低频信号发生器的设计与实现
- 格式:ppt
- 大小:284.50 KB
- 文档页数:13
基于DDS的基本原理设计的低频信号发生器基于DDS(Direct Digital Synthesis,直接数字合成)的低频信号发生器是一种高精度、灵活性高的信号发生器,可以产生各种低频信号。
本文将从DDS的基本原理、低频信号发生器的设计和实现等方面展开论述。
一、DDS的基本原理DDS是一种通过数字计算产生连续、离散或混合信号的方法。
它将频率和相位信息编码为数字信号,通过数字计算来生成输出信号。
DDS的基本原理如下:1.预存储波形数据:DDS使用查表法将波形数据存储在一个固定的存储器中,例如RAM或ROM中。
每个存储地址对应一个波形振幅值。
2.相位累加器:DDS通过一个相位累加器来产生实时的相位信息。
相位累加器是一个计数器,每个时钟周期增加一个固定的值,该值称为相位增量。
相位累加器产生的相位信息表示了所需输出的信号的相位。
3.数字到模拟转换:相位累加器输出的相位信息经过数字到模拟转换,即将相位信息转换为模拟信号。
这一步可以通过查表法,将相位信息作为地址,从查表的波形存储器中读取波形振幅值,然后通过D/A转换器将波形振幅值转换为模拟信号。
二、低频信号发生器的设计1.频率控制:低频信号发生器需要具备广泛的频率覆盖范围,并能够精确地调节频率。
为了实现这一点,可以使用一个可编程的数字控制单元,比如微控制器或FPGA来控制DDS的相位增量。
通过改变相位增量的大小,可以控制DDS的输出频率。
2.模拟输出滤波:DDS输出的信号是由一串数字零、一和正负极性组成的脉冲串,需要通过模拟输出滤波器进行滤波,以获取平滑的模拟输出信号。
滤波器可以选择低通滤波器或带通滤波器,以滤除高频噪声和杂散成分。
3.波形选择:DDS可以通过选择合适的波形数据来生成多种形状的输出波形,包括正弦、方波、锯齿波等。
在波形存储器中存储不同的波形数据,并通过用户界面或外部接口控制波形的选择。
三、低频信号发生器的实现低频信号发生器的实现可以采用数字电路、模拟电路或数字电路与模拟电路的组合。
实习报告:低频信号发生器的设计与实现一、实习背景随着现代电子技术的快速发展,信号发生器在科研、生产和教学等领域发挥着越来越重要的作用。
低频信号发生器作为一种基础电子测试仪器,能够产生各种低频电信号,用于测试电子电路的性能、调试和校准等。
本次实习旨在了解低频信号发生器的基本原理,掌握其设计和实现方法,并在此基础上,自行设计并制作一款低频信号发生器。
二、实习内容1. 了解低频信号发生器的基本原理低频信号发生器主要基于模拟电子技术和数字电子技术实现。
其基本原理包括正弦波振荡、幅度调制、频率调制等。
通过调整振荡器、放大器、滤波器等电路参数,可以产生不同频率、幅度和波形的信号。
2. 学习低频信号发生器的设计方法在本次实习中,我们学习了基于单片机和DAC0832数模转换器的低频信号发生器设计方法。
单片机和DAC0832数模转换器协同工作,通过软件编程和查表方法,实现波形信号的生成。
采样点越密,信号失真度越小。
程序设定寄存器T0作定时器,T1作计数器,以控制信号的频率和相位。
3. 进行Proteus计算机软件仿真为了验证设计的正确性和可行性,我们使用Proteus软件对低频信号发生器进行了仿真。
通过调整仿真参数,观察不同波形信号的输出,确保信号发生器能够正常工作。
4. 实际制作与调试根据设计方案,我们购买了所需的元器件,并进行焊接、组装和调试。
在实际制作过程中,我们遇到了一些问题,如电路故障、参数设置不当等。
通过请教老师和查阅资料,我们逐步解决了这些问题,最终成功制作出一款低频信号发生器。
三、实习心得通过本次实习,我对低频信号发生器的设计和实现有了更深入的了解。
在实际制作过程中,我学会了如何解决电路故障和调整参数,提高了自己的动手能力和解决问题的能力。
同时,我也认识到团队合作的重要性,与同学们共同解决难题,共同完成实习任务。
总之,本次实习使我受益匪浅,不仅提高了自己的专业技能,还培养了团队合作精神。
在今后的学习和工作中,我将继续努力,不断拓展自己的知识面和技能,为我国的电子科技事业贡献自己的力量。
西安交通大学城市学院本科毕业设计(论文)开题报告题目基于DDS的超低频信号发生器设计与实现所在系学生姓名专业班级学号指导教师教学服务中心制表2012 年3 月本科毕业设计(论文)开题报告对题目的陈述1. 文献综述信号发生器是用来提供各种测量所需信号的仪器,它是一种常用的信号源,广泛应用于电子电路、自动控制和科学试验等领域。
超低频信号发生器采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用。
高精度的信号源对通信系统、电子对抗以及各种电子测量技术十分重要。
随着电子技术的发展,对信号源频率的稳定度、准确度以及频谱纯度提出越来越高的要求。
DDS(直接数字频率合成)技术是从相位概念出发直接合成所需波形的一种新的频率合成技术。
与传统的频率合成技术相比,它具有频率分辨率高、频率转变速度快、输出相位连续、相位噪声低、可编程和全数字化、便于集成等突出优点,成为现代频率合成技术中的佼佼者,得到越来越广泛的应用,成为众多电子系统中不可缺少的组成部分。
基于DDS波形产生的应用现阶段主要在两个方面:1、设计通讯系统需要灵活的和极好的相噪,极低的失真性能的频率源,它通常选用DDS结合它的光谱性能和频率调谐方案,这种应用包括用DDS于调制方面,作为PLL参考去加强整个频率的可调制度,作为本机振荡器(LO),或者射频率的直接传送。
作为选择地,许多工业和医学应用DDS作为可编程波形发生器。
因为DDS是数字可编程,它的相位和频率在不改变外围成分的情况下能很容易地改变,而传统的基于模拟编程产生波形的情况下要改变外围成分。
DDS允许频率的实时调整去定位参考频率或者补偿温度漂移。
这种应用包括应用DDS在可调整频率源去测量阻抗(比如:基于阻抗的传感器),去产生脉冲波形已调制信号用于微型刺激,或者去检查LAN中的稀薄化和电缆。
国内外纷纷采用直接数字频率合成技术设计制作先进的信号发生器,从学术价值来看,直接数字式频率合成技术将会占据频率合成技术的主流,从使用价值来看,各高校中信号发生器应用极为广泛,能够设计出基于DDS技术的低成本高精度直扩信号发生器并推广使用具有非常重要意义。
仪器科学与电气工程学院本科生“六个一”工程之课外实验项目报告低频信号发生器的设计与实现专业:测控技术与仪器姓名:刘雪锋学号:65090215时间:2011年11月一、实验目的:练习基本技能:常用测试仪器使用、电路安装、测试、调试;初步学会查阅电子器件英文说明书;训练基本单元电路设计、调试、测试。
二、实验内容:设计一个低频信号发生器,可输出方波、矩形波、三角波、锯齿波、正弦波。
频率和幅度可调;矩形波占空比可调;锯齿波上升、下降时间可调;根据电路原理图的具体结构,安装单元电路;测输出幅度、频率、失真度、上升沿、下降沿、观察三角波线性度;不得使用8038模块;写出设计与总计报告,说明电路原理、特点、测试结果、结果分析。
三、总体设计方案:(一)总体设计原理框图产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波转换成方波,再由积分电路将方波变成三角波;也可以先由振荡器产生方波,再经积分电路产生三角波,再经过滤波电路产生正弦波等等。
我选用的是前一种方案,上图为总体设计流程。
(二)各部分电路图及其原理1、正弦波产生电路及其原理:正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入反馈电路,并创造条件,使其产生稳定可靠的振荡。
电路接通电源的一瞬间,由于电路中电流从零突变到某一值,它包含着很多的交流谐波,经过选频网络选出频率为f0的信号,一方面由输出端输出,另一方面经正反馈网络传送回到输入端,经放大和选频,这样周而复始,不断地反复,只要反馈信号大于初始信号,震荡就逐渐变强,最后稳定的震荡起来。
我所设计的正弦波震荡电路为RC 串并联式正弦波震荡电路,又被称为文氏桥电路。
这个电路由两部分组成,即放大电路和选频网络,放大电路为由集成运741放所组成的电压串联负反馈放大电路,选频网络兼作正反馈网络,它具有电路简单、易起振、频率可调等特点被大量应用于低频振荡电路,电路图如下所示 :我选用的电阻R和电容C分别为100kΩ的电位器和0.1μf瓷片电容,这样根据在C不变的情况下,改变电位器R的值可以改变电路的震荡频率,但由于两个R的阻值要相等才能震荡出正弦波,所以我在实际焊制电路时两个R采用一个同轴电位器。
低频三相函数信号发生器制作方案一提到低频三相函数信号发生器,脑海中瞬间涌现出电路图、元件选择、调试过程等一系列关键词。
咱们就围绕这个主题,详细梳理一下整个制作方案。
要明确低频三相函数信号发生器的功能和用途。
它主要用于产生低频三相正弦波信号,广泛应用于电力系统、自动控制、信号处理等领域。
那么,如何制作一款性能稳定、精度高的低频三相函数信号发生器呢?1.设计思路(1)稳定性:确保输出信号的稳定性,降低噪声干扰;(2)精度:提高输出信号的精度,满足实际应用需求;(3)可扩展性:预留一定的扩展空间,方便后续升级和功能拓展。
2.电路设计(1)信号源设计内部集成振荡器、缓冲放大器和稳压电路,简化电路设计;可产生正弦波、三角波和矩形波等多种波形;频率范围宽,可满足低频信号的需求。
(2)分频电路设计为了得到三相信号,我们需要对信号源输出的单相信号进行分频。
这里采用CD4060分频器,将信号源的输出频率分频为1/3,得到三相信号的初始频率。
(3)滤波电路设计滤波电路的作用是消除信号中的噪声和杂波,提高输出信号的纯净度。
我们采用二阶低通滤波器,截止频率设置为所需信号频率的5倍,确保信号在截止频率附近的失真最小。
(4)放大电路设计放大电路用于放大滤波后的信号,使其达到所需的幅值。
这里采用运算放大器组成的非倒数放大电路,根据实际需求调整放大倍数。
3.元件选择(1)ICL8038:集成函数发生器IC,用于产生低频信号;(2)CD4060:分频器,用于得到三相信号的初始频率;(3)运放:用于滤波和放大电路;(4)电阻、电容、二极管、三极管等:用于搭建滤波、放大和稳压电路。
4.调试与测试(1)检查电路连接,确保无短路、断路现象;(2)接通电源,观察信号源输出波形是否正常;(3)调整分频器CD4060的时钟频率,观察三相信号输出是否稳定;(4)调整滤波电路参数,观察滤波效果;(5)调整放大电路参数,观察输出信号幅值是否达到预期;(6)进行长时间运行测试,观察信号稳定性。
低频函数信号发生器设计一、引言低频信号在电子工程中有着广泛的应用。
低频信号可以用于音频放大器、振荡电路、传感器等各种电子设备中。
而低频信号发生器则是产生低频信号的一种电子设备。
本文将介绍低频函数信号发生器的设计。
二、低频函数信号发生器的原理1.时钟电路:时钟电路是低频函数信号发生器中的一个重要组成部分。
时钟电路负责提供一个稳定的时钟信号,用于产生低频信号。
可以使用晶体振荡器或RC振荡器作为时钟电路的基础。
2.可调电压控制振荡器:可调电压控制振荡器是低频函数信号发生器中的核心组成部分。
它能够通过改变电压来控制输出频率。
根据不同的需要,可以设计不同的电压控制振荡器,如正弦波振荡器、方波振荡器等。
3.高精度电压参考电路:高精度电压参考电路是为了保证低频函数信号发生器的输出信号精度。
一般来说,高精度电压参考电路采用稳压二极管电路或者基准电压源电路。
4.滤波电路:滤波电路负责将振荡器输出的波形进行滤波,减少噪音和杂散信号。
常用的滤波电路有RC滤波电路、LC滤波电路等。
5.调幅电路:调幅电路可以用于调整低频信号的幅度,以满足不同应用的需求。
常见的调幅电路有放大器电路、差分电路等。
三、低频函数信号发生器的设计步骤1.确定输出信号的频率范围和精度要求。
根据不同的应用需求,确定低频函数信号发生器的频率范围和精度要求,以此确定时钟电路和可调电压控制振荡器的设计参数。
2.设计时钟电路。
根据频率范围和精度要求,设计稳定的时钟电路。
可以选择晶体振荡器或RC振荡器,根据具体情况进行电路设计。
3.设计可调电压控制振荡器。
根据频率范围和精度要求,设计可调电压控制振荡器。
可以采用不同的电压控制振荡器电路,如正弦波振荡器、方波振荡器等。
4.设计高精度电压参考电路。
根据设计要求,选择合适的高精度电压参考电路。
常见的稳压二极管电路和基准电压源电路可以用于高精度电压参考电路的设计。
5.设计滤波电路。
选择合适的滤波电路来滤除振荡器输出的噪音和杂散信号。
电子报/2010年/1月/10日/第015版智能电子自制低频信号发生器广东王聪电子爱好者在日常电子电路设计中,经常要用到各种波形的信号源,本文介绍一款用单片机设计的低频信号发生器。
该低频信号发生器可以产生锯齿波、三角波、正弦波、方波等常用波形,并可以方便地改变各种波形的周期或频率,具有线路简单、结构紧凑、成本低、性能优越、操作方便等优点。
一、系统硬件设计1.电路组成及芯片选择本设计的总体框图如图1所示。
选用AT89C51单片机作控制器;D/A转换器选用8位D/A 转换芯片DAC0832它与微处理器完全兼容,价格低廉、接口简单、转换控制容易;输出运算放大器选用NE5532P芯片,它的DC和AC特性良好,其特点是低噪声、高输出驱动、高增益、低失真、高转换率,具有输入保护二极管和输出保护电路。
2.电路工作原理电路如图2所示。
单片机的P1口接按键S1~S4和四只发光二极管,S1~S4分别控制产生锯齿波、三角波、正弦波和矩形波(含方波),而四只发光二极管则作为不同波形的指示灯;单片机的外部中断口P3.2和P3.3分别接按键S5、S6,用于调整各信号的频率;D/A转换器的数据输入端与单片机的P0口相连,将单片机产生的各种波形的数字信号送人DAC0832进行数模转换,DAC0832的输入寄存器选择信号CS、输入寄存器写选通信号WR1受单片机P2口控制,DAC0832的DAC寄存器写选通信号WR2和数据传送信号XFER直接接地,单片机与DAC0832形成“单缓冲”方式连接;经DAC0832数模转换的模拟信号送人运算放大器NE5532P进行二级放大输出,得到最终的输出信号波形。
二、系统软件设计系统程序流程如图3所示。
程序运行时,依次判断S1~S4按键是否按下,当S1按下时输出锯齿波,当按键S2按下时输出三角波,当按键S3按下时输出正弦波,当按键S4按下时输出方波。
每个波形输出后都要查询按键S6、S7,看是否进行频率调整。
低频信号发生器的设计与实现1.设计任务设计一个低频信号发生器可输出方波、矩形波、三角波、锯齿波、正玄波,1K~3KHZ,幅度30mV~1V 。
矩形波占空比可调,锯齿波上升沿、下降沿可调。
2.方案选择1.RC 文氏电桥振荡器产生正弦波经比较器产生方波和矩形波经积分器产生三角波和锯齿波。
特点:廉价,元器件较多,振荡频率不易调整,故障率高。
2.用比较器和积分器产生矩形波和三角波,用三角波——产生正弦波。
特点:廉价,元器件多,故障率高。
3.用石晶晶体构成正弦波发生器,用比较器积分器产生其他波。
特点:频率稳定度高,但频率不易调整。
4.用集成函数发生器特点: 故障率低,易调整,成本高。
3.方案确定虽然8038成本高,但可考虑到集成电路发展方向,尽可能选4方案4..参数设计1.V+,V-设计由8038说明书V+、V-在,选15~5±±V15±2.选取、B A R R 由说明书得、在1uA~1mA 之间A IB I =10V 5V<<10V\mA R V V uA A 1)(1<-<-++V R V 所以取=5.1KΩA R 3.C 的选取:,Vc 在、之间变化,)(31-+-=-V V V V B A A V B V ⎰=t C C dt I C V 01 a.充电时,,,则A C I I =3201==t I C V A C 充t I C t A==320 b.放电时,,。
A B C I I I -=2)2(320A B I I C t -=放211(320t A B A I I I C t T -+=+=放充 当输出方波时,,, 则,f=1/T ,放充t =t B A I I =)(340R A V V CR T -=+ 计算得PFC 31022⨯= 4.电位器(8脚)选取10kΩ,电阻(8脚)选取10kΩ。
5.RL=100kΩ5.测试结果1.可产生正弦波、矩形波、三角波三种波形,占空比、频率可调2.信号发生器频率调节范围1K~2900HZ ,但没达到3000HZ.3幅度可调范围10mV~10V 不失真。
基于单片机的低频信号发生器设计论文要摘单片机为核心设计了一个低频函数信号发生器。
本文以STC89C52可输出正弦波、方波、信号发生器通过硬件电路和软件程序相结合,波形和三角波、三角波、梯形波,波形的频率在一定范围内可改变.硬件电路和软件频率的改变通过软件控制。
介绍了波形的生成原理、该信号发1440HZ的波形。
部分的设计原理。
本系统可以产生最高频率生器具有体积小、价格低、性能稳定、功能齐全的优点。
;D /A单片机转换; 关键词:低频信号发生器;Abstracta of microcontroller as the core design This paper takes STC89C52 frequency function generator.The signal generator through a combination of hardware circuit and software program.Can output sine wave, square of frequency triangle wave, trapezoidal wave,The wave, triangle wave, and 。
The waveform certain waveform can be changed in a rangethe frequency are changed by software control,This paper introduces design of software part generating principle, hardware circuit and of principlewaveforms,This system can produce the maximum frequency of 1440HZ waveform,The signal generator has the advantages of small volume, low price, stable performance, complete functions.microcomputer low-frequency Keywords: chipsignalgeneratorD /A conversion一、设计选题及任务设计题目:基于单片机的信号发生器的设计与实现.任务与要求:设计一个由单片机控制的信号发生器。
基于DDS的基本原理设计的低频信号发生器低频信号发生器是一种能够产生低频电信号的设备,广泛应用于电子、通信、声学等领域的实验、测试和调试中。
在设计低频信号发生器时,基于DDS(Direct Digital Synthesis,直接数字合成)的原理,可以有效地生成稳定、精确的低频信号。
DDS基本原理:DDS是一种采用数字技术直接产生波形信号的技术,其基本原理是利用数字计算机和其它逻辑电路将高稳定度的时钟信号分频,通过DAC(数字模拟转换器)输出相应的模拟信号。
具体步骤如下:1.频率和相位累加器:DDS中的关键元件是频率和相位累加器。
频率累加器根据输入的控制字频率,以固定的速度递增或递减,并产生一个周期范围内的数字相位输出。
相位累加器则将相位信息输出给DAC。
2.正弦波表:DDS中会预先存储一个周期范围内的正弦波表。
相位输出经过插值之后,会得到一个数值,然后该数值通过正弦波表查表,得到该相位上的正弦波取样值。
3.插值滤波器:DDS通常采用插值滤波器对正弦波表输出进行低通滤波,以去除高频噪声成分。
1.选择合适的时钟源和DDS芯片:首先需要选择一个高稳定度的时钟源,如TCXO(温度补偿型晶体振荡器)。
然后选择合适的DDS芯片,如AD9850或AD9833,这些芯片已经有成熟的设计方案和丰富的技术资料。
2.建立控制电路:根据DDS芯片的规格书和应用电路设计指南,使用微控制器或PLC实现控制电路。
该电路应能够控制频率、相位和幅度等参数,并能与外部设备进行交互。
3.数字信号处理:在设计中,需要进行一系列的数字信号处理,包括频率累加器和相位累加器的递增或递减实现,正弦波表查表的插值运算,以及插值滤波器的设计和滤波处理等。
4.输出电路设计:输出电路应采用高精度DAC进行数字模拟转换,并根据设计要求进行滤波和放大等处理,以产生稳定、精确的低频信号。
5.整体系统测试与调试:完成设计后,需要对整个系统进行全面测试和调试,包括频率范围测试、频率精度测试、稳定度测试、波形畸变测试等。
低频信号发生器设计报告一.设计要求(一)设计题目要求1.分析电路的功能并设计电路的单元电路2.查找图中相应元件的参数,找出国内外对应元件的型号3.用EWB或Multisim软件进行电路仿真,打印仿真原理图和仿真结果4.用A3图纸绘出系统电路原理图(二)其他要求1.必须独立完成设计课题2.合理选用元器件3.要求有目录、参考资料、结语4.论文页数不少于20页二.设计的作用、目的(一)设计的作用低频信号发生器是电子测量中不可缺少的设备之一。
完成一个低频信号发生器的设计,可以达到对模拟电路知识较全面的运用和掌握。
(二)设计的目的电子电路设计及制作课程设计是电子技术基础课程的实践性教学环节,通过该教学环节,要求达到以下目的:1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力;2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。
信 号 输 出 电 路三.设计的具体实现(一)系统概述根据课题任务,所要设计的低频信号发生器由三大部分组成:⑴正弦信号发生部分⑵信号输出部分⑶稳幅部分其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。
1.正弦信号发生部分可以有以下实现方案:⑴以晶体管(晶体管(transistor )是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。
开关速度可以非常快)为核心元件,加RC (文氏桥或移相式)或变压器反LC (馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。
这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。
正 弦 信 号 发 生 电 路 稳 幅 电 路⑵以集成运放为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。
低频信号发生器设计报告一. 设计要求1. 方案设计,根据设计任务选择合理的设计设计方案。
2. 硬件设计。
选择硬件元件,说明其工作原理及设计过程,使用protel软件画出硬件电路pcb板。
3. 要求有目录,参考资料,结语。
4. 设计也数不少于20页。
5. 按照规范要求,及时提交课程设计报告,并完成课程设计答辩。
二. 设计的作用,目的1. 学习掌握电子电路设计的方法和步骤。
2. 掌握protel等常用设计软件的使用方法。
三.设计的具体实现(一)系统概述根据课题任务,所要设计的低频信号发生器由三大部分组成:⑴正弦信号发生部分⑵信号输出部分⑶稳幅部分其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。
1.正弦信号发生部分可以有以下实现方案:⑴以晶体管为核心元件,加RC(文氏桥或移相式)或LC(变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。
这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。
⑵以集成运放为核心元件,加RC(文氏桥或移相式)或LC(变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。
这种电路的优点是更为简单,性价比较好,但频率精度和稳定性较差。
⑶以集成函数信号发生器为核心元件,加适当的外围元件构成正弦波产生电路。
例如函数发生器ICL8038芯片加电阻、电容元件,在一定电压控制下,可以产生一定频率的方波、三角波和正弦波。
这种电路的优点时调节方便,在所采用的外围元件稳定性好的情况下,可以得到较宽频率范围的,且稳定性、失真度和现行度很好的正弦信号。
⑷利用锁相环(PLL)技术构成的高频率精度的频率合成器。
其框图如下图所示。
这种电路主要是利用锁相,即使现象未同步技术来获得频率高稳定度,且频率可步进变化的振荡源。
摘要:信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
目前使用的信号发生器大部分是函数信号发生器,且特殊波形发生器的价格昂贵。
所以本设计使用的是AT89c51单片机构成的发生器,可产生三角波、方波、正弦波,波形的频率可用程序控制改变。
在单片机的输出端口接DAC0832进行D/A转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。
本设计具有线路简单、结构紧凑、价格低廉、性能优越等优点。
关键词:信号发生器;单片机;波形调整目录第1 章绪论 (1)1.1 课题背景 (1)第2章低频信号发生器的方案研究 (2)2.1 总体方案论证与设计 (2)2.2模块结构划分 (2)第3 章硬件电路的设计 (3)3.1 基本原理 (3)3.2各模块具体设计 (4)3.2.1 AT89C51单片机介绍 (4)3.2.2 D/A转换电路的设计 (6)第4 章软件设计 (8)4.1 软件总体设计 (8)4.2 程序流程图 (9)4.2.1 主函数流程图 (9)4.2.2 键盘扫描程序 (9)4.3 仿真过程 (15)结论 (18)参考文献 (18)第 1 章绪论1.1 课题背景随着电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。
尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。
现在,许多信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。
当前信号发生器总的趋势是向着宽频率覆盖、低功耗、高频率精度、多功能、自动化和智能化方向发展。
在科学研究、工程教育及生产实践中,如工业过程控制、教学实验、机械振动试验、动态分析、材料试验、生物医学等领域,常常需要用到低频信号发生器。
而在我们日常生活中,以及一些科学研究中,锯齿波和正弦波、矩形波信号是常用的基本测试信号。
低频函数信号发生器的设计一、设计任务设计一个低频函数信号发生器。
二、 设计要求1.同时输出三种波形:方波、三角波、正弦波2.频率范围:10 Hz ~10 kHz ;3.频率稳定度:日310-≤∆o f f ; 4.频率控制方式:(a )通过改变RC 时间常数控制频率(手控方式); (b )通过改变控制电压U 1实现压控频率(即VCF ),常用于自控方式。
即)U (f f 1=(U 1=1~10V ),为确保良好的控制特性,可分三段控制: ① 10 Hz ~100 Hz ② 100 Hz ~1 kHz ③ 1 kHz ~10 kHz5.波形精度:①方波 上升时间和下降时间均应小于2s μ【如图8-1 (a)】; ②三角波 线性度:%1U omδ【如图8-1 (b)】; ③正弦波 谐波失真度:∑=n2i 2iU /U 1<2%(U 1为基波有效值,U i为各次谐波有效值)。
6.输出方式:(a )作电压源输出时,要求:① 输出电压幅度连续可调,最大输出电压(峰峰值)不小于20V ; ② 当R L =100Ω~1K Ω时,输出电压相对变化率%1U U oo∆ (即要求Ω<1.1o R )。
(b )作电流源输出时,要求:① 输出电流连续可调,最大输出电流(峰峰值)不小于200 am ; ② 当R L =0~90Ω时,输出电流相对变化率%1<∆ooI I (即要求Ω>k Ro9)。
(c )作功率输出时,要求最大输出功率W P o 1max ≥(R L =50Ω时)。
7.具有输出过载保护功能当因R L 过小而使I O > 400 mA (峰-峰值)时,输出三极管自动限流,以免损坏电路元器件。
8.采用数字频率显示方式。
图8-1 方波、三角波的技术指标三、方案讨论根据实验任务的要求,对信号产生部分,一般可采用多种实现方案:如模拟电路实现方案、数字电路实现方案、模数结合的实现方案等。
多功能低频函数信号发生器的设计一、设计任务与要求1、设计任务设计一能产生正弦波、方波、三角波的多功能低频函数信号发生器。
2、基本要求(1)可同时输出正弦波、方波、三角波。
(2)信号频率:10Hz ~ 10KHz 。
(3)频率稳定度:Δf /f < 10-3/日. (4)频率控制方式:通过改变RC 时间常数控制频率(手动方式);通过改变控制电压Vi 实现压控频率,(自动控制方式)。
f=Ψ(Vi ),Vi=1~10V 。
(5)波形精度:方波:如图2-4-1,上升沿和下降沿t r 、t f 时间均应小于2us 。
三角波:如图2-4-2,线性度δ/V om < 2%。
正弦波:谐波失真度图2-4-1 波形精度测量示意图(b )三角波(a )方波方波(V1为基波有效值,Vi 为各次谐波有效值)(6)输出方式:①作电压源输出时,要求:输出幅度连续可调,最大输出电压的峰峰值不小于20V 。
当RL=100Ω~1K Ω时,输出电压相对变化率ΔV0/V0 < 1%(即要求r0<1.1Ω)。
②作功率输出时,要求:最大输出功率大于1W 。
③作电流源输出时,要求:输出电流连续可调,最大输出电流的峰峰值不小于200mA 。
当RL=0Ω~90Ω时,输出电流相对变化率ΔI0/I0 < 1%(即要求r0> 9K Ω)。
%2122<∑=V V Ni i(7)具有输出过载保护功能当因RL过小而使I0>400mA(峰峰值),输出晶体管自动限流,以免进一步损坏元件。
二、基本工作原理1、波形发生部分(1)方案1方波正弦波三角波图2-4-2 波形发生方案1先产生三角波-方波,再将三角波变换为正弦波。
其原理框图如图2-4-2所示。
(2)方案2先产生正弦波,然后由比较器产生方波,再将方波通过积分器变换三角波。
其原理框图如图2-4-3所示。
图2-4-3 波形发生方案22、输出方式(1)用作电压源输出和功率输出时,采用电压串联负反馈,如图2-4-4所示。
单片机低频信号发生器的设计一、系统分析1、系统实现方案用80C51单片微型机实现整个系统的控制,并提供指令系统。
用可编程接口芯片8255将CPU与外设相连,实现其间数据的并行传输。
外设主要有:16*16显示屏——用于显示提示语;数字显示屏——回显键盘输入;波形发生器——显示不同频率的正弦波。
通过键盘和显示电路,实现人机对话,执行频率和幅值的输入然后由单片机进行判断分析,最后输出需要的结果。
2、基本功能屏幕上显示:正弦波 4:50Hz 5:30Hz 6:20Hz 8:停,用户根据提示,从键盘上输入所选参数,在数字显示屏上回显,在波形发生器上显示相应频率的波形。
汇编语言控制程序的结构如下图示,在键盘输入过程中有相应提示。
二、系统硬件设计1、硬件线路图见附录一2、芯片说明⑴8051单片机MCS-51单片机内部结构:MCS-51单片机包括如下功能部件:一个8位中央处理器;4K/8KB的ROM;128/256B 的RAM;32条I/O口;2个和3个(对8032/8052)定时器/计数器;1个具有5个中断源、2个优先级的嵌套中断结构;1个用于多微处理机通信、I/O或全双工UART(通用异步接收发生器)的串行I/O口,此外还有程序寄存器PC,程序状态寄存器PSW,堆栈寄存器SP,数据指针寄存器DPTR等部件,这些部件集成在一块芯片上,通过内部总线连接,构成完整的微型计算机。
根据8051内部结构和工作原理,可以把上述各功能部件划分为以下五部分:①CPU结构:由运算器(ALU)、控制器(定时控制部件等)和专用寄存器三部分电路构成。
算术逻辑部件ALU:既可进行加、减、乘、除四则运算,也可以进行与、或、非、异或等逻辑运算,还具有数据传送,移位,判断和程序转移等功能。
定时控制部件:起控制器的作用,由定时控制逻辑、指令寄存器(IR)和振荡器(OSC)组成。
专用寄存器组:主要用来指示当前要执行指令的内存地址、存放操作数和指示指令执行后的状态等。
第二周实习内容:低频信号发生器的设计与实现一、设计任务:设计一个低频信号发生器,可输出方波、矩形波、三角波、锯齿波、正弦波;频率1kHz~3 kHz ;幅度30mv~1v ;矩形波占空比可调;锯齿波上升、下降时间可调。
测试:1、 最大不失真输出频率范围;2、 最大不失真输出幅度范围(最大和最小);3、 方波、矩形波上升沿、下降沿时间;4、 观察三角波线性度;5、 教师演示测试失真度6、 发挥:扩大频率范围、幅度动态范围。
二、方案选择1、 RC 文氏电桥振荡器产生正弦波、经比较器产生方波和锯齿波、经积分器产生三角波和锯齿波。
优点:廉价,缺点:元器件多,振荡频率不易调整,故障率高2、 用比较器和积分器形成矩形波、三角波,用三角波—正弦波转换器形成正弦波。
优点:廉价,缺点:元器件多,故障率高3、 用石英晶体构成正弦波发生器,用比较器、积分器等产生其它波形。
优点:频率稳定度高。
缺点:频率不易调整4、 用集成函数发生器专用芯片8038构成上述各种信号发生器优点:故障率低,易调整。
缺点:成本高方案确定:虽然用8038成本高,但考虑集成电路是发展方向,故尽可能选用方案4。
但部分同学采用方案2。
三、参数设计1、 电路选择由8038芯片原文说明书建议设计电路。
2、 工作原理(1)R-S 触发器简介 S 称为置位输入端 R 称为复位输入端 Q 称为输出端(2)给电,电容电压V C =0,R=1,S=0,Q=0,Pin9=0Q=0使T 1截止,I A 给C 充电,V C ↑;当V A <V C <V B 时,R=0,S=0,Q=0保持;V C ↑继续,当V C >V B 时,R=0,R S Q1 0 00 1 10 0 保持1 1 不定S=1,Q=1,Pin9提供出一个上升沿;Q=1使T 1导通,T 2、T 3、T 4均导通,Ie 2=Ic 2=I B ,由于T 2、T 3、T 4基极相连、射极相连,∴Ic 3= Ic 4=I B ,Ie 1= Ic 1=2 I B ,电容C 由电流(2 I B -I A )放电,V C ↓;当V A <V C <V B 时,R=0,S=0,Q=1保持;当V C <V A 时,R=1,S=0,Q=0,Pin9=0,Pin9提供出一个下降沿;T 1截止,T 2、T 3、T 4均截止,I A 给C 充电,V C ↑;如此周而复始。