第十章定积分的应用§4旋转曲面的面积_数学分析
- 格式:pdf
- 大小:478.37 KB
- 文档页数:10
第10章 定积分的应用10.1 复习笔记一、平面图形的面积由连续曲线()(0)y f x =≥,以及直线,()x a x b a b ==<和x 轴所围曲边梯形的面积为()b baaA f x dx ydx ==⎰⎰如果()f x 在[,]a b 上不都是非负的,则所围图形的面积为()b baaA f x dx y dx ==⎰⎰一般地,由上、下两条连续曲线2()y f x =与1()y f x =以及两条直线,()x a x b a b ==<所围的平面图形(图l0-1),它的面积计算公式为21[()()]baA f x f x dx =⎰-图10-1二、由平行截面面积求体积 1.立体体积的一般计算公式 设为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b ),称为位于[a,b]上的立体,若在任意一点x∈[a,b]处作垂直于x轴的平面,它截得的截面面积是关于x的函数,记为A(x),并称之为的截面面积函数(见图10-2),设A(x)是连续函数.图10-2 图10-3对[a,b]作分割过各个分点作垂直于x轴的平面x=xi,i=1,2,…,n,它们把分割成n个薄片,i=1,2,…,n任取那么每一薄片的体积(见图10-3)于是由定积分的定义和连续函数的可积性,当时,上式右边的极限存在,即为函数A (x)在[a,b]上的定积分,于是立体的体积定义为2.旋转体的体积a b上的连续函数,Ω是由平面图形设f是[,]≤≤≤≤0|||f(x)|,ay x b绕x轴旋转一周所得的旋转体,那么易知截面面积函数为2()[()],[,]A x f x x a b π=∈得到旋转体Ω的体积公式为2=[()]baV f x dxπ⎰三、平面曲线的弧长与曲率 1.平面曲线的弧长 (1)定义①如果存在有限极限ss T T =→0||||lim即任给0ε>,恒存在0δ>,使得对C 的任意分割T ,只要||||T δ<,就有|s |T s ε-<则称曲线C 是可求长的,并把极限s 定义为曲线C 的弧长.②设曲线AB 是一条没有自交点的闭的平面曲线.在AB 上任取点P ,将AB 分成两段非闭曲线,如果AP 和PB 都是可求长的,则称AB 是可求长的,并把AP 的弧长和PB 的弧长的和定义为AB 的弧长.③设曲线C 由参数方程(),(),[,]x x t y y t t αβ==∈给出.如果(t)x 与()y t 在[,]αβ上连续可微,且'()x t 与'()y t 不同时为零,即''()()0x t y t +≠,],[βα∈t ,则称C 为一条光滑曲线.(2)定理设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程(),(),[,]x x t y y t t αβ==∈ (10-1)给出.若()x t 与()y t 在[,]αβ上连续可微,则C 是可求长的,且弧长为'2'2[()][()]s x t y t dt βα=+⎰ (10-2)(3)性质设AB 是一条没有自交点的非闭的可求长的平面曲线.如果D 是AB 上一点,则和AD 和DB 也是可求长的,并且AB 的弧长等于AD 的弧长与DB 的弧长的和.2.曲率 (1)定义如图10-4,设()t α表示曲线在点((),())P x t y t 处切线的倾角,==()()t t t ααα∆+∆-表示动点由P 沿曲线移至))(),((t t y x t x Q ∆+∆+时切线倾角的增量,若PQ 之长为s ∆,则称||K sα-∆=∆为弧段PQ 的平均曲率.如果存在有限极限|||lim ||lim |00dsd s s K s t ααα=∆∆=∆∆=→∆→∆则称此极限K 为曲线C 在点P 处的曲率.图10-4(2)计算公式设曲线C 是一条光滑的平面曲线,由参数方程(10-1)给出,则曲率的计算公式为2322)(||''''''''y x y x y x K +-=若曲线由()y f x =表示,则相应的曲率公式为2''3'2||(1+y )y K =四、旋转曲面的面积1.设平面光滑曲线C 的方程为(),[,]y f x x a b =∈(不妨设()0f x ≥),这段曲线绕x 轴旋转一周得到旋转曲面的面积为2(baS f x π=⎰2.如果光滑曲线C 由参数方程(),(),[,]x x ty y t t αβ==∈给出,且()0y t ≥,那么由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为2(S y t βαπ=⎰五、定积分的近似计算 1.梯形法公式121()(...)22bn n ay y b a f x dx y y y n --=+++++⎰2.抛物线法公式(辛普森Simpsom 公式)021*******()[4(...y )2(...)]6bn n n ab af x dx y y y y y y y n---≈+++++++++⎰10.2 课后习题详解§1 平面图形的面积1.求由抛物线y =x 2与y =2-x 2所围图形的面积.解:该平面图形如图10-1所示.两条曲线的交点为(-1,1)和(1,1),所围图形的面积为图10-12.求由曲线与直线所围图形的面积.解:该平面图形如图10-2所示.所围图形的面积为。
第十章定积分的应用4 旋转曲面的面积一、微元法定义:已知:若φ(x)=⎰xf(t)dt,则当f为连续函数时,φ’(x) =f(x),或adφ=f(x)dx,且φ(a)=0,φ(b)=⎰bf(t)dt.a现将问题倒过来,若所求量φ是分布在某区间[a,x]上的,或它是该区间端点x的函数,即φ=φ(x), x∈[a,b],且当x=b时,φ(b)适为最终所求的值.在任意小区间[x,x+△x]⊂[a,b]上,若能把φ的微小增量△φ近似表示为△x的线性形式:△φ≈f(x)△x,其中f为某一连续函数,而且当△x→0时,△φ- f(x)△x=o(△x),亦即dφ=f(x)dx,那么只要把定积分⎰bf(x)dx计算出来,就是该问题所求的结果,这种a方法通常称为微元法.注:1、所求量φ关于分布区间必须是代数可加的;2、微元法的关键是正确给出△φ的近似表达式△φ≈f(x)△x.应用:求平面图形面积的微元表达式:△A≈|y|△x,且dA=|y|dx. 求立体体积的微元表达式:△V≈A(x)△x,且dV=A(x)dx.求曲线弧长的微元表达式:△s≈2y1'+dx.+△x,且ds=2y1'二、旋转曲面的面积设光滑曲线C 的方程为y=f(x), x ∈[a,b],不妨设f(x)≥0.曲线C 绕x 轴旋转一周得旋转曲面如图,可用微元法导出其面积公式. 通过x 轴上点x 与x+△x 分别作垂直于x 轴的平面,在旋转曲面上截得一狭带,当△x 很小时,近似于一圆台侧面,即△s ≈π[f(x)+f(x+△x)]22y x ∆+∆=π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x ,其中△y=f(x+△x)-f(x),又y lim 0x ∆→∆=0,2x x y 1lim ⎪⎭⎫⎝⎛∆∆+→∆=)x (f 12'+. 由f ’(x)的连续性可保证:π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x-2πf(x))x (f 12'+△x=o (△x).∴dS=2πf(x))x (f 12'+, S=2π⎰'+ba2)x (f 1f(x )dx.若光滑曲线C 由参数方程:x=x(t), y=y(t), t ∈[α,β]给出,且y(t)≥0,则 由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为: S=2π⎰'+'βα22)t (y )t (x y(t)dt.例1:计算圆x 2+y 2=R 2在[x 1,x 2]⊂[-R,R]上的弧段绕x 轴旋转所得球带的面积.解:圆在x 轴上方的曲线为y=22x R -,则y ’=22xR x --,所得球带的曲面面积为:S=2π⎰-+⋅-21x x 22222xR x 1x R dx=2πR(x 2-x 1).注:当x 1=-R, x 2=R 时,则得球的表面积S 球=4πR 2.例2:计算由内摆线x=acos 3t,y=asin 3t 绕x 轴旋转所得旋转曲面面积。
旋转曲面的面积公式推导要推导旋转曲面的面积公式,我们首先需要了解旋转曲面的定义和特征。
旋转曲面是由一个平面曲线围绕其中一轴旋转一周形成的曲面。
在数学中,我们通常将轴称为旋转轴,将平面曲线称为母线。
一般来说,旋转曲面的面积可以通过将曲面切分成无数个微小的扇形面元来进行计算。
每个小扇形面元的面积可以近似地看作一个扇形的面积。
现在,让我们来具体推导旋转曲面的面积公式:假设我们的旋转曲面是由一个平面曲线y=f(x)(母线)绕x轴旋转一周得到的。
首先,我们将曲线分成n个小段,并将每个小段切分成微小的线段。
第i个小段的长度为Δl_i,小段的起点和终点分别为(x_i,y_i)和(x_i+1,y_i+1)。
现在,我们来推导一个微小线段的扇形面积。
根据旋转曲面的特征,我们可以得知旋转轴到任意点(x_i,y_i)的距离可以表示为r_i=y_i。
因此,我们可以将微小线段的长度Δl_i转化为弧长Δs_i=r_i*Δθ_i。
其中,Δθ_i可以通过微积分中的极限求解方法得到,即Δθ_i = lim(θ_i+1 - θ_i) 当Δx_i -> 0 时根据微积分的定义,我们知道tan(Δθ_i) = Δy_i / Δx_i。
当Δx_i -> 0 时,tan(Δθ_i) 可以近似地等于 dy_i / dx_i,即微分形式。
因此,Δθ_i等于 dy_i / dx_i。
由于我们是围绕x轴旋转的,因此弧长Δs_i可以表示为:Δs_i = r_i * Δθ_i = y_i * dy_i / dx_i然后,我们根据扇形面积的公式,将Δs_i和Δl_i相乘,得到扇形面积的微分形式。
dA_i = (Δs_i * Δl_i) = (y_i * dy_i / dx_i) * Δl_i我们可以将Δl_i表示为微小线段的长度Δx_i。
由于我们是将曲线分成了n个小段,将所有扇形面积的微分形式相加得到曲面的面积。
A = ∑(i=1 to n) dA_i= ∑(i=1 to n) (y_i * dy_i / dx_i) * Δx_i当我们令n趋向于无穷大时,即Δx_i趋向于0时,我们可以将上式改写为定积分的形式:A = ∫(x=a to b) y(x) * sqrt(1 + y'(x)^2) dx这就是旋转曲面的面积公式推导的结果。