(n:1→∞) n(n+1)x^n 则:∫(上限x,下限0)s(x)dx=∑(n:1→∞) (n+2)x^(n+1) - 2∑(n:1→∞) ...2,高数等比级数求和:所有这几个无穷极数都是一个等比数列,求和式有一个前提:|x|<1; ④首项x^4,公比x^4<1; {n=1→∞}Σx^(4n)=lim{n→∞}{[x^4-x^(4n)*x^4]/(1-x^4)} =x^4/(1-x^4)lim{1-x^(4n)}=x^4/(1-x^4)=首项/(1-公比); ①首项x²/2,公比x²/2;{n=1→∞}Σ2^(2n-1)/2n}...3,高数幂级数的和函数:∑<n=0, ∞>(n+1)^2 x^n = ∑<n=0, ∞>(n+2)(n+1)x^n - ∑<n=0, ∞>(n+1)x^n= [∑<n=0, ∞>x^(n+2)]'' - [∑<n=0, ∞>x^(n+1)]'= [x^2/(1-x)]'' - [x/(1-x)]' = = 2/(1-x)^3 - 1/(1-x)^2 = (1+x)/(1-x)^3收敛域-1 < x < 14,高等数学幂级数求和:解:分享一种解法,转化成微分方程求解.设S(x)=∑x^(2n)/[(2n)!]=1+x²/2+…+x^(2n)/[(2n)!]+….连续两次由S(x)对x求导,得S''(x)=S(x).∴S''(x)-S(x)=0.其特征方程为,r²-1=0,∴r=±1.其通解为,S(x)=(c1)e^x+(c2)e^(-x).又,S(0)=1、S'(0)=0,∴c1=c2=1/2,∴S(x)=(1/2)[e^x+e^(-x)].5,高等数学级数求和问题:因为n=0,无穷大.故n分为偶数跟奇数. 当n为偶数,则n=2m(m>=0,m为整数)则有1-(-1)^n=0,故求和公式中当n=2m的时候所以的分项都为0. 而当n为奇数的时候,则n=2m-1(m>=1,m为整数)则有1-(-1)^n=2. 故左边求和公式可以简化为只有n为奇数的情况下的分项相加.可得上面的式子.。
无穷级数求和问题的几种方法-无穷级数求和的方法(共12页)-本页仅作为预览文档封面,使用时请删除本页-目录摘要 (2)1无穷级数求和问题的几种方法 (2)利用级数和的定义求和 (2)利用函数的幂级数展开式求和 (3)利用逐项求积和逐项求导定理求和 (4)逐项求极限 (5)利用Flourier级数求和 (7)构建微分方程 (9)拆项法 (9)将一般项写成某数列相邻项之差 (10)2总结 (12)3参考文献 (12)无穷级数求和问题的几种方法摘要:无穷级数是数学分析中的一个重要内容,同时无穷级数求和问题,也是学生学习级数过程中较难掌握的部分.然而,无穷级数求和没有一个固定的方法可循.本文结合具体例子,根据无穷级数的不同特点,介绍几种常用的求无穷级数的和的方法和技巧.关键词:数项级数;幂级数;级数求和无穷级数是数学分析中的一个重要内容,它是以极限理论为基础,用以表示函数,研究函数的性质以及进行数值计算的一种重要工具.然而数学分析中注重函数的敛散问题,却对无穷级数求和问题的方法介绍的比较少,所以求和问题是学生学习级数过程中较难掌握的部分.无穷级数求和没有一个固定的方法可循.本文结合具体例子,根据不同的无穷级数的不同特点,介绍几种常用的求无穷级数的和的方法和技巧. 1利用级数和的定义求和定义[1]若级数1n n u ∞=∑的部分和数列{}n S 收敛于有限值S ,即1lim lim n n n n n S u S ∞→∞→∞===∑,则称级数1n n u ∞=∑收敛,记为1n n u S ∞==∑,此时S 称为级数的和数;若部分和数数列{}n S 发散,则称级数1n n u ∞=∑发散.例1 求级数()∑∞=--1112n n q n ,1≤q 的和 .解: 2311357(21)n n S q q q n q -=+++++- (1) 2341357(23)(21)n n n qS q q q q n q n q -=+++++-+- (2)(1)-(2)得:11(1)12(21)1n n n q q S q n q q ---=+---12112(21)1(1)1n nn q q S q n q q q--=+----- 212lim 1(1)n n qS q q →∞=+-- 即级数和2121(1)qS q q =+--. 2利用函数的幂级数展开式求和利用函数的幂级数展开式可以解决某些级数的求和问题.下面是几个重要的幂级数展开式:例1,!xnn e x x n ∞==-∞<<+∞∑1,111n n x x x ∞==-<<-∑ 01ln(1),11!nn x x x n ∞=-=--≤<∑3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-等等. 例2 求0(1)(21)!nn nn ∞=-+∑的和.解 : 0(1)(21)!nn n n ∞=-+∑0(21)11(1)(21)!2n n n n ∞=+-=-⨯+∑0111(1)2(2)!(21)!n n n n ∞=⎡⎤=--⎢⎥+⎣⎦∑=001111(1)(1)2(2)!2(21)!n n n n n n ∞∞==---+∑∑ 注意到3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-242cos 1(1),()2!4!(2)!nnx x x x x n =-+-+-+-∞<+∞得1(1)(cos1sin1)(21)!2nn n n ∞=-=-+∑.3利用逐项求积和逐项求导定理求和定理[2]设幂级数00()n n n a x x ∞=-∑的收敛半径为R ,其和函数为()x S ,则在00(,)x R x R -+内幂级数可以逐项积分和逐项微分.即:对00(,)x R x R -+内任意一点x ,有:0010000()()()1xx nn n n x x N n a a x x x x S x dx n ∞∞+==-=-=+∑∑⎰⎰ 10000()()()n n n n n n d d a x x na x x S x dx dx ∞∞-==⎡⎤-=-=⎣⎦∑∑并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为R . 例3[]3计算无穷级数()() +-++⋅-⋅+⋅-⋅-14534231215432n n x xxxxnn之和(1)x <.解:对于级数()xxnn n+=∑-∞=111(1)x <. 两边从0积分到x 得()()x nx n n n+=++∞=∑-1ln 111,(1)x <,两边从0积分到x 得()()()()()()x x x x dt t n n xn n nx++-+=+=++⎰∑-+∞=1ln 1ln 1ln 21021,(1)x <上式右边是原级数. 故级数和()()x x x x S ++-+=1ln 1ln ,(1)x <.例4 求幂级数()()x nn n n n 2112111⎥⎦⎤⎢⎣⎡-+∑-∞=的和函数()x S .解:令2t x =,幂函数()11111(21)n n n t n n ∞-=⎡⎤-+⎢⎥-⎣⎦∑的收敛半径 '11(21)lim 11(1)(21)n n n R n n →∞+-=+++故原函数的收敛半径1R ==,从而收敛区间为(1,1)-,而知级数2122211(1)(),(1,1)1n nnn n x x x x x ∞∞-==-=--=∈-+∑∑, 记1211()(1),(0)0(21)n n n x x n n ϕϕ∞-==-=-∑,'121'12()(1),(0)021n n n x x n ϕϕ∞--==-=-∑且''12212212()(1)22(1),(1,1)1n n n n n n x xx x x ϕ∞∞---===-⋅=-⋅=∈-+∑∑ 于是(1,1)x ∈-,对上式,从0到x 作积分得'''0()()()2arctan x x x d x x ϕϕ==⎰,'0()()()2arctan x xx x d x xdx ϕϕ==⎰⎰=122012(arctan 2arctan ln(1)1x x dx x x x x-=-++⎰因此222()2tan ln(1),(1,1)1x f x x x x x x=+-+∈-+. 4逐项求极限如果函数在端点处无定义,那么可用求极限的方法讨论在端点处的和函数.例5[]4 求幂级数121(1)1n nn x n +∞=--∑的和函数.解:(1)容易验证该幂级数的收敛域为[]1,1-.(2)再求幂级数在其收敛区间(1,1)-上的和函数,下面用逐项求导的方法求解.设1122()(1)1n n n x f x n +∞-==--∑,(1,1)x ∈- 则有1'12()(1)1n n n x f x n +∞-==--∑ 1(1)nnn x x n ∞==-∑再设1()(1)nnn x g x n ∞==-∑,(1,1)x ∈-又有1'11()(1)1n nn x g x n x -∞==-=-+∑ 于是对上式两边进行积分,得01()()(0)1xg x dt g t=-++⎰ln(1)x =-+ 并有'()()ln(1)f x xg x x x ==-+.再进行积分,又得()ln(1)(0)xf x t t dt f =-++⎰221ln(1)224x x x x -=+-+(3)最后讨论幂级数在其收敛域上的和函数.因为函数221()ln(1)224x x x f x x -=+-+在1x =处左连续,而幂级数在1x =处收敛,所以等式1221221(1)ln(1),1224n n n x x x x x n +∞-=--=+-+-∑ 在1x =处也成立.但因()f x 在1x =-处无定义,故要改用逐项求极限来确定该幂级数在1x =-处的值,即由22111lim ()lim ln(1)224x x x x x f x x ++→-→-⎡⎤-=+-+⎢⎥⎣⎦ 11ln(1)3lim 1241x x x x +→-⎡⎤⎢⎥-+=⋅+⎢⎥⎢⎥+⎣⎦ 12131lim 14(1)x x x +→-+=+-+34= 得到112123lim ((1))41n n x n x n ++∞-→-==--∑11212lim ((1))1n n x n x n ++∞-→-==--∑ 1122(1)(1)1n n n n +∞-=-=--∑2211n n ∞==-∑ 所以原幂级数的和函数为221ln(1),(1,1]224()3,14x x x x x S x x ⎧-+-+∈-⎪⎪=⎨⎪=-⎪⎩.5利用Flourier 级数求和求某些数值级数的和可选择某个特殊的函数在[]0,2π或[],ππ-上展成傅里叶级数,然后再去适当的x 值或逐项积分即可.例6[5]求21(1)nn n∞=-∑的和.解:21(1)n n n ∞=-∑可以看作是余弦函数21(1)cos nn nx n∞=-∑在0x =时的值,因此可以考虑适当选取一个偶函数()f x ,满足21(1)()cos nf x nxdx nπππ--=⎰对于上式左端利用分部积分,得到'''22111()cos ()cos ()cos f x nxdx f x nx f x nxdx n n πππππππππ---⎡⎤=-⎣⎦⎰⎰='''(3)233111()cos ()sin ()f x nx f x nx f x n n nπππππππππ---⎡⎤-+⎣⎦⎰ 注意到cos cos()(1)nn n ππ=-=-有''(3)2311(1)1()cos ()()()sin n f x nxdx f f fx nxdx n n πππππππππ---⎡⎤=--+⎣⎦⎰⎰取21()4f x x =, 则21(1)()cos nf x nxdx nπππ--=⎰同时211()6f x dx n πππ-=⎰,这样21()4f x x =在[],ππ-上的Flourier 级数为 222111(1)cos 412nn x nx nπ∞=-==+∑ 令0x =,得221(1)112n n n π∞=-=∑ 例7[4]证明: 441190k kπ∞==∑.证明:将函数2()()2xf x π-=展成傅里叶级数222001()26xa dx ππππ-==⎰22211()cos 2k xa kxdx k πππ-==⎰, 0k b =是2221cos ()(),02212k xkxf x x k πππ∞=-==+≤≤∑由柏塞瓦尔等式(函数2()()2xf x π-=连续)2224040111()()22k k k a x a b dx k πππ∞=-++=∑⎰,有2422444011111()()2621640k x dx t dt kππππππππ∞-=-+===∑⎰⎰即44190kπ∞=∑.6构建微分方程如果某些级数的一般项的分母类似于阶乘的级数时,可以利用经过逐项积分或逐项积分后得到的级数之和函数与原级数的和函数构成微分方程,然后解微分方程来求其和.例8 求级数11112242462468-+-+⋅⋅⋅⋅⋅⋅之和. 解:设幂级数246821()(1)2242462468(2)!!nn x x x x x S x n -=-+-++-+⋅⋅⋅⋅⋅⋅则3572'1()(1)224246(2(1))!!nn x x x x S x x n -=-+-++-+⋅⋅⋅-24681()2242462468x x x x x ⎡⎤=--+-+⎢⎥⋅⋅⋅⋅⋅⋅⎣⎦(1())x S x =-于是所得一阶微分方程:'()(1())S x x S x =-,其通解为22()1,x S x Ce-=+由(0)0S =得1C =- 因此得22121()(1)1(2)!!x nn N x S x Ce n ∞--==-=-∑ 从而121111(1)12242462468S e --+-+==-⋅⋅⋅⋅⋅⋅.7拆项法无穷级数求和时,有时根据一般项的特点,将一般项进行拆分来简化运算过程.例9 求幂级数121(1)n n n n x ∞-=-∑的和函数.解:先求幂级数的收敛域.因为1n =,且级数121(1)n n n ∞-=-∑与21n n ∞=∑都发散,所以幂级数的收敛域为(1,1)-. 由于2(1)(2)3(1)1n n n n =++-++因此12111111(1)(1)(1)(2)3(1)(1)(1)n nn nnnn n n n n n n x n n x n x x ∞∞∞∞---====-=-++--++-∑∑∑∑12''11'11(1)()3(1)()1n n n n n n x xx x ∞∞-+-+===---++∑∑ 12''11'11((1)())3((1)())1n n n n n n x xx x∞∞-+-+===---++∑∑ 32'''()3()111x x x x x x=-++++ 23(1)x x x -=+,(1,1)x ∈- 因为幂级数的收敛域为,所以所求和函数为23()(1)x x S x x -=+,(1,1)x ∈-. 8将一般项写成某数列相邻项之差用这一方法求无穷级数的和,首先需要解决:已知1n n u ∞=∑,如何求n v当111n n n n m u b b b ++-=⋅,其中(1,2,)i b i =形成公差为d 的等差数列时,1111n n n n m v md b b b ++-=-⋅(m 为待定因子).于常数项级数1n n u ∞=∑,如果能将一般项写某数列{}n v 的相邻两项之差:1n n n u v v +=-且极限lim n n u v ∞→∞=存在,则21321111()()()n k n n n n S u v v v v v v v v ∞++===-+-++-=-∑,所以1lim n n S v v ∞→∞=-.例10求级数1n ∞=∑之和.解:一般项n u=-令n v 则1,n n n u v v +=-1v =lim n n v u ∞→∞=n =0n ==∴11n v v ∞∞==-∑10v =-=.例11 求11(1)(3)(5)(7)n n n n n ∞=++++∑的和.解: 1(1)(3)(5)(7)n u n n n n =++++1118(3)(5)(7)n v n n n +=-+++118(1)(3)(5)n v n n n =-+++则1n n n u v v +=-111lim()2468n n n n u v v ∞→∞=∴=-=⋅⋅⋅∑.总之,穷级数求和没有一个固定的方法可循,其实无穷级数求和方法很多,我们要善于发现和总结.这里只介绍了一些常用的方法和技巧,希望对大家计算求和问题有一定的帮助.参考文献 :[1]陈传璋.数学分析[]M .北京:高等教育出版社.1983.[2]裘兆泰.王承国.数学分析学习指导[]M .北京:科学出版社.2004.[3]李素峰.关于无穷级数求和问题的探讨.邢台学院学报,2008,23(4):100-101. [4]吴良森.毛羽辉.数学分析学习指导书[]M .北京:高等教育出版.2004. [5]刘玉琏.杨奎元.数学分析讲义学习辅导书[]M .北京:高等教育出版社.1987.Several Methods of Problem of Infinite Series SummationLiuYanhong 051Mathematical sciences college,mathematics and appliedmathematicsAdvisor Liu GuantingAbstract : The infinite series is an important part of mathematical analysis, and infinite series summationproblem is a difficult part to master for students. However, infinite series summation has not a fixed method to follow. Combined with a concrete example, according to the different characteristics of the infinite series, weintroduce several common methods and skills for infinite series in this paper .Keywords: Item series; Power series; Summation of Series。
级数求和的常用方法级数是高等数学的一个重要组成部分,它是表示函数,研究函数的性质以及进行函数值计算的一种工具,无穷级数的和是级数研究中的一项重要内容,级数求和方法在各高等数学教材中都有介绍,本文主要归纳出几种常用的级数求和方法,给初学者提供学习上的帮助.1数项级数求和的常用方法1.1 拆项法这是一种简单、常用的方法,适用于一些简单的级数求和问题,其基本思想是将级数∑∞=1n na的通项n a 分解为:n n n b b a -=+1,代入级数的部分和∑==nk kn as 1,相邻两项相消,则有11b b s n n -=+,若∞→n lim b b n =+1,则∑∞=1n n a ∞→=n lim n s =1b b -.例1 求级数∑∞=+-1)15)(45(1n n n 的和)5](1[P .解 ∑=+-=nk n k k s 1)15)(45(1=)151451(511+--∑=k k n k =)1511(51+-n 所以 ∞→n lim ∞→=n n s lim )1511(51+-n =51例2 求级数∑∞=++1)2)(1(1n n n n 的和)5](1[P . 解 ∑∑==⎥⎦⎤⎢⎣⎡++-+=++=nk n k n k k k k k k k s 11)2)(1(1)1(121)2)(1(1 =⎪⎪⎭⎫ ⎝⎛++-)2)(1(12121n n 所以 ∞→n lim ∞→=n n s lim41)2)(1(12121=⎪⎪⎭⎫ ⎝⎛++-n n 由以上两个例题可知,在遇到级数通项的分母是两个或三个因式的乘积而分子是一个常数时,就可以将分母适当的拆解,化成两项的差,从而用拆项法求级数的和.1.2 利用代入法求和在求数项级数的和时,有时可先转化为相应的幂级数,利用函数的幂级数展开式以及傅立叶级数展开式,把收敛区间内相应的数代入展开式中,从而求出数项级数的和.例如,常用∑∞==0!n nxn x e)(+∞<<-∞x ,∑∞=-=02)!2()1(cos n nnn x x )(+∞<<-∞x ,∑∞=--=+11)1()1ln(n n n n x x )11(≤<-x 等来求级数的和.例3 求级数1112)2)(1()1(+∞=+++-∑n n n n n n的和.解 考虑幂级数111)2)(1()1(+∞=+++-∑n n n x n n n其收敛半径为1,所以当21=x 时级数收敛,设其和函数为)(x f ,下面在)1,0(内求)(x f , 由于1122)2)(1(+-+=++n n n n n所以 ∑∑∞=+++∞=++--+-=1111111)1(22)1()(n n n n n n n x n x x f ∑∑∞=∞=++++-++-=111211)1(2)1(2n n n n n n n x n x x x x x x x x -++⎥⎦⎤⎢⎣⎡+-+=)1ln(2)1ln(222)1ln(21-+⎪⎭⎫⎝⎛+=x x 令 21=x 便得,223ln 52)2)(1()1()21(111-=⋅++-=∑∞=++n n n n n n f 以上计算比较巧妙地运用了函数)1ln(x +的幂级数展开式.例4 求级数∑∞=-12)12(1n n 的和.解 将函数x 在[]ππ,-上展成傅立叶级数得:∑∞=---=12)12()12cos(42n n xn x ππ, []ππ,-∈x 令 π=x ,则8)12(1212π=-∑∞-n n 在学习级数这一部分内容时,熟练掌握住特殊函数的幂级数展开式和傅立叶级数的展开式是很有必要的,它对于特殊的级数求和很有帮助.1.3 方程式法利用方程式法求和的关键是构造出关于n s 的方程式,解出n s 的具体的表达式,从而求出∞→n lim n s =s .例5 求级数∑∞=-113n n n的和.解 设 ∑=-=nk k n ks 113(1)则 ∑==nk k n ks 1331 (2)(1)-(2)得:n s 32=∑-=+11311n k k -n n 3=n n3211-+ =n n323- 所以 13249-⋅-=n n ns 所以49lim 311==∞→∞=-∑n n n n s n由以上例题可知当级数通项的分母是等比序列而分子是等差序列的关系时,常常通过构造出ns 的方程式,使得问题迎刃而解.1.4 利用欧拉常数法极限∞→n lim ⎪⎭⎫⎝⎛-∑=n k n k 1ln 1的值称为欧拉常数,设为)57721.0( =c c ,则有:∑=nk k 11=n c n ε++ln 其中∞→n lim 0=n ε,利用上式,可求某些数项级数的和. 例6 求级数∑∞=+1)12(1n n n 的和. 解 =n s ∑=+nk k k 1)12(1=∑=⎪⎭⎫ ⎝⎛+-nk k k 11221=∑=nk k11-⎪⎭⎫⎝⎛++++12151312n =∑=nk k 11⎪⎭⎫ ⎝⎛++++++-⎪⎭⎫ ⎝⎛++++-n n n 2141211212221312112=∑=n k k 112-21221221++-∑=n kn k =()()21222ln 2ln 22++-++-++n n c n c n n εε =122222ln 222+--+-n n n εε 所以2ln 22lim )12(11-==+∞→∞=∑n n n s n n 把一些级数的部分和转换成含有欧拉常数的表达式,利用已知的欧拉常数进行求解. 1.5 利用子序列的极限[2](440)P我们知道,若2{}n s 与21{}n s +有相同的极限s ,则lim n x s s →∞=.因此对于级数1nn a∞=∑,若通项n a 0→(当n →∞),则部分和的子序列2{}n s 收敛于s ,意味着21{}n s +也收敛于s ,从而1n n a ∞=∑=s .我们把2{}n s 与21{}n s +成为互补子序列.这个道理可推广到一般:若1nn a∞=∑的通项n a 0→(n →∞),{}n s 的子序列1{}pn n s s ∞=→(p 是某个正整数),则1n n a ∞=∑=s .这种方法称为子序列方法.例7 求级数 11111111111(1)()()2345627893++-+++-+++-+⋅⋅⋅的和. 解 此级数通项趋于零,因此只要求3n s 的极限,注意公式111123n+++⋅⋅⋅+=ln n c n ε++,其中c 为欧拉常数,0n ε→(当n →∞)因此 对原级数31111111123323n s n n=+++⋅⋅⋅+----⋅⋅⋅-=3ln 3ln ln 3n n n n εε-+-→(当n →∞) 所以 原级数的和为 ln3s =例8 将级数 111112345-+-+-的各项重新安排,使先依次出现p 个正项,再出现q 个负项,然后如此交替,试求新级数的和.解 因为通项趋于零,根据上述子序列求和法,对新级数我们只要求子序列()1{}p q n n s ∞+=的极限,新级数前()p q n +项的和()111111132124221p q n s p q p +=++⋅⋅⋅+----+-+111123412224p p q q +++--+-++11142n 212n 23q p p p p -⋅⋅⋅-+⋅⋅⋅+++----()()112n 12(22)p nq q +-----112(24)2nq q nq -⋅⋅⋅--- 11111113521242np nq=+++⋅⋅⋅+---⋅⋅⋅-- =111111111111()23452242242np np nq+++++⋅⋅⋅+-++⋅⋅⋅+---⋅⋅⋅- 111111111(1)(1)222222np np nq=++⋅⋅⋅+-++⋅⋅⋅+-++⋅⋅⋅+即 ()211ln(2)[ln()][ln()]22p q n np np nq s c np c np c nq εεε+=++-++-++→1ln 2ln 2pq+ (当n →∞)所以 所求级数的和为 1ln 2ln 2p q+当级数的某个子序列的极限能够适当的凑成欧拉常数且其通项趋与零时,常利用子序列的极限求解.1.6 利用级数的绝对收敛法若级数∑∞=1n nu是绝对收敛的级数,则当其中的项交换顺序时,级数的和不变.例9 求级数 ∑∞=+-0)!12()1(n n n n的和.解 已知 ∑∞=+-0)!12()1(n n n n绝对收敛因为 ⎪⎭⎫ ⎝⎛--=-!31!2121!31⎪⎭⎫⎝⎛-=!51!4121!52 ……⎥⎦⎤⎢⎣⎡+--=+-)!12(1)!2(12)1()!12()1(n n n n nn……两边相加即得:∑∞=⎪⎪⎭⎫ ⎝⎛++---++-++-=+-0)!12()1()!2()1(!51!41!31!2121)!12()1(n nn n n n n n ⎥⎦⎤⎢⎣⎡+---=∑∑∞=∞=00)!12()1()!2()1(21n n n n n n()1sin 1cos 21-=绝对收敛的交错级数求和时,一般常用级数的绝对收敛法求和.2函数项级数求和的常用方法2.1 逐项积分与逐项微分法在函数项级数一致收敛的条件下,如果欲求和的级数与一个已知和式的级数之间恰好存在微分(或积分)的关系,先对此级数逐项微分(或积分)后求和,然后再反过来求一次积分(或微分),便可得到此级数的和函数.例10 求级数∑∞=-112n n x n的和.解 因为 ∞→n lim nn a a 1+=∞→n lim 22)1(n n +=1, 所以1=R 当 x =1时,因为 ∞→2n ,故 当=x ±1时,级数发散所以 级数的收敛域为)1,1(-,当 )1,1(-∈x 时,令 )(x f =∑∞=-112n n x n逐项积分,得dt t f x⎰)(=dt tn n x n ∑⎰∞=-112=∑∞=1n n nx =2)1(x x- 所以当<x 1时,=∑∞=-112n n x n'⎪⎪⎭⎫ ⎝⎛-=2)1()(x x x f 3)1(1x x-+=例11 求级数nn x n n 20!)12(∑∞=+的和. 解 因为 ∞→n limnn a a 1+=∞→n lim )12)(1(32+++n n n =0 故级数的收敛域为(+∞∞-,),当()+∞∞-∈,x 时, 令)(x f =nn x n n 20!)12(∑∞=+ 则 ∑∞=--+=112)!1()12(2)('n n x n n x f =[]1)1(21)!1(3)1(22+-∞=∑-+-n n x n n =24)(2x xe x xf +解一阶线性微分方程 -)('x f 24)(2x xe x xf = 有 )(x f ⎪⎭⎫ ⎝⎛+⎰⎰=⎰-c dx e xe e xdx x xdx2224)2(22c x e x += 因为 1)0(=f , 代入上式得 1=c所以 当()+∞∞-∈,x 时,)12()(22+=x e x f x逐项积分与逐项微分法适用于求某些函数项级数的和函数,前提是函数项级数必须在所讨论的区间上一致收敛.2.2 三角级数求和法)442](3[P为了求级数nx un ncos 0∑∞=及nx u n n sin 0∑∞=的和,常把它视为复数域内幂级数n n n z u ∑∞=0(其中ix e z =)的实部和虚部.例12 求级数∑∞=0!cos n n nx的和. 解 令 ixe z = 考虑级数∑∞==0!n z ne n z 则 ∑∞==0!n nn z ∑∞=0!cos n n nx ∑∞=+0!sin n n nxi [])sin(sin )cos(sin cos sin cos x i x e e e x x i x z +==+故按实部和虚部对应相等的关系,即得∑∞=0!cos n n nx =)cos(sin cos x ex()∞<x 例13 求级数∑∞=1sin n n nx的和)472(]3[P . 解 令z=ixe ,则 ∑∞=-=111ln n n z nz ,而 xx iarctgx x i x z cos 1sin )cos 22ln(21)sin cos 1ln(11ln-+--=---=- )74](4[P =-xxiarctg x cos 1sin 2sin2ln -+ 则 ∑∑∑∞=∞=∞=+=111sin cos n n n n n nx i n nx n z故按实部和虚部对应相等的关系,即得∑∞=1sin n n nx ==-x x arctg cos 1sin )2(x ctg arctg =2x-π ()π20<<x在级数的通项含有正弦和余弦函数时,一般常应用三角级数求和法.以上介绍的级数求和的几种常用方法,对于解决此类问题会起到一定的指导作用.但是单纯地掌握几种方法还是远远不够的,关键是善于发现问题的特点,从而采取正确的方法解决问题.。
级数和公式
级数是指由一系列有规律的数相加而得到的和。
一般地,级数的公式可以表示为:
S = a + ar + ar^2 + ar^3 + ... + ar^(n-1) + ...
其中,S表示级数的和,a表示首项,r表示公比,n表示级数的项数。
公比r可以是任意实数或复数。
当|r| < 1时,级数收敛;当|r| ≥ 1时,级数发散。
特殊情况下,当|r| = 1且a=0时,级数为等比级数,可以应用公式:
S = a / (1 - r)
例如,1 + 1/2 + 1/4 + 1/8 + ... 的和可以表示为:
S = 1/(1 - 1/2) = 2
另外,有些特殊级数可以使用其他公式来表示,例如等差级数的和可以表示为:
S = (n/2)(a + l)
其中,l表示末项。
级数和公式还有很多其他的特殊形式和应用,需要根据具体情况进行推导和求解。
1.7方程式法 (3)1.8原级数转化为子序列求和 (3)1.9数项级数化为函数项级数求和 (3)1.10化数项级数为积分函数求原级数和 (4)1.11三角型数项级数转化为复数系级数 (4)1.12构造函数计算级数和 (5)1.13级数讨论其子序列 (5)1.14裂项法求级数和 (6)1.15裂项+分拆组合法 (7)1.16夹逼法求解级数和 (7)2函数项级数求和 (8)2.1方程式法 (8)2.2积分型级数求和 (8)2.3逐项求导求级数和 (9)2.4逐项积分求级数和 (9)2.5将原级数分解转化为已知级数 (10)2.6利用傅里叶级数求级数和 (10)2.7三角级数对应复数求级数和 (11)2.8利用三角公式化简级数 (12)2.9针对2.7的延伸 (12)2.10添加项处理系数 (12)2.11应用留数定理计算级数和 (13)2.12利用Beta函数求级数和 (14)参考文献 (15)级数求和的常用方法级数要首先考虑敛散性,但本文以级数求和为中心,故涉及的级数均收敛且不过多讨论级数敛散性问题.由于无穷级数求和是个无穷问题,我们只能得到一个n →∞的极限和.加之级数能求和的本身就困难,故本文只做一些特殊情况的讨论,而无级数求和的一般通用方法,各种方法主要以例题形式给出,以期达到较高的事实性.1数项级数求和1.1等差级数求和等差级数为简单级数类型,通过比较各项得到其公差,并运用公式可求和.11((1)22n n a a n n s na d +-=+=),其中1a 为首项,d 为公差 证明:12=++...+n s a a a ①,21s=+...++n a a a ② ①+②得:()12-112(+++...+(+)n n n s a a a a a a =+) 因为等差级数11...+n n a a a a +==所以1(2n n a a s +=)此证明可导出一个方法“首尾相加法”见1.2. 1.2首尾相加法此类型级数将级数各项逆置后与原级数四则运算由首尾各项四则运算的结果相同,便化为一简易级数求和. 例1:求01235...(21)n n n n n c c c n c +++++.解:01235...(21)n n n n n s c c c n c =+++++,210(21)...53n n n n n s n c c c c =++++,两式相加得:21012(22)(...)(1)2n n n n n n s n c c c c n +=++++=+⋅,即: 01235...(21)(1)2n n n n n n c c c n c n +++++=+.1.3等比级数求和等比级数为简单级数类型,通过比较各项得到其公比并运用公式可求和.当q =1,1s na =;当q ≠1,1(1)1n a q s q-=-,其中1a 为首项,q 为公比.证明:当q =1,易得1s na =,当q ≠1,11111=++...+n s a a q a q - ①, 2111=++...+n qs a q a q a q ②, ①-②得11(1)n q s a a q -=-.可以导出一种方法“错位相减”见下1.4 1.4错位相减法此方法通常适用于等差与等比级数混合型,通过乘以等比级数公比q ,再与原级数四则运算后化为等差或等比级数求和.例2:计算212nn -∑. 解: 2313521...2222n n s -=++++ ①,21352121 (222)n n s --=++++ ②,②-①得: 121121************n n nk k k n k k k k k n s s s -===---=-=+-=+-=∑∑∑111121121213122212n n n nn n -----+-=---,lim n s →∞=3.1.5蕴含型级数相消法此类型级数本身各项之间有蕴含关系,通过观察可知多项展开会相互之间相消部分项,从而化简级数求和.例3:计算1ni =∑.解:将各项展开可得:(1...s =-+++++11==lim n s →∞= 1.6有理化法求级数和对于一些级数通项含有分式根式的级数,我们可以仿照数学中经常使用的方法“有理化”处理,以期达到能使得级数通项化简,最后整个级数都较容易求和.例4:计算1n ∞=.解:可以看出此级数含根式较多,因此尝试运用有理化的方法去处理,即通项n a =对其分母有理化得:−−−−=−分母有理化,则原级数可以采用本文中的1.5“蕴含型级数相消法”,则可以快速求得级数和的极限为1. 1.7方程式法此型级数通过一系列运算能建立级数和的方程式,通过解方程求解级数和.准确建立方程是关键问题,方程类型不固定,有类似与微分方程之类的,故要视具体情况建立方程,解方程也要准确,才能求出级数和.例5:计算2cos cos 2...cos n q q n q θθθ+++,其中1q <. 解:记2cos cos 2...cos =nq q n s q θθθ+++= =1cos nk k k q θ∑两边同时乘以cos 2q θ得[]+1+1=1=1cos cos cos =2=2cos+1+cos -1)nnk k k k k k k q s qq θθθθθ•••∑∑()( 即:+1222cos cos+1cos )(cos )2=n n n n q s q s q q q s q θθθθ+•++-+-()( 解此方程得:2122cos cos(1)cos =12cos n n q n q n q q s q q θθθθ++-++-+- 22lim cos 12cos n q q s q q θθ→∞-=+-. 1.8原级数转化为子序列求和若下列条件成立[1]:(1)当n →∞时级数的通项0n a →(2)级数各项没有破坏次序的情况而得新序列n 1n b ∞=∑收敛于原级数 .例6:计算11111111111++-1+++-+++-+ (2345627893)()()().解:lim 0n n a →∞=Q ,应用欧拉公式1111++...ln 23n c n e n++=++,其中c 为欧拉常数,0()n e n →→∞111111+++...+-1--...-2332s n n=3ln 3ln n n n n e e =-+-,lim ln3n s →∞=.1.9数项级数化为函数项级数求和数项级数化为相应函数项级数,再通过函数项级数求和,并赋予函数未知数相应未知数后记得相应原级数的和.例7:求级数和11135...n n ∞=••••∑(2-1).解:建立函数项级数2111()135...n n s x x n ∞-==••••∑(2-1)由函数敛散性知识可知其收敛域为(,)-∞+∞,将函数项级数逐项求导可得:'2211()1135...n n s x x n ∞-==+••••∑(2-3)=211111()135...n n x x xs x n ∞-=+=+••••∑(2-1),由此可知()s x 满足微分方程'()()1s x xs x -=,且易知(0)0s =,解此常微分方程得:221122()xx t dt s x ee-=⎰,令1x =则可以求出原级数和:211122s t eedt =⎰.1.10化数项级数为积分函数求原级数和将原级数通过化简,构造积分极限式,从而转化为积分求原级数和也不失为一种好方法,构造积分式子是关键,一般原级数中通过四则运算将n 与积分中的分割相联系从而构造分割,建立级数与积分式子的桥梁.例8:计算11k n k ∞=+∑,其中()n →∞. 解:记1011111lim =ln21+1n n n k k dx s k n k n x n∞→∞==−−−−−−−−→==←−−−−−−−−++∑∑⎰分子分母同时除以构造分割建立级数与积分的桥梁. 1.11三角型数项级数转化为复数系级数将三角型数项级数转化为复数域上的级数,由于复数的实部对应于数项级数,从而转化为求复数系级数进而求原级数和.例9[7]:设2cos cos 2...cos = n s q q n q θθθ+++,求s .解:由于1cos =nk k s q k θ=∑,令(cos sin )i z qe q i θθθ==+为复数,其中0,1,2...k =(cos sin )k k ik k z q e q k i k θθθ==+,其中1,2...k =,得:122011+...1(cos sin )(cos 2sin 2)+1n nk n k z z z z z q i q i z θθθθ+=-==+++=++++-∑ 323cos 2cos 3(cos3sin 3)+...+(cos sin )1cos n q q q i q n i n q θθθθθθθ++++=++2...+cos (sin )sin 2...sin nn q n i q qq n θθθθ++++而另一方面1111(cos(+1)sin(+1))11(cos sin )n n z q n i n z q i θθθθ++--+=--+=211-2cos q qθ+ {1221cos cos(1)cos(1)cos sin(1)sin n n n q q n q n q n θθθθθθ+++⎡⎤--+++++⎣⎦+ 212sin cos(1)sin sin(1)sin(1)cos n n n i q q n q n q n θθθθθθ+++⎡⎤-+-+++⎣⎦g g }取实部对应原级数和即得:12211(1cos cos(1)cos )1-2cos n n q qs q q n q n θθθθ+++=--+++即: 11221(1cos cos(1)cos 12cos )1-2cos n n s q q n q n q q q qθθθθθ++=--++-+-+ 当n →∞,且1q <时22lim cos 12cos n q q s q q θθ→∞-=+-. 1.12构造函数计算级数和将级数各项转化为其它函数式子化简级数并求原级数和,关键在于各项的化简函数是否基本统一,如何选择函数式子才能有效化简,将级数参数化为函数式子中的未知数,并无一般的通用函数,选择函数视具体情况而定,下面我们先看一个例子感受这种方法,并从中体会这种方法.例10[7]:请计算下面的级数式子:记2323=1-+......)1111nn t t t t s t t t t t ++++++++()(,其中1t →-.解:构造函数式子:1()11x x xe f x e e --==++,此函数在[0,)+∞单调递减. 由于000(1)ln(1)|ln 211x xx x x e d e dx dx e e e--+∞+∞-+∞---+==-+=++⎰⎰, 令ln h t =-,满足11lim limln t t h t →→==0ln 1111hthe t eeh h----=-=-=g ,ln ln ()()1()11k t k hk kt k hk t e e f kh t e e ----===+++. 代入题目中的级数式子得:23231lim 1-+......)111n n t t t t t t t t t t -→+++++++()(+1= 011lim ()h h k e h f kh h -∞→=-∑=0011lim ()ln 21h xx h k e e h f kh dx h e --∞+∞-→=-==+∑⎰. 1.13级数讨论其子序列引理[1]:数列}{n s 收敛的充分必要条件是}{n s 的任一子序列都收敛且有相同的极限.特别的:数列}{n s 收敛于s 的充分必要条件是两个互补的子列}{2n s ,}{12-n s ,收敛于同一极限.推广可得:定理[1]:若级数∑∞=1n n a 通项满足当n →∞时, 0→n a (收敛判别的必要条件),∑∞=1n n a 收敛于s 的充分必要条件是:部分和}{n s 的一个子序列}{np s 收敛于s ,其中p 满足:p 是某个正整数p =1,2,…将级数分情况讨论,化为多个子序列之和,利用原级数收敛则级数任意添加括号得到的级数和收敛于原级数和原理,通过求各个子序列之和求解原级数和,关键在于如何分解原级数为不同子序列,然而子序列相对于原级数来说易求些,这样方法才行之有效,这和1.6的“原级数转化为子序列求和”是不同的.分情况讨论在三角中讨论角的大小我们已不陌生,下面我们就看一个这样讨论角的幅度的例题.例11[6]:计算:12cos32nn n π∞=∑. 解:记12cos32n n n s π∞==∑,由级数敛散性知识可知,该级数绝对收敛.按幅度角的讨论将级数分解为:1{|3,0,1,2...}A n n k k ===,2{|31,0,1,2...}A n n k k ==+=,3{|32,0,1,2...}A n n k k ==+=.则:1232222coscos cos cos 3333=++2222n n n nn n A n A n A n n n n ππππ∞∞∞∞=∈∈∈∑∑∑∑331320002coscos +133+222k k k k k k πππ∞∞∞++====+∑∑∑() 1211+cos +cos +()2343k k πππ∞=∑3=01(())2 1115(1)148718=--=-g ,所以:12cos23127n n n s π∞==-=-∑. 1.14裂项法求级数和针对级数是分数形式,且满足分母为多项乘积形式,且各项之间相差一个相同的整数,裂项后各项就独立出来,而原来各项之间相差整数则裂项后新级数等价于求解某一个级数,其余新级数照此可求出,从而原级数和可以求出. 裂项一般形式:1111()()(+)x m x n n m x m x n=-+-++,此处m n >.例12:计算111...123234(1)(2)s n n n =+++++g g g g g g . 解:记1(1)(2)n a n n n =++g g ,111[]2(1)(1)(2)n a n n n n =-+++ 针对11(1)nk k k =⋅+∑同理采用裂项法记111(1)1n b n n n n ==-++则11(1)nk k k =+∑=11111111111(1)()()()()+...+()2233445561n n −−−−−−−−−−→-+-+-+-+--←−−−−−−−−−−+裂项后后面项可以消去前面项部分这就是裂项法的好处! 11-1n +,111lim lim[1-]1(1)1nn n k k k n →∞→∞===++∑,所以 111111lim lim [](1)(2)2(1)(1)(2)nnn n k k k k k k k k k →∞→∞===++++++∑∑= 11111111lim lim()2(1)2(1)2n n n n k k k k k k +→∞→∞==--++∑∑=1111(1)2224--=. 1.15裂项+分拆组合法将裂项与分拆组合法合用在一起,运用裂项法分拆级数,再将分拆重新组合级数,由新级数返回求原级数和.例13:计算1(+1)(+2)n nn n n ∞=∑(+3).解:11235+1+2+3(+1)(+2)n n n n n n n ++-=Q(+3)111111251()(+1)(+2)3+1+2+33(+1)(+2)n n n n n n n n n n n n n ∞∞∞===∴=+--∑∑∑(+3)(+3)=1125111()()3233464+--=. 1.16夹逼法求解级数和在数学分析中运用夹逼法则求解极限,在求极限和中我们也可以借鉴此方法,运用两个级数逼近原级数,最后两逼近级数和等于原级数和.例14[8]:设m 为一给定的正整数,求221,1n m nm n ∞=≠-∑. 解:12222221,11111m Nm m Nm Nn m n n n ms m n m n m n +-++=≠==+==+---∑∑∑ 1111111111[ (21122121)m Nn m m m m m m m m n m n +=+=++++++++-+-+--+∑] 1111111(1...1...)22222m m N N m m =+++------+ 21112...2122+1m m N m N N N m N +++++++Q <<且∞→N 时,2lim 0+1N mN →∞=,且2lim 0+2N m N m →∞=,所以23lim 04m N N s m +→∞=-,即2221,134n m n m nm ∞=≠=--∑ 2 函数项级数求和函数项级数和依据未知数x 的而定,因此在收敛域内寻找一个新函数去刻画级数和.2.1方程式法类似于数项级数,函数项级数建立方程,通过方程求解求函数项级数和.例15:计算函数项级数23456()1 (21324135246)x x x x x s x x =+++++++g g g g g g 解:由函数项级数收敛性知识可知题中函数项级数收敛半径为+∞,逐项求导得3'2()1 (2)x s x x x =++++即:'()1()s x xs x =+(0)1s =Q解此微分方程得:2222()(1)x t x s x e e dt -=+⎰.2.2积分型级数求和积分型级数求和显然直接求和会带来困难,通常积分也积不出来,所以要转化,将积分式子化简是个想法,通过变量替换等积分技术化简积分式子,再求级数和,所以关键在于处理积分式子,下面我们看个例题.例16:计算级数(21)220x k k k eππ∞+-=∑⎰.解:因为(2,(21x k k ππ∈+)),作变量替换t k x +=π2得:(21)(222200=xt tk k k k ee e e ππππππ+--+--=⎰⎰⎰)再根据:'22t t ee dt --=⎰⎰C +得:(422204tt tk ee e πππππ-+--=-+⎰⎰⎰)=4042|2eeπππ--=84042|24eeec ππππ---=.所以原级数=8211t k k eee ππππ∞----==-∑⎰. 2.3逐项求导求级数和根据幂级数逐项求导收敛半径不变原理,对原级数逐项求导后化为一些易求和的幂级数,再往回求积分,从而求原级数和.易知的级数往往是通过泰勒展式或者麦克劳林展式获得的。