铅酸蓄电池内化成工艺研究

  • 格式:doc
  • 大小:63.00 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铅酸蓄电池内化成工艺研究

摘要:电池化成和槽化成相比,有着许多优点,其工艺流程简化了极板水洗、干燥和电池补充电以及槽式化成的装片、焊接、取片等工序。节省了大量工时和能源,不用购置化成槽设备和防酸雾设备,电池成本能得到一定的降低。并且,极板不易为杂质所污染,能降低电池自放电,电池质量也可得到更好的控制,因此,电池化成值得推广,而制定合理的电池化成工艺,是电池化成的关键。

关键词:电池化成化成制度反充失水量添加剂

一、实验方法

根据有关资料报道及相关的模拟试验,确定电池化成加酸密度为l.25g/cm3、(25℃),并添加1%Na2SO4和一定量的2#添加剂(2#添加剂为公司机密在此不便公开),加酸量按公司现行的加酸量执行,最大充电电流为0.15C~0.3C。本次试验主要讨不同化成制度对电池化成的影响。

二、试验分析及讨论

1、化成电量

化成电量是影响电池化成的主要因素之一,化成电量过低,活性物质未能充分转换,二氧化铅含量低,导致电池初期性能能不好。而化成电量高,除能量损耗增加外,化成过程的温升不易控制,气体对极板冲击也较大,会影响电池寿命。因此,应选择合适的化成电量。

以RA12-100为例,见表1

从表1可以看出,化成电量为5.0C时、二氧化铅含量偏低,化成电量为5.5C时,二氧化铅含量比较合适;化成电量为6.0C时虽二氧化铅含量较高,但充电时间稍长且充电过程电池温升也较大。化成电量与活性物质富裕量有关,如RA12-100电池正极活性物质为9.8/Ah,活性物质富裕量越大,化成电量宜相应提高。另外,化成电量与化成电流密度有关,化成电流密度越大,化成效率越低,则化成电量需提高;化成电流密度越小,化成效率越高,则化成电量可适当降低。

从上述分析可以看出,化成电量选用5.5C~6.0C比较合适。.额定活性物质量低极板较薄的电池,化成电量选用5.5C。额定活性物质量高极板较厚的电池,化成电量选用6.0C。

2、化成制度

2.l反充(反极极化)

在电池化成前,采取适当的反充对电池寿命有一定好处,对活性物质的转换有促进作用,以RAI2-100电池为例,充量为5.8C,见表2

从表2可以看出,适量反充,可提高电池初始容量。但是,反充转向正充需将电池完全去极化放电(放至接近0V最后可以短接一段时间),放电时间较长。因此,反充时间应加以控制,可选择0.5~1小时。

2.2化成方式

由于电池化成酸量较低,酸比重较高,极化较大,电池反应效率降低,特别是极板深处的活性物质更不易转换。因此,应在化成过程中,增加一次或多次的放电过程,这样可降低极化,提高化成效率。并且增加充放电循环,可提高正极β-PbO2含量,能提高电池的初始容量。电池化成应采用多次充放的化成方式,特别是极板较厚的电池。本次试验采用三种工艺进行,从测试的结果来看,电池放电性能均可以达到标准要求,正极板硫酸铅的白斑面积也大大降低,白斑面积约为极板表面积的l-3%.

以RA12-100为例,见表3

从表3可以看出工艺3的测试结果最好且化成时间也最短。工艺l和工艺2最大充电电流为0.15C,工艺3最大充电电流为0.3C,三种工艺都有多次放电过程。

3,电池化成的失水量

知道电池化成的失水量,可有效指导加酸量和加酸密度的选择,并对确定电池化成后硫酸的密度有帮助。单格电池额定失水量,见表4

从表4可以看出,化成电量为5.5C~6.0C(电池温度控制≤55℃)其失水率约为

l.28-1.55g/cell.Ah,井且采用相同的化成电量,极板越厚,失水量越大,这是因为较厚的极板,额定容量较大,而采用相同的化成电流其表现化成电流密度较大,因此失水较快。为了避免电池在化成时失水过多,可在化成过程中采取一些必要的措施来防止失水或酸雾外溢。如在安全阀上加冷凝管或加大一些的安全阀等。

4、关于化成温度的控制

由于电池化成电解液密度较高,电池热反应加快,而酸量又相对较低,不能及时散热。因此,电池内部温度很高,加酸初期可达70℃,化成中后期温度会超过75℃,而温度太高,加大失水量,对极板寿命不利,电池初期容量也低。因此,电池化成必须采用温控措施。本次试验采用循环水冷却方式,由于充电初期电流较大,电池内部温度较高,在化成过程中加点冰块井用风扇吹。加酸至充电时间控制在4小时以内,若加酸后搁置时间过长则在后面的充电过程温升将无法控制。要求水温控制在55℃以内。对于批量生产,可采用循环水加冰冷却。从这次试验来看,采用循环水加冰冷却无论电池的初始容量还是电池的内阻都过到了预期目的。

5、电池化成与极板化成性能对比

以RA12-100为例,见表5

表5可以看出,电池化成较极板化成而言,10小时率和lC放电差异不大。内阻较小,浮充电压稍显不均衡,这可与极板的化成质量有密切关系。在这次试验中还发现经过一次C10循环后,电池内阻有适当的降低,浮充电压差异无明显变化。而经过三次C10循环后,容量和浮充电压的一致性都很大的提高。

5、添加剂对电池化成的影响(正极添加红丹和天然磷片石墨)

红丹的主要成分是Pb3O4,为PbO利PbO2的混合物,作为添加剂加入正极活性物质中,起成核作用,促进活性物质的转换,又因其本身处于高氧化状态,能够降低化成能量损耗和缩短化成时间。由于红丹不易制备,并且受时间的影响,本次试验未进行深入研究,只作了一次模拟试验。添加天然磷片石墨主要考虑正极板导电性,在试验中化成时间明显缩短。

以RA12-100为例,见表6

从表6可以看出,正极添加适量的红丹和天然磷片石墨,利于电池化成反应的进行,并能降低化成电量缩短化成时间,从而降低能量损耗。

三、试验结论

综上所述,可得出如下结论:

1、采用合理的电池化成电量和化成工艺,电池化成质量能得到保证。

2、电池化成的电性能及均衡性比极板化成稍低。

3、正极添加适量的红丹和天然磷片石墨缩短化成时间降低能量损耗。