惯导 惯性导航系统的初始对准
- 格式:ppt
- 大小:530.00 KB
- 文档页数:48
惯导初始对准原理
为了满足载体在运动过程中保持相对静止的要求,惯性导航系统必须提供精确的初始位置和姿态信息,初始对准就是将载体运动过程中产生的姿态信息和导航系统输出的方位信息进行匹配,以得到载体运动方向。
初始对准在惯性导航系统中占有重要地位,是保证惯性导航系统精度的关键环节之一。
初始对准是指将惯性导航系统输出的速度、位置、姿态信息进行匹配,使载体运动过程中产生的姿态和速度信息在惯性器件中具有一一对应的关系。
初始对准的过程也就是进行载体运动误差补偿的过程。
载体运动误差补偿的方法有很多种,最常用也是最直接的方法是采用基于运动学理论的算法进行补偿,通常采用矢量滤波技术和线性化技术进行误差补偿。
惯性导航系统初始对准时,首先需要对载体上安装的各种陀螺仪和加速度计进行校准。
校准工作完成后,就可以根据系统输出的初始速度、初始位置信息以及各轴上安装位置误差情况对惯性导航系统进行初始对准了。
—— 1 —1 —。
捷联惯导系统的 静基座初始对准1.初始对准惯性导航系统是根据测得的运载体的加速度,经过积分运算求得速度与位置的,因此,必须知道初始速度和初始位置。
此外,在以地理坐标系为导航坐标系的惯导系统中(包括平台式和捷联式),物理平台和数学平台都是测量加速度的基准,而且平台必须准确地跟踪地理坐标系,以避免由平台误差引起加速度测量误差。
在惯性系统加电启动后,平台的三轴指向是任意的,平台一般不在水平面内,又没有确定的方位,因此在系统进入导航工作状态前,必须将平台的指向对准,此过程便称为惯性系统的初始对准。
初始对准的精度直接关系到惯导系统的工作精度,初始对准的时间是惯导系统的重要战术技术指标。
因此,初始对准是惯导系统最重要的关键技术之一。
2.初始对准的分类(1)按对准的阶段来分惯导系统的初始对准一般分为两个阶段:第一阶段为粗对准:对平台进行水平与方位粗调,要求尽快地将平台对准在一定的精度范围内,为后续的对准提供基础,所以要求速度快,精度可以低一些。
第二阶段为精对准:它是在粗对准的基础上进行的,要求在保证对准精度的前提下尽量快。
(2)按对准的轴系来分在以地理坐标系为导航坐标系的情况下,初始对准可分为水平对准和方位对准。
在平台式惯导系统中,物理平台通常先进行水平对准,然后同时进行平台的水平与方位对准。
在捷联式惯导系统中,对数学平台进行对准时,一般情况下水平对准与方位对准是同时进行的。
(3)按基座的运动状态来分按照安装惯导系统所在基座的运动状态可分为静基座对准和动基座对准。
动基座对准通常是在运载体处于运动状态下进行的。
(4)按对准时对外信息的需求来分惯导系统只依靠重力矢量和地球速率矢量通过解析方法实现的初始对准称为自主式对准,此时不需要其它外部信息,自主性强,但精度不高。
非自主对准可通过机电、光学或其它方法将外部参考坐标系引入系统,使平台对准至导航坐标系。
3.初始对准的要求惯导系统不论用于运载体导航还是武器弹药中的制导,都要求初始对准保证必需的准确性与快速性。
动基座条件下舰载武器捷联惯导系统初始对准研究1. 引言1.1 研究背景传统的捷联惯导系统在动基座条件下存在着诸多挑战,如基座的姿态变化、振动等因素会影响系统的捷联性能和初始对准精度。
研究动基座条件下舰载武器捷联惯导系统初始对准成为当前研究领域中的一个重要课题。
为了提高舰载武器系统的精确打击能力和战场生存能力,有必要深入研究动基座条件下捷联惯导系统的初始对准问题,探讨解决方案,优化系统性能。
这不仅对提升我国的军事实力具有重要意义,还对推动捷联惯导技术的发展和应用具有重要意义。
开展动基座条件下舰载武器捷联惯导系统初始对准研究具有重要的实践意义和战略意义。
1.2 研究意义本研究旨在探究动基座条件下舰载武器捷联惯导系统初始对准的问题,具有重要的实际意义和军事价值。
通过对捷联惯导系统的研究,可以提高舰载武器的打击精度和命中率,从而提升海军舰队的作战效能。
研究动基座条件下的挑战和解决方案,对于提升我国军事科技水平具有重要意义。
随着军事技术的不断发展和更新换代,对舰载武器系统的研究和改进势在必行,本研究将为我国海军现代化建设提供重要的技术支持。
本研究具有重要的实际意义和战略意义,对于提高海军舰队的作战效能和保障国家安全具有重要意义。
【内容结束】2. 正文2.1 动基座条件下舰载武器捷联惯导系统简介动基座条件下舰载武器捷联惯导系统是一种集成了捷联惯导技术的舰载武器系统,在对抗复杂环境下能够实现高精度打击目标的能力。
该系统由动基座、惯导系统和传感器组成,可以实现对目标的精确识别、跟踪和打击。
动基座可以根据目标的运动状态和环境变化实时调整武器的姿态,从而提高武器的打击精度和生存能力。
捷联惯导系统则能够利用惯性传感器和GPS等技术实现对目标的精确定位和引导,确保武器能够准确命中目标。
动基座条件下舰载武器捷联惯导系统是一种先进的武器系统,具有高度的精度和灵活性,能够有效应对复杂多变的作战环境,对提高舰载武器的作战效能具有重要意义。
摘要捷联惯性导航系统(Strapdown Inertial Navigation System,SINS)已经在军事、民用等领域得到了广泛应用。
初始对准作为整个捷联惯导系统工作前的关键步骤,其精度决定了整个导航系统的精度。
车载捷联惯导初始对准分为静基座初始对准和动基座初始对准,其技术指标主要包括对准精度和对准时间。
本课题针对车载捷联惯导系统实际工作环境中出现的惯性器件启动漂移、静基座初始对准过程中人为噪声干扰以及动基座初始对准过程中全球定位系统(Global Positioning System,GPS)速度误差和噪声失配等问题,提出相应的解决办法,具体研究内容如下:首先,针对车载捷联惯导系统初始对准情况下光纤陀螺和加速度计出现启动漂移的问题,通过采集分析光纤陀螺和加速度计在不同温度下启动的实测数据,研究了光纤陀螺和加速度计漂移与温度及温度变化率之间的关系,通过对目前光纤陀螺和加速度计漂移补偿模型进行简化,减小了计算量,实测数据验证了简化的模型能够有效补偿惯性器件启动漂移并缩短系统初始对准时间。
其次,针对车载捷联惯导系统静基座初始对准过程中人为噪声干扰的问题,通过采集车载捷联惯导静基座下人员上下车、驻车发动机启动等情况的惯性器件数据输出,分析了其噪声特性,提出了改进的基于小波阈值策略的经验模态分解降噪算法,实测数据验证了该方法的降噪效果以及对提高静基座下初始对准算法稳定性的有效性。
然后,针对动基座初始对准过程中GPS速度误差导致量测矢量误差增大的问题,提出了基于鲁棒反馈策略的惯性系初始对准算法,该方法基于前一个时刻估计的姿态预测当前时刻的量测矢量,并根据当前时刻的量测矢量求得当前时刻的方差,对前一个时刻的方差和当前时刻的方差进行比较并基于鲁棒控制的策略对当前量测矢量进行调整和反馈,仿真和实测数据验证了该方法能够有效提高动基座对准精度。
最后,针对动基座初始对准过程中噪声失配的问题,通过对姿态误差进行分析建立系统状态空间模型,并引入无偏有限冲击响应(Unbiased Finite Impulse Response,UFIR)滤波的思想,提出了基于UFIR的惯性系初始对准算法,UFIR滤波器不需要像卡尔曼滤波器(Kalman Filter,KF)一样设置Q阵和R阵,其利用观测窗长内的有限测量数据进行无偏状态估计,降低了系统噪声和量测噪声特性未知或者改变时对姿态估计的影响,仿真和实测数据验证了该方法的有效性。
捷联式惯导系统初始对准方法研究一、本文概述随着导航技术的不断发展,捷联式惯导系统(StrapdownInertial Navigation System, SINS)已成为现代导航领域的重要分支。
由于其具有自主性强、隐蔽性好、不受外界电磁干扰等优点,被广泛应用于军事、航空、航天、航海等领域。
然而,捷联式惯导系统的初始对准问题是其实际应用中的一大难题。
初始对准精度的高低直接影响到系统的导航精度和稳定性。
因此,研究捷联式惯导系统的初始对准方法具有重要意义。
本文旨在深入研究和探讨捷联式惯导系统的初始对准方法。
对捷联式惯导系统的基本原理和组成进行简要介绍,为后续研究奠定基础。
对初始对准的定义、目的和重要性进行阐述,明确研究的重要性和方向。
接着,重点分析现有初始对准方法的优缺点,包括传统的静基座对准、动基座对准以及近年来兴起的智能对准方法等。
在此基础上,提出一种新型的初始对准方法,并对其进行详细的理论分析和仿真验证。
通过实验验证所提方法的有效性和优越性,为捷联式惯导系统的实际应用提供有力支持。
本文的研究内容对于提高捷联式惯导系统的初始对准精度、增强其导航性能和稳定性具有重要意义。
所提出的新型初始对准方法有望为相关领域的研究提供新的思路和方向。
二、捷联式惯导系统初始对准理论基础捷联式惯导系统(Strapdown Inertial Navigation System,SINS)的初始对准是其正常工作的前提,对于提高导航精度和长期稳定性具有重要意义。
初始对准的主要目的是确定惯导系统载体在导航坐标系中的初始姿态,以便为后续的导航计算提供准确的基准。
捷联式惯导系统的初始对准过程涉及多个理论基础知识,包括载体运动学、动力学模型、误差分析以及滤波算法等。
载体运动学模型描述了载体在三维空间中的姿态、速度和位置变化,是初始对准过程中姿态解算的基础。
动力学模型则用于描述载体在受到外力作用下的动态行为,为误差分析提供了依据。
在初始对准过程中,误差分析是至关重要的。