第一章 编译器概述
- 格式:ppt
- 大小:159.50 KB
- 文档页数:30
编译器设计(第2版)全文共四篇示例,供读者参考第一篇示例:编译器是计算机科学领域中一个非常重要的概念,它负责将高级语言编写的代码转换成机器语言执行。
《编译器设计(第2版)》一书是一本经典的教材,提供了深入的编译器设计理论和实践知识。
本文将介绍该书的内容和重要观点,并深入探讨编译器设计领域的一些关键问题。
在《编译器设计(第2版)》一书中,作者Alfred V. Aho 和Jeffrey D. Ullman等人深入解释了编译器的各个组成部分,包括词法分析、语法分析、语义分析、优化和代码生成等。
他们着重强调了编译器设计中的算法和数据结构,以及对理论和实践的结合。
通过系统地介绍编译器设计的基本原理和技术,读者可以更好地理解和掌握如何设计和实现一个高效的编译器。
在编译器设计中,词法分析是非常重要的一部分,它负责将源代码转换成标识符、关键字、运算符等各种词法单元。
在《编译器设计(第2版)》一书中,作者详细介绍了有限自动机、正规语言和正规表达式等词法分析的基本概念和技术。
他们还介绍了lex工具和flex工具等流行的词法分析器生成器,帮助读者更快地生成词法分析器。
除了词法分析外,语法分析也是编译器设计中的另一个核心问题。
语法分析负责将词法单元转换成语法树,从而展示程序的结构和语法规则。
在《编译器设计(第2版)》一书中,作者详细介绍了自顶向下和自底向上两种主流的语法分析方法,包括LL分析器、LR分析器、语法制导翻译等。
通过深入研究这些方法,读者可以更好地理解语法分析的原理和实践应用。
在编译器设计过程中,语义分析是另一个至关重要的环节。
语义分析负责检查源代码中的语义错误,并对表达式、语句等进行类型检查等操作。
在《编译器设计(第2版)》一书中,作者介绍了各种语义分析的技术,包括语义动作、作用域规则、类型检查等。
通过学习这些技术,读者可以更好地理解和实现语义分析的过程。
优化和代码生成是编译器设计中的最后一步,它负责对生成的中间代码进行优化和转换成目标代码。
编译原理课程设计教案第一章:编译原理概述1.1 编译器的作用与重要性解释编译器将高级语言程序转换为机器语言程序的过程强调编译器在软件开发中的关键角色1.2 编译原理的基本概念介绍编译程序的基本组成部分,如词法分析器、语法分析器、语义分析器、中间代码器、目标代码器和代码优化器等解释源程序、目标程序和中间代码的概念1.3 编译过程的阶段详细介绍编译过程的各个阶段,包括词法分析、语法分析、语义分析、中间代码、代码优化和目标代码强调每个阶段的目标和重要性第二章:词法分析2.1 词法分析的基本概念解释词法分析器的任务和作用介绍词法单位的概念,如标识符、关键字、常量和符号等2.2 词法分析的技术和方法介绍词法分析常用的技术和方法,如有限自动机、正则表达式和词法规则等解释词法分析过程中的扫描线和词法单元的产生过程2.3 词法分析器的实现介绍如何实现一个简单的词法分析器,包括词法规则的定义和词法分析器的构造提供相关的编程练习,让学生通过编写代码实现基本的词法分析功能第三章:语法分析3.1 语法分析的基本概念解释语法分析器的任务和作用介绍语法规则和语法树的概念3.2 语法分析的技术和方法介绍语法分析常用的技术和方法,如递归下降分析法、LL分析法、LR分析法等解释语法分析过程中的分析表和状态机的概念3.3 语法分析器的实现介绍如何实现一个简单的语法分析器,包括语法规则的定义和语法分析器的构造提供相关的编程练习,让学生通过编写代码实现基本的语法分析功能第四章:语义分析4.1 语义分析的基本概念解释语义分析器的任务和作用介绍语义规则和语义错误的概念4.2 语义分析的技术和方法介绍语义分析常用的技术和方法,如类型检查、上下文无关文法分析、语义规则等解释语义分析过程中的语义规则和语义冲突的解决方法4.3 语义分析器的实现介绍如何实现一个简单的语义分析器,包括语义规则的定义和语义分析器的构造提供相关的编程练习,让学生通过编写代码实现基本的语义分析功能第五章:中间代码5.1 中间代码的基本概念解释中间代码器的任务和作用介绍中间代码的概念和中间代码的原则5.2 中间代码的技术和方法介绍中间代码的常用技术和方法,如三地址代码、静态单赋值代码等解释中间代码过程中的基本规则和操作符的转换5.3 中间代码器的实现介绍如何实现一个简单的中间代码器,包括中间代码的定义和中间代码器的构造提供相关的编程练习,让学生通过编写代码实现基本的中间代码功能第六章:代码优化6.1 代码优化的基本概念解释代码优化器的任务和作用介绍代码优化的目标和常见的优化技术6.2 常见代码优化技术详细介绍各种代码优化技术,如常量折叠、死代码消除、循环优化、表达式简化等强调优化技术对提高程序性能的重要性6.3 代码优化器的实现介绍如何实现一个简单的代码优化器,包括优化规则的定义和代码优化器的构造提供相关的编程练习,让学生通过编写代码实现基本的代码优化功能第七章:目标代码7.1 目标代码的基本概念解释目标代码器的任务和作用介绍目标代码的概念和目标代码的原则7.2 目标代码的技术和方法介绍目标代码的常用技术和方法,如寄存器分配、指令调度等解释目标代码过程中的基本规则和操作符的转换7.3 目标代码器的实现介绍如何实现一个简单的目标代码器,包括目标代码的定义和目标代码器的构造提供相关的编程练习,让学生通过编写代码实现基本的目标代码功能第八章:调试技术8.1 调试技术的基本概念解释调试器的作用和重要性介绍调试过程中的常见问题和调试技术8.2 调试器的结构和原理详细介绍调试器的结构和原理,如断点、单步执行、查看变量等功能强调调试技术对发现和修复程序错误的重要性8.3 调试器的实现介绍如何实现一个简单的调试器,包括断点的设置、单步执行、变量查看等功能提供相关的编程练习,让学生通过编写代码实现基本的调试功能第九章:编译器性能评价9.1 编译器性能评价的基本概念解释编译器性能评价的目的和方法介绍编译器性能评价的指标和评价方法9.2 编译器性能评价的指标和评价方法详细介绍编译器性能评价的指标,如执行速度、内存占用、编译时间等介绍常用的编译器性能评价方法和工具9.3 编译器性能评价的实践介绍如何进行编译器性能评价的实践,包括评价指标的选取和评价方法的实施提供相关的实践练习,让学生通过实际操作评价编译器的性能第十章:编译原理应用与发展趋势10.1 编译原理在软件开发中的应用介绍编译原理在软件开发中的应用领域,如解释器设计、即时编译、程序分析等强调编译原理在提高程序性能和开发效率方面的重要性10.2 编译原理的研究现状与未来发展介绍编译原理研究领域的前沿技术和最新研究成果探讨编译原理未来的发展趋势和挑战10.3 编译原理在实践中的应用案例分析分析编译原理在实际项目中的应用案例,如开源编译器项目、商业编译器产品等引导学生思考如何将编译原理应用于实际工程实践中的问题重点和难点解析重点环节一:编译器的作用与重要性编译器作为程序设计语言和计算机硬件之间的桥梁,其作用不可忽视。
什么是编译器?编译器是一种将高级语言代码转换成机器语言的软件工具。
它是计算机科学中的一个重要概念,用于将人类可读的代码转换为计算机可执行的指令。
编译器的主要功能是将源代码(如C、C++、Java等高级语言)转换为目标代码(如汇编语言或机器语言)。
这个转换过程被称为编译。
编译器分为多个阶段,每个阶段都完成了特定的任务,最终生成可执行的目标文件。
编译器的工作流程通常包括以下几个步骤:1. 词法分析(Lexical Analysis):将源代码分解为一个个词法单元(Token),如关键字、标识符、运算符等。
词法分析器扫描源代码,识别和分类各个词法单元。
2. 语法分析(Syntax Analysis):将词法分析得到的词法单元组织成语法树(Parse Tree)或抽象语法树(Abstract Syntax Tree)。
语法分析器根据语法规则检查源代码的语法正确性,并生成中间表示。
3. 语义分析(Semantic Analysis):对中间表示进行语义检查,确保源代码的语义正确性。
语义分析器会检查变量的声明和使用、类型匹配、函数调用等语义相关的问题。
4. 中间代码生成(Intermediate Code Generation):将语法分析和语义分析得到的中间表示转化为一种中间代码,如三地址码或虚拟机代码。
中间代码是一种抽象的表示形式,比源代码更接近于机器语言。
5. 代码优化(Code Optimization):对中间代码进行优化,以提高程序的性能和效率。
代码优化器尝试通过改变代码结构、减少计算和存储等方式来减少程序的执行时间和空间消耗。
6. 目标代码生成(Code Generation):将优化后的中间代码转换为机器语言或特定硬件平台的汇编语言。
目标代码生成器会根据目标机器的架构和指令集生成相应的机器代码。
7. 符号表管理(Symbol Table Management):编译器会维护一个符号表,用于存储变量、函数和其他标识符的信息。
编译技术命题指导意见教学内容知识点及题型第一章编译器概述A (1)编译的阶段划分[选择题2分][1] 编译程序绝大多数时间花在( )上。
A. 出错处理B. 词法分析C. 目标代码生成D. 符号表管理答案:D[2] ( ) 和代码优化部分不是每个编译程序都必需的。
A. 语法分析B. 中间代码生成C. 词法分析D. 代码生成答案:B[3] 编译程序前三个阶段完成的工作是( )。
A. 词法分析、语法分析和代码优化B. 代码生成、代码优化和词法分析C. 词法分析、语法分析和语义分析D. 词法分析、语法分析和代码生成答案:C(2)遍的概念[填空题2分][1] 编译阶段的活动常用一遍扫描来实现,一遍扫描包括和。
答案:读一个输入文件写一个输出文件[2] 将编译程序分成若干个“遍”是为了________。
答案:使程序的结构更加清晰[3] 编译器从逻辑上可以分为7个阶段,其中,可以作为一个后端遍的是___________阶段。
答案:代码生成(3)前端和后端的划分[简答题5分][1] 什么是前端?[5分]答案:编译器分成分析和综合两大部分。
分析部分揭示源程序的基本元素和它们所形成的层次结构,决定它们的含义,建立起源程序的中间表示,分析部分经常被称为前端。
[2] 什么是后端?[5分]答案:编译器分成分析和综合两大部分。
综合部分从源程序的中间表示建立起和源程序等价的目标程序,它经常被称为后端。
[3] 什么是前端?什么是后端?[5分]答案:编译器分成分析和综合两大部分。
分析部分揭示源程序的基本元素和它们所形成的层次结构,决定它们的含义,建立起源程序的中间表示,分析部分经常被称为前端。
综合部分从源程序的中间表示建立起和源程序等价的目标程序,它经常被称为后端。
第二章2.1 2.2 词法记号的定义及描述B (1)词法分析器的功能[选择题2分][1] 词法分析程序的输出结果是()。
A. 单词的种别编码B. 单词在符号表中的位置C. 单词的种别编码和单词属性值D. 单词的单词属性值答案:C[2] 词法分析器用于识别_____。
第一章:编译系统概述一.单项选择题1.编译程序前三个阶段完成的工作是〔C〕。
A.词法分析, 语法分析和代码优化B.代码生成, 代码优化和词法分析C.词法分析, 语法分析, 语义分析和中间代码生成D.词法分析, 语法分析和代码优化2.编译程序绝大多数时间花在〔D〕上。
A.出错处理 B.词法分析 C.目标代码生成D.表格管理3.编译程序是对〔C〕。
A.汇编程序的翻译 B.高级语言程序的说明执行C.高级语言的翻译 D.机器语言的执行4.在运用高级语言编程时,首先可通过编译程序发觉源程序的全部〔A〕错误。
A.语法 B.语义 C.语用 D.运行二.填空题1.编译程序首先要识别出源程序中每个(单词),然后再分析每个(句子)并翻译其意义。
2.通常把编译过程分为分析前端及后端两大阶段。
词法, 语法和语义分析是对源程序的(分析),中间代码生成, 代码优化及目标代码的生成那么是对源程序的(综合)。
3.对编译程序而言,输入数据是(源程序),输出结果是(目标程序)。
4.对以下错误信息,请指出可能是编译的哪个阶段〔词法分析, 语法分析, 语义分析,代码生成〕报告的。
〔1〕 else 没有匹配的if 〔语法分析〕〔2〕数组下标越界〔语义分析〕〔3〕运用的函数没有定义〔语法分析〕〔4〕在数中出现非数字字符〔词法分析〕5.假如编译程序生成的目标程序是机器代码程序,那么源程序的执行分为两大阶段:〔编译阶段〕和〔运行阶段〕。
假如编译程序生成的目标程序是汇编语言程序,那么源程序的执行方式分成三个阶段:〔编译阶段〕〔汇编阶段〕和〔运行阶段〕。
6.编译程序在其工作过程运用最多的数据构造是〔表〕,它记录着源程序中各种信息,以便查询或修改,在这些〔表〕中,尤以〔符号表〕最重要,它的生存期最长,运用也最频繁。
三.简述题:1.编译程序的工作分为那几个阶段答:词法分析, 语法分析和语义分析是对源程序进展的分析(称为编译程序的前端),而中间代码生成, 代码优化和代码生成三个阶段合称为对源程序进展综合(称为编译程序的后端),它们从源程序的中间表示建立起和源程序等价的目标程序。
Cx51编译器对传统和扩展的8051微处理器的优化的C 编译器和库参考用户手册09.2001Keil Software – Cx51编译器用户手册—ፉᑗኔፉᑗኔ由于本人的英语水平有限所以在使用KEIL C51的过程中老要去看那英文的手册总感到不是那么方便老要用词霸查来查去的烦的很因此在看到C51BBS上的倡议后就动了把它翻译出来的念头我想这对自己和别人都会带来些好处利用工作之余的时间经过几个月的努力终于把它翻译完了但由于水平所限文中肯定有很多不是十分恰当的地方或许没有用大家比较熟悉的惯用语或许可能引起误解所以在这里我请大家能指出其中的错误和不当之处请大家EMAIL告诉我使我能够作出改正对于大家的建议我会很高兴的接受我最大的愿望是希望我的翻译不会误导大家且能对大家有所帮助不明之处可以参考英文原文感谢C51BBS版主龙啸九天的帮助欢迎大家与我交流我的e-mail**************Keil Software声明本文档所述信息不属于我公司的承诺范围其内容的变化也不会另行通知本文档所述软件的出售必须经过授权或签订特别协议本文档所述软件的使用必须遵循协议约定在协议约定以外的任何媒体上复制本软件将触犯法律购买者可以备份为目的而做一份拷贝在未经书面许可之前本手册的任何一部分都不允许为了购买者个人使用以外的目的而以任何形式和任何手段(电子的机械的)进行复制或传播版权1988-2001所有者Keil Elektronik GmbH和Keil Software公司Keil C51™Keil CX51™,和uVision TM是Keil Elektronik GmbH的商标Microsoft®和Windows™是Microsoft Corporation的商标或注册商标IBM®PC®和PS/2®是International Business Machines Corporation的注册商标Intel®MCS®51MCS®251ASM-51®和PL/M-51®是Intel的注册商标我们尽全力去做来保证这本手册的正确从而保证我们个人公司和在此提及的商标的形象前言本手册讲述对8051的目标环境如何使用C x51优化C编译器编译C程序C x51编译器包可以用在所有的8051系列处理器上可以在WINDOWS 32位命令行中执行本手册假定你熟悉WINDOWS操作系统知道如何编程8051处理器并会用C语言编程注意本手册用条件窗口来指明32位WINDOWS版本是WINDOWS95WINDOWS98WINDOWS ME WINDOWS NT WINDOWS 2000或WINDWOS XP如果你对C编程有问题或者你想知道C语言编程的更多信息可参考16页的关于C 语言的书手册中讨论的许多例子和描述是从WINDOWS命令提示符下调用的这对在一个集成环境如µVision2中运行C x51的情况是不适用的本手册中的例子是通用的可以应用到所有编程环境手册组织本用户手册分成下面的章节和附录第一章介绍概述C x51编译器第二章用C x51编译解释怎样用C x51交叉编译器编译一个源文件本章叙述控制文件处理编译和输出的命令行提示第三章语言扩展叙述支持8051系统结构必须的C语言扩展本章提供一个在ANSI C说明中没有的命令函数和控制的详细列表第四章预处理器叙述C x51编译器预处理器的组成和包含的例子第五章派生的8051叙述C x51编译器支持的8051派生系列本章还包括能帮助提高目标程序性能的技巧第六章高级编程技术对有经验的开发人员的重要信息本章包括定制文件描述优化器详细资料和段名约定本章还讨论了C x51编译器产生的程序和别的8051编程语言如何接口第七章错误信息列出了在使用C x51编译器时可能遇到的致命错误语法错误和警告第八章库参考提高一个扩展的C x51库参考分类列出了库例程和相关的包含文件本章最后有一个按字母顺序的参考包括每个库例程的例子代码附录中包含不同编译器版本间的差异作品编号和别的有些信息文档约定本文档有下列约定README .TXT 粗体大写用在可执行程序名数据文件名源文件名环境变量和输入WINDOWS 命令行的命令上表示你必须手工输入的文本不一定要大写例CLS DIR BL51.EXELanguage Elements C 语言的构成包括关键词操作符和库函数用粗体例if != longisdigit main >>Courier 这种字体的文本代表显示在屏幕上或打印出的信息这字体也用在讨论或描述命令行中Variables 斜体字必须提供的信息例如在语法字符串中的projectfile 表示需要提供实际的工程文件名重复的成分…例子中使用的省略号…表示重复的成分省略代码 . . .垂直省略号用在源代码例子中表示省略一段程序例子void main(void ) {...while(1);[可选项]命令行中的可选参数和选择项用方括号表示例C51 TEST.C PRINT [(filename )]{opt1|opt2}大括号中的文本用竖线分隔代表一组选项必须从中选一项大括号中包含了所有选项竖线分隔选项KeysSans serif 字体的文本代表键盘的键例如按Enter 继续ContentsChapter 1. Introduction (15)Support for all 8051 Variants (15)Books About the C Language (16)Chapter 2. Compiling with the C x51 Compiler (17)Environment Variables (17)Running C x51 from the Command Prompt (18)ERRORLEVEL (19)C x51 Output Files (19)Control Directives (20)Directive Categories (20)Reference (23)AREGS / NOAREGS (24)ASM / ENDASM (26)BROWSE (28)CODE (29)COMPACT (30)COND / NOCOND (31)DEBUG (33)DEFINE (34)DISABLE (35)EJECT (37)FLOATFUZZY (38)INCDIR (39)INTERVAL (40)INTPROMOTE / NOINTPROMOTE (41)INTVECTOR / NOINTVECTOR (44)LARGE (46)LISTINCLUDE (47)MAXARGS (48)MOD517 / NOMOD517 (49)MODA2 / NOMODA2 (51)MODAB2 / NOMODAB2 (52)MODDA2 / NOMODDA2 (53)MODDP2 / NOMODDP2 (54)MODP2 / NOMODP2 (55)NOAMAKE (56)NOEXTEND (57)OBJECT / NOOBJECT (58)OBJECTADVANCE (59)OBJECTEXTEND (60)ONEREGBANK (61)OMF2 (62)OPTIMIZE (63)ORDER (65)PAGELENGTH (66)PAGEWIDTH (67)PREPRINT (68)PRINT / NOPRINT (69)REGFILE (70)REGISTERBANK (71)REGPARMS / NOREGPARMS (72)RET_PSTK, RET_XSTK (74)ROM (76)SAVE / RESTORE (77)SMALL (78)SRC (79)STRING (80)SYMBOLS (81)USERCLASS (82)VARBANKING (84)WARNINGLEVEL (85)XCROM (86)Chapter 3. Language Extensions (89)Keywords (89)Memory Areas (90)Program Memory (90)Internal Data Memory (91)External Data Memory (92)Far Memory (93)Special Function Register Memory (93)Memory Models (94)Small Model (94)Compact Model (95)Large Model (95)Memory Types (95)Explicitly Declared Memory Types (96)Implicit Memory Types (97)Data Types (97)Bit Types (98)Bit-addressable Objects (99)Special Function Registers (101)sfr (101)sfr16 (102)sbit (102)Absolute Variable Location (104)Pointers (106)Generic Pointers (106)Memory-specific Pointers (109)Pointer Conversions (111)Abstract Pointers (114)Function Declarations (118)Function Parameters and the Stack (119)Passing Parameters in Registers (120)Function Return Values (120)Specifying the Memory Model for a Function (121)Specifying the Register Bank for a Function (122)Register Bank Access (124)Interrupt Functions (125)Reentrant Functions (129)Alien Function (PL/M-51 Interface) (132)Real-time Function Tasks (133)Chapter 4. Preprocessor (135)Directives (135)Stringize Operator (136)Token-pasting operator (137)Predefined Macro Constants (138)Chapter 5. 8051 Derivatives (139)Analog Devices MicroConverter B2 Series (140)Atmel 89x8252 and Variants (141)Dallas 80C320, 420, 520, and 530 (142)Dallas 80C390, 80C400, 5240, and Variants (143)Arithmetic Accelerator (144)Infineon C517, C509, 80C537, and Variants (145)Data Pointers (145)High-speed Arithmetic (146)Library Routines (146)Philips 8xC750, 8xC751, and 8xC752 (147)Philips 80C51MX Architecture (148)Philips and Atmel WM Dual DPTR (148)Chapter 6. Advanced Programming Techniques (149)Customization Files (150)STARTUP.A51 (151)INIT.A51 (153)XBANKING.A51 (154)Basic I/O Functions (156)Memory Allocation Functions (156)Optimizer (157)General Optimizations (157)8051-Specific Optimizations (158)Options for Code Generation (158)Segment Naming Conventions (159)Data Objects (160)Program Objects (161)Interfacing C Programs to Assembler (163)Function Parameters (163)Parameter Passing in Registers (164)Parameter Passing in Fixed Memory Locations (165)Function Return Values (165)Using the SRC Directive (166)Register Usage (168)Overlaying Segments (168)Example Routines (168)Small Model Example (169)Compact Model Example (171)Large Model Example (173)Interfacing C Programs to PL/M-51 (175)Data Storage Formats (176)Bit Variables (176)Signed and Unsigned Characters, Pointers to data, idata, and pdata (177)Signed and Unsigned Integers, Enumerations, Pointers to xdata andcode (177)Signed and Unsigned Long Integers (177)Generic and Far Pointers (178)Floating-point Numbers (179)Floating-point Errors (182)Accessing Absolute Memory Locations (184)Absolute Memory Access Macros (184)Linker Location Controls (185)The _at_ Keyword (186)Debugging (187)Chapter 7. Error Messages (189)Fatal Errors (189)Actions (190)Errors (191)Syntax and Semantic Errors (193)Warnings (205)Chapter 8. Library Reference (209)Intrinsic Routines (209)Library Files (210)Standard Types (211)jmp_buf (211)va_list (211)Absolute Memory Access Macros (212)CBYTE (212)CWORD (212)DBYTE (213)DWORD (213)FARRAY, FCARRAY (214)FVAR, FCVAR, (215)PBYTE (216)PWORD (216)XBYTE (217)XWORD (217)Routines by Category (218)Buffer Manipulation (218)Character Conversion and Classification (219)Data Conversion (220)Math Routines (221)Memory Allocation Routines (223)Stream Input and Output Routines (224)String Manipulation Routines (226)Variable-length Argument List Routines (227)Miscellaneous Routines (227)Include Files (228)8051 Special Function Register Include Files (228)80C517.H (228)ABSACC.H (229)ASSERT.H (229)CTYPE.H (229)INTRINS.H (229)MATH.H (230)SETJMP.H (230)STDARG.H (230)STDDEF.H (230)STDIO.H (231)STDLIB.H (231)STRING.H (231)Reference (232)abs (233)acos / acos517 (234)asin / asin517 (235)assert (236)atan / atan517 (237)atan2 (238)atof / atof517 (239)atoi (240)atol (241)cabs (242)calloc (243)ceil (244)_chkfloat_ (245)cos / cos517 (246)cosh (247)_crol_ (248)_cror_ (249)exp / exp517 (250)fabs (251)floor (252)fmod (253)free (254)getchar (255)_getkey (256)gets (257)init_mempool (258)_irol_ (259)_iror_ (260)isalnum (261)isalpha (262)iscntrl (263)isdigit (264)isgraph (265)islower (266)isprint (267)ispunct (268)isspace (269)isupper (270)isxdigit (271)labs (272)log / log517 (273)log10 / log10517 (274)longjmp (275)_lrol_ (277)_lror_ (278)malloc (279)memccpy (280)memchr (281)memcmp (282)memcpy (283)memmove (284)memset (285)modf (286)_nop_ (287)offsetof (288)pow (289)printf / printf517 (290)putchar (296)puts (297)rand (298)realloc (299)scanf (300)setjmp (304)sin / sin517 (305)sinh (306)sprintf / sprintf517 (307)sqrt / sqrt517 (309)srand (310)sscanf / sscanf517 (311)strcat (313)strchr (314)strcmp (315)strcpy (316)strcspn (317)strlen (318)strncat (319)strncmp (320)strncpy (321)strpbrk (322)strpos (323)strrchr (324)strrpbrk (325)strrpos (326)strspn (327)strstr (328)strtod / strtod517 (329)strtol (331)strtoul (333)tan / tan517 (335)tanh (336)_testbit_ (337)toascii (338)toint (339)tolower (340)_tolower (341)toupper (342)_toupper (343)ungetchar (344)va_arg (345)va_end (347)va_start (348)vprintf (349)vsprintf (351)Appendix A. Differences from ANSI C (353)Compiler-related Differences (353)Library-related Differences (353)Appendix B. Version Differences (357)Version 6.0 Differences (357)Version 5 Differences (358)Version 4 Differences (359)Version 3.4 Differences (361)Version 3.2 Differences (362)Version 3.0 Differences (363)Version 2 Differences (364)Appendix C. Writing Optimum Code (367)Memory Model (367)Variable Location (369)Variable Size (369)Unsigned Types (370)Local Variables (370)Other Sources (370)Appendix D. Compiler Limits (371)Appendix E. Byte Ordering (373)Appendix F. Hints, Tips, and Techniques (375)Recursive Code Reference Error (375)Problems Using the printf Routines (376)Uncalled Functions (377)Using Monitor-51 (377)Trouble with the bdata Memory Type (378)Function Pointers (379)Glossary (383)Index (391)ጙᐺC语言是一个通用的编程语言它提供高效的代码结构化的编程和丰富的操作符C不是一种大语言不是为任何特殊应用领域而设计它一般来说限制较少可以为各种软件任务提供方便和有效的编程许多应用用C比其他语言编程更方便和有效优化的C x51 C编译器完整的实现了ANSI的C语言标准对8051来说C x51不是一个通用的C编译器它首先的目标是生成针对8051的最快和最紧凑的代码C x51具有C编程的弹性和高效的代码和汇编语言的速度C语言不能执行的操作如输入和输出需要操作系统的支持这些操作作为标准库的一部分提供因为这些函数和语言本身无关所以C特别适合对多平台提供代码既然C x51是一个交叉编译器C语言的某些方面和标准库就有了改变或增强以适应一个嵌套的目标处理器的特性更多的细节参考89页的第三章.语言扩展支持所有的8051变种8051系列是增长最快的微处理器构架之一从不同的芯片厂家提供了400多种芯片新扩展的8051芯片如PHILIPS 8051MX有几M字节的代码和数据空间可被用到大的应用中为了支持这些不同的8051芯片KEIL提供了几种开发工具如下表所列一个新的输出文件格式OMF2允许支持最多16MB代码和数据空间CX51编译器适用于新的PHILIPS 8051MX结构C51编译器A51宏汇编BL51连接器对传统的8051开发工具包括支持32 x64KB 的代码库C51编译器有OMF2输出AX51宏汇编LX51连接器对传统的8051和扩展的8051芯片如DALLAS 390的开发工具包括支持代码库和最多16MB代码和XDATA存储区CX51编译器AX51宏汇编LX51连接器对PHILIPS 8051MX的开发工具支持最多16MB 代码和XDATA存储区C x 51编译器在不同的包中提供上表是完整的8051开发工具参考注意Cx51指两种编译器C51编译器和CX51编译器C 语言的书有许多书介绍C 语言有更多的书详细介绍用C 完成的任务下面的列表不是一个完整的列表列表只是作为参考The C Programming Language, Second Edition Kernighan & RitchiePrentice-Hall, Inc.ISBN 0-13-110370-9C: A Reference Manual, Second EditionHarbison & SteelPrentice-Hall Software SeriesISBN 0-13-109810-1C and the 8051: Programming and MultitaskingSchultzP T R Prentice-Hall, Inc.ISBN 0-13-753815-4औᐺCx51ܠፉܠፉ本章说明怎样编译C源文件讨论编译器的控制命令这些命令可以命令C x51编译器产生列表文件控制包含在OBJ文件中的信息的数量指定优化级别和存储模式注意一般来说你应在µVision2 IDE中使用Cx51关于使用µVision2IDE的更多信息参考用户手册Getting Started with µVision2 and C51”.环境变量如果在µVision2IDE中运行Cx51编译器计算机不需要另外的设置如果想要在命令行中运行C x51编译器和工具必须手工创建下面的环境变量PATH\C51\BIN C51和CX51可执行程序的路径TMP编译器产生的临时文件的路径如果指定的路径不存在编译器会生成错误并停止编译C51INC\C51\INC Cx51头文件的路径C51LIB\C51\LIB Cx51库文件的路径对WINSOWS NT WINDOWS 2000和WINDOWS XP这些环境变量在Control Panel –System – Advanced – Environment Variables中输入对WINDOWS 95WINDOWS 98和WINDOWS ME这些设置放在AUTOEXEC.BAT中PATH=C\KEIL\C51\BIN;%PATH%SET TMP=D:\SET C51INC=C:\KEIL\C51\INCSET C51LIB=C:\KEIL\C51\LIB从命令行运行Cx51调用C51或CX51编译器在命令行输入C51或CX51在命令行中必须包含要编译的C源文件和必需的编译控制命令C x51命令行的格式C51 sourcefile [directives…]CX51 sourcefile [directives…]或C51 @commandfileCX51 @commandfile这里sourcefile要编译的源文件名directives用来控制编译器功能的命令参考20页的控制命令commandfile包含源文件名和命令的命令输入文件当C x51调用行较复杂超过了WINDOWS命令行的限制时使用commandfile下面的命令行例子调用C51指定源文件SAMPLE.C用控制DEBUG CODE和PREPRINTC51 SAMPLE.C DEBUG CODE PREPRINTC x51编译器在成功编译后显示下面的信息C51 COMPILER V6.10C51 COMPILATION COMPLETE. 0 WARNING S0 ERROR S错误级别在编译后错误和警告的数目输出在屏幕上C x51编译器设置ERRORLEVEL指示编译的状态值如下表所列0没有错误或警告1只有警告2错误和可能的警告3致命错误可以在批处理文件中访问ERRORLEVEL变量关于ERRORLEVEL或批处理文件可以参考WINDOWS命令索引或在线帮助Cx51输出文件C x51编译器在编译时产生许多输出文件缺省的输出文件和源文件同名但文件的扩展名不同下面的表列出了文件并有简短的说明Filename.LST列表文件包含格式化的源文件和编译中检测到的错误列表文件可以选择包含所用的符号和生成汇编代码更多的信息参考PRINT命令Filename.OBJ包含可重定位目标代码的OBJ模块OBJ模块用Lx51连接器连接到一个绝对的OBJ模块Filename.I包含由预处理器扩展的源文件所有的宏都扩展了所有的注释都删除了可参考PREPRINT命令Filename.SRC C源代码产生的汇编源文件可以用A51汇编可参考SRC命令控制命令C x51编译器提供许多控制命令控制编译除了指定的命令由一个或多个字母或数字组成在命令行中在文件名后指定或在源文件中用#pragma命令例如C51 testfile.c SYMBOLS CODE DEBUG#pragma SYMBOLS CODE DEBUG在说明的例子中SYMBOLS CODE和DEBUG都是控制命令testfile.C是要编译的源文件注意对命令行和#pragma语法是相同的在#pragma可指定多个选项典型的每个控制命令只在源文件的开头指定一次如果一个命令指定多次编译器产生一个致命错误退出编译可以指定多次的命令在下面部分注明命令种类控制命令可以分成三类源文件控制目标控制和列表控制源文件控制定义命令行的宏定义要编译的文件名目标控制影响产生的目标模块*.OBJ的形式和内容这些命令指定优化级别或在OBJ文件中包含调试信息列表控制管理列表文件*.LST的各种样式特别是格式和指定的内容上下表按字母顺序列出了控制命令有下划线的字母表示命令的缩写AREGS NOAREGS Object 使能或不使能绝对寄存器ARn地址ASM ENDASM Source 标志内嵌汇编块的开始和结束BROWSE †Object 产生浏览器信息CODE †Listing 加一个汇编列表到列表文件COMPACT †Object 设置COMPACT 存储模式COND NOCOND †Listing 包含或执行预处理器跳过的源程序行DEBUG †Object 在OBJ 文件中包含调试信息DEFINE Source 在Cx51调用行定义预处理器名DISABLE Object 在一个函数内不允许中断EJECTListing 在列表文件中插入一个格式输入字符FLOATFUZZY Object 在浮点比较中指定位数INCDIR †Source 指定头文件的附加路径名INTERVAL †Object 对SIECO 芯片指定中断矢量间隔INTPROMOTE NOINTPROMOTE†Object 使能或不使能ANSI 整数同时提升INTVECTOR NOINTVECTOR †Object 指定中断矢量的基地址或不使能矢量LARGE †Object 选择LARGE 存储模式LISTINCLUDE Listing 在列表文件中显示头文件MAXAREGS †Object 指定可变参数列表的大小MOD517NOMOD517Object 使能或不使能代码支持80C517和派生的额外的硬件特征MODA2NOMODA2Object 使能或不使能ATMEL 82x8252和变种的双DPTR 寄存器MODAB2NOMODAB2Object 使能或不使能模拟设备ADuC B2系列支持双DPTR 寄存器MODDA NOMODDA Object 使能或不使能DALLAS 80C39080C400和5240支持算法加速器MODDP2NOMODDP2Object 使能或不使能DALLAS 的320520530550和变种支持双DPTR 寄存器MODP2NOMODP2Object 使能或不使能PHILIPS 和ATMELWM 派生的支持双DPTR 寄存器NOAMAKE †Object 不记录µVision2更新信息NOEXTEND †Source Cx51不扩展到ANSI COBJECT NOOBJECT †Object 指定一个OBJ 文件或禁止OBJ 文件OBJECTEXTEND†Object 在OBJ 文件中包含变量类型信息ONEREGBANKObject假定在中断中只用寄存器组0OMF2†Object 产生OMF2输出文件格式OPTIMIZE Object 指定编译器的优化级别ORDER †Object 按源文件中变量的出现顺序分配PAGELENGTH †Listing 指定页的行数PAGEWIDTH †Listing 指定页的列数PREPRINT †Listing 产生一个预处理器列表文件扩展所有宏PRINTNOPRINT †Listing 指定一个列表文件名或不使能列表文件REGFILE †Object 对全局寄存器优化指定一个寄存器定义文件REGISTERBANK Object 为绝对寄存器访问选择寄存器组REGPARMS NOREGPARMS Object 使能或不使能寄存器参数传递RET_PSTK † RET_XSTK †Object 用重入堆栈保存返回地址ROM †Object AJMP/ACALL 指令产生控制SAVERESTORE Object 保存和恢复AREGS REGPARMS 和OPTIMIZE 命令设置SMALL†Object 选择SMALL 存储模式缺省SRC †Object 产生一个汇编源文件不产生OBJ 模块STRING †Object 定位固定字符串到XDATA 或远端存储区SYMBOLS †Listing 模块中所有符号的列表文件USERCLASS †Object 对可变的变量位置重命名存储区类VARBANKING †Object 使能FAR 存储类型变量WARNINGLEVEL†Listing 选择警告检测级别XCROM †Object对CONST XDATA 变量假定ROM 空间† 这些命令在命令行或源文件开头的#pragma中只指定一次在一个源文件中不能使用多次控制命令和参数除了用DEFINE 命令的参数是大小写无关的参考本章的余下部分按字母顺序描述C x51编译器控制命令他们分成如下部分缩写可以替代命令的缩写参数命令可选和要求的参数缺省命令的缺省设置µVision2控制怎样指定命令说明详细的说明命令和使用参考相关命令例子命令使用的例子有时也列出结果AREGS/NOAREGS缩写无参数无缺省AREGSµVision2控制Options – C51 – Don‘t use absolute register access说明AREGS控制使编译器对寄存器R0到R7用绝对寄存器地址绝对地址提高了代码的效率例如PUSH和POP指令只能用直接或绝对地址用AREGS命令可以直接PUSH或POP寄存器可用REGISTERBANK命令定义使用的寄存器组NOAREGS命令对寄存器R0到R7不使能绝对寄存器地址用NOAREGS编译的函数可以使用所有的8051寄存器组命令可用在被别的函数用不同的寄存器组调用的函数中注意虽然可能在一个程序中定义了几次AREGS/NOAREGS选项只有定义在函数声明为有效例子下面是一个使用NOAREGS 和AREGS 的源程序和代码的列表注意保存R7到堆栈中的不同方法函数noaregfunc 产生的代码是MOV A R7PUSHACC同时对aregfunc 函数的代码是PUSHAR7stmt levelsource1extern char func ();2char k;34#pragma NOAREGS 5noaregfunc (){61k =func ()+func ();71}89#pragma AREGS 10aregfunc (){111k =func ()+func ();121};FUNCTION noaregfunc (BEGIN);SOURCE LINE #60000120000E LCALL func 0003EF MOV A,R70004C0E0PUSH ACC 0006120000E LCALL func 0009D0E0POP ACC 000B 2F ADD A,R7000C F500R MOV k,A;SOURCE LINE #7000E22RET;FUNCTION noaregfunc (END);FUNCTION aregfunc (BEGIN);SOURCE LINE #110000120000E LCALL func 0003C007PUSH AR70005120000E LCALL func 0008D0E0POP ACC 000A 2F ADD A,R7000B F500R MOV k,A;SOURCE LINE #12000D22RET;FUNCTION aregfunc (END)ASM/ENDASM缩写无参数无缺省无µVision2控制本命令不能在命令行指定说明ASM命令标志一块源程序的开始它可以直接合并到由SRC命令产生的.SRC文件中这些源程序可以认为是内嵌的汇编然而它只输出到由SRC命令产生的源文件中源程序不汇编和输出到OBJ文件中在µVision2应对C源文件中包含ASM/ENDASM段如下设置一个文件指定选项右键点击PROJECT窗口 – 文件表中的文件选择Options for…打开选项 – 属性页使能Generate Assembler SRC file使能Assemble SRC file用这些设置µVision2产生一个汇编源文件.SRC并用汇编编译产生一个OBJ文件.OBJENDASM命令标志一个源程序块的结束注意ASM和ENDASM命令只能在源文件中使用且作为#pragma命令的一部分例子#pragma asm / #pragma endasm 下面是C 源文件产生下面的.SRC 文件...stmt levelsource1extern void test ();23main (){41test ();5161#pragma asm 71JMP $;endless loop 81#pragma endasm 91}..;ASM.SRC generated from:ASM.C NAME ASM PRmainASM SEGMENT CODE EXTRN CODE (test)EXTRN CODE (?C_STARTUP)PUBLIC main;extern void test ();;;main (){RSEG ?PR?main?ASM USING 0main:;SOURCE LINE #3;test ();;SOURCE LINE #4LCALL test;;#pragma asmJMP $;endless loop;#pragma endasm ;};SOURCE LINE #9RET ;END OF mainENDBROWSE缩写BR参数无缺省不创建浏览信息µVision2控制Options – Output – Browse Information说明用BROWSE编译器产生浏览信息浏览信息包括标识符包含预处理器符号他们的存储空间类型定义和参考列表信息可以在µVision2内显示选择View – Source Browser打开µVision2源浏览器参考µVision2用户手册第四章µVision2功能源浏览器例子C51 SAMPLE.C BROWSE#pragma browseCODE缩写CD参数无缺省不产生汇编代码列表µVision2控制Options – Listing – C Compiler Listing – Assembly Code说明CODE命令附加一个汇编助记符列表到列表文件汇编程序代码代表源程序中的每个函数缺省的在列表文件中没有汇编代码例子C51 SAMPLE.C CD#pragma code下面例子显示C源程序和它产生的OBJ结果代码和助记符在汇编间显示了产生代码的行号字符R和E代表可重定位和外部的stmt level source1extern unsigned char a,b;2unsigned char c;34main()5{61c=14+15*((b/c)+252);71}...ASSEMBLY LISTING OF GENERATED OBJECT CODE;FUNCTION main(BEGIN);SOURCE LINE#5;SOURCE LINE#60000E500E MOV A,b00028500F0R MOV B,c000584DIV AB000675F00F MOV B,#0FH0009A4MUL AB000A24D2ADD A,#0D2H000C F500R MOV c,A;SOURCE LINE#7000E22RET;FUNCTION main(END)COMPACT缩写CP参数无缺省SMALLµVision2控制Options – Target – Memory Model说明本命令选择COMPACT存储模式在COMPACT存储模式中所有的函数和程序变量和局部数据段定位在8051系统的外部数据存储区外部数据存储区可有最多256字节一页在本模式中外部数据存储区的短地址用@R0/R1不管什么存储类型可以在任何8051的存储范围内声明变量但是把常用的变量如循环计数器和数组索引放在内部数据存储区可以显著的提高系统性能注意函数调用所用的堆栈经常放在IDATA存储区参考SAMLL LARGE ROM例子C51 SAMPLE.C COMPACT#pragma compactCOND/NOCOND缩写CO参数无缺省CONDµVision2控制Options – Listing – C Compiler Listing - Conditional说明本命令定义这些部分的受条件编译影响的源程序是否显示在列表文件中COND命令在列表文件中包含编译省略的行行号和嵌套级不输出以便于阅读本命令影响预处理器删除的行NOCOND命令不在列表文件中包含编译省略的行例子下面的例子显示用COND命令编译产生的一个列表文件...stmt level source1extern unsigned char a,b;2unsigned char c;34main()5{61#if defined(VAX)c=13;#elif defined(__TIME__)91b=14;101a=15;111#endif121}..下面的例子用NOCOND命令编译产生的一个列表文件...stmt level source1extern unsigned char a,b;2unsigned char c;34main()5{61#if defined(VAX)91b=14;101a=15;111#endif121}...缩写DB参数无缺省不产生调试信息µVision2控制Options – Output – Debug Information说明DEBUG命令指示编译器在OBJ文件中包含调试信息缺省OBJ 文件不包含调试信息对程序的符号测试必需有调试信息信息包括全局和局部变量定义和地址和函数名和行号包含在目标模块中的调试信息在连接过程中仍有效这些信息可以被µVision2调试器或任何INTEL兼容的模拟器使用注意OBJECTEXTEND命令用来指示编译器在目标文件中包含附加的变量类型定义信息参考OBJECTEXTEND例子C51 SAMPLE.C DEBUG#pragma db缩写DF参数一个或多个符合C语言约定的的名称用逗号分隔对每个名称可有一个参数用DEFINE给出缺省无µVision2控制在Options –C x51 – Define输入名称说明DEFINE命令定义调用行的名称预处理器要用#if#ifdef和#ifndef查询这些名称定义的名称在输入后被复制这些命令是大小写相关的作为一个选项每个名称可跟一个值注意DEFINE命令只能在命令行中指定在一个C源程序中用C预处理器命令#define例子C51 SAMPLE.C DEFINE check,NoExtRamC51 MYPROG.C DF (X1=“1+5”,iofunc=“getkey()”)DISABLE缩写无参数无缺省无µVision2控制本命令不能在命令行中指定只能在源文件中指定说明DISABLE命令指示编译器在产生代码时在一个函数内不使能所有中断DISABLE必须在一个函数声明前一行用#pragma命令指定DISABLE控制只用到一个函数对每个新的函数必须重新指定注意DISABLE只能用#pragma命令指定不能在命令行指定DISABLE可在一个源文件中指定多次对每个函数只能指定一次执行后不使能中断一个不使能中断的函数不能对调用者返回一个位值例子本例子是一个用DISABLE命令函数的源程序和代码列表注意EA指定函数寄存器在函数进入时清除JBC EA C002在结尾时恢复MOV EA C...stmt level source1typedef unsigned char uchar;23#pragma disable/*Disable Interrupts*/4uchar dfunc(uchar p1,uchar p2){51return(p1*p2+p2*p1);61};FUNCTION_dfunc(BEGIN)0000D3SETB C000110AF01JBC EA,?C00020004C3CLR C0005?C0002:0005C0D0PUSH PSW;----Variable'p1'assigned to register'R7'----;----Variable'p2'assigned to register'R5'----;SOURCE LINE#4;SOURCE LINE#50007ED MOV A,R500088FF0MOV B,R7000A A4MUL AB000B25E0ADD A,ACC000D FF MOV R7,A;SOURCE LINE#6000E?C0001:000E D0D0POP PSW001092AF MOV EA,C001222RET;FUNCTION_dfunc(END)...EJECT缩写EJ参数无缺省无µVision2控制本命令不能在命令行中指定只能在源文件中指定说明EJECT命令在列表文件中插入一个格式输入字符注意EJECT只在源文件中出现必须是#pragma命令的一部分例子#pragma ejectFLOATFUZZY缩写FF参数0到7间的一个数字缺省FLOATFUZZY3µVision2控制Options - C x51 – Bits to round for float compare说明FLOATFUZZY命令在一个浮点比较前定义位数缺省值3指定最少有三个有效位例子C51 MYFILE.C FLOATFUZZY2#pragma FF(0)INCDIR缩写无参数指定头文件的路径缺省无µVision2控制Options - C x51 – Include Paths说明INCDIR命令指定Cx51编译器头文件的位置编译器最多50个路径声明如果需要多个路径路径名必须用分号分开如果指定#include“filename.h”Cx51编译器首先搜索当前目录然后是源文件目录当找不到或用了#include <filename.h>就搜索INCDIR指定的路径当仍找不到就使用C51INC环境变量指定的路径例子C51 SAMPLE.C INDIR C\KEIL\C51\MYINC;C:\CHIP-DIRINTERVAL缩写无参数对中断矢量表可选用括号括住缺省INTERV AL8µVision2控制Options - C x51 – Misc controls:enter the directive说明INTERV AL命令指定中断矢量的间隔指定间隔是SIECO-51派生系列要求的它定义中断矢量在3字节间隔用本命令编译器定位中断矢量在绝对地址如下计算(interval×n)+offset+3,这里interval INTERV AL命令的参数缺省为8n中断号offset INTVECTOR命令的参数缺省为0参考INTVECTOR/NOINTVECTOR例子C51 SAMPLE.C INTERV AL3#pragma interval(3)INTPROMOTE/NOINTPROMOTE缩写IP/NOIP参数无缺省INTPROMOTEµVision2控制Options - C x51 – Enable ANSI integer promotion rules说明INTPROMOTE命令使能ANSI整数提升规则如果提升声明了在比较前所用的表达式从小类型提升到整数表达式这使MICROSOFT C和BORLAND C改动很少就可用到Cx51上因为8051是8位处理器使用INTPROMOTE命令可能在某些应用中降低效率NOINTPROMOTE命令不使能自动整数提升整数提升使Cx51和别的ANSI编译器间有更大的兼容性然而整数提升可能降低效率例子C51 SAMPLE.C INTPROMOTE#pragma intpormoteC51 SAMPLE.C NOINTPROMOTE下面的代码示范用INTPROMOTE和NOINTPROMOTE命令产生的代码stmt lvl source1char c;2unsigned char c1,c2;3int i;45main(){61if(c==0xff)c=0;/*never true!*/71if(c==-1)c=1;/*works*/81i=c+5;91if(c1<c2+4)c1=0;101};FUNCTION main(BEGIN);SOURCE LINE#60000AF00MOV R7,c0002EF MOV A,R7000333RLC A000495E0SUBB A,ACC0006FE MOV R6,A0007EF MOV A,R70008F4CPL A00094E ORL A,R6000A7002JNZ?C0001000C F500MOV c,A000E?C0001:;SOURCE LINE#7000E E500MOV A,c0010B4FF03CJNE A,#0FFH,?C0002 0013750001MOV c,#01H0016?C0002:;SOURCE LINE#80016AF00MOV R7,c0018EF MOV A,R7001933RLC A001A95E0SUBB A,ACC001C FE MOV R6,A001D EF MOV A,R7001E2405ADD A,#05H0020F500MOV i+01H,A0022E4CLR A00233E ADDC A,R60024F500MOV i,A;SOURCE LINE#90026E500MOV A,c200282404ADD A,#04H002A FF MOV R7,A002B E4CLR A002C33RLC A002D FE MOV R6,A002E C3CLR C002F E500MOV A,c100319F SUBB A,R70032EE MOV A,R600336480XRL A,#080H0035F8MOV R0,A00367480MOV A,#080H003898SUBB A,R000395003JNC?C0004003B E4CLR A003C F500MOV c1,A;SOURCE LINE#10003E?C0004:003E22RET;FUNCTION main(END);FUNCTION main(BEGIN);SOURCE LINE#60000AF00MOV R7,c0002EF MOV A,R7000333RLC A000495E0SUBB A,ACC0006FE MOV R6,A0007EF MOV A,R70008F4CPL A00094E ORL A,R6000A7002JNZ?C0001000C F500MOV c,A000E?C0001:;SOURCE LINE#7000E E500MOV A,c0010B4FF03CJNE A,#0FFH,?C0002 0013750001MOV c,#01H0016;SOURCE LINE#80016E500MOV A,c00182405ADD A,#05H001A FF MOV R7,A001B33RLC A001C95E0SUBB A,ACC001E F500MOV i,A00208F00MOV i+01H,R7;SOURCE LINE#90022E500MOV A,c200242404ADD A,#04H0026FF MOV R7,A0027E500MOV A,c10029C3CLR C002A9F SUBB A,R7002B5003JNC?C0004002D E4CLR A002E F500MOV c1,A;SOURCE LINE#100030?C0004:003022RET;FUNCTION main(END)CODE SIZE = 63 Bytes CODE SIZE = 49 BytesINTVECTOR/NOINTVECTOR缩写IV/NOIV参数对中断矢量表一个可选的偏移在括号中缺省INTVECTOR0µVision2控制Options - C x51 – Misc controls:enter the directive说明INTVECTOR命令指示编译器对要求的函数产生中断矢量如果矢量表不从0开始需输入一个偏移用本命令编译器产生一个中断矢量入口根据ROM命令指定的程序存储区用AJMP或LJMP指令跳转NOINTVECTOR命令禁止产生中断矢量表这也许用户用别的编程工具提供中断矢量编译器通常用一个3字节跳转指令LJMP产生一个中断矢量矢量用绝对地址表示(interval × n) + offset + 3,这里n中断号interval INTERV AL命令的参数缺省为8offset INTVECTOR命令的参数缺省为0参考INTERV AL。
C语言GNU编译器详解在计算机科学领域中,编译器是一种将高级语言代码转化为机器语言的工具。
作为一门广泛应用的编程语言,C语言的GNU编译器(GNU Compiler Collection,简称GCC)在软件开发过程中扮演着重要的角色。
本文将对C语言GNU编译器进行详细解析,帮助读者更好地理解和利用该工具。
一、C语言GNU编译器概述C语言GNU编译器是自由软件基金会(Free Software Foundation)开发的一款编译器集合,旨在为多种计算机平台提供高质量、高效的编译器支持。
它不仅适用于C语言,还可编译C++、Objective-C、Fortran等多种编程语言。
C语言GNU编译器的主要组成部分包括前端(Frontend)和后端(Backend)。
前端负责将源代码转化为GCC内部的一种中间表示形式,而后端则将中间表示形式转化为目标平台的机器码。
二、C语言GNU编译器的重要功能1. 编译:C语言GNU编译器可以将C语言源代码编译成可执行文件。
它支持多种优化选项,可以提升程序的执行效率和性能。
2. 调试支持:GCC提供了丰富的调试功能,如生成调试符号表、支持断点设置、变量追踪等。
这些功能有助于程序员快速定位和修复代码中的错误。
3. 代码优化:GCC具备强大的代码优化能力,可以在编译过程中对源代码进行各种优化,使得生成的机器码更加高效、紧凑,并且减少执行时间和内存占用。
4. 多平台支持:C语言GNU编译器可在不同的操作系统和架构下使用,如Linux、Windows、MacOS等。
它支持多种目标平台,如x86、ARM等。
三、C语言GNU编译器使用示例为了更好地理解C语言GNU编译器的使用方法,以下演示了一个简单的示例:```c#include <stdio.h>int main() {printf("Hello, World!\n");return 0;}```上述代码为经典的Hello, World!程序。