初一数学计算题大赛
- 格式:doc
- 大小:63.25 KB
- 文档页数:2
七年级数学运算能力比赛试题以下是一份七年级数学运算能力比赛试题,供您参考:一、选择题(每小题4分,共16分)1. 下列运算中,结果正确的是 ( )A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 4a + a = 4a^2D. 2x^3 - 3x^2 = x^22. 下列运算中,正确的是 ( )A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 4a + a = 4a^2D. 2x^3 - 3x^2 = x^23. 下列运算中,结果正确的是 ( )A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 4a + a = 4a^2D. 2x^3 - 3x^2 = x^24. 下列运算中,正确的是 ( )A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 4a + a = 4a^2D. 2x^3 - 3x^2 = x^2二、填空题(每小题4分,共16分)1. 下列计算中,结果正确的是 _______.①$( - a^{2})^{3} = a^{6}$;②$a^{6} \div a^{2} = a^{3}$;③$ - a^{3} = a^{3}$;④$a^{6} \cdot a^{2} = a^{10}$.2. 下列计算中,结果正确的是 _______.①$( - a^{3})^{2} = a^{6}$;②$a^{6} \div a^{3} = a^{2}$;③$ - a^{5} = a^{5}$;④$a^{6} \cdot a^{3} = a^{9}$.3. 下列计算中,结果正确的是 _______.①$( - a^{5})^{5} = - a^{10}$;②$a^{10} \div a^{5} = a^{4}$;③$ - a^{6} = a^{6}$;④$a^{10} \cdot a^{5} = a^{15}$.4. 下列计算中,结果正确的是 _______.①$( - a^{7})^{7} = - a^{49}$;②$a^{49} \div a^{7} = a^{49}$;③$ - a^{8} = a^{8}$;④$a^{49} \cdot a^{7} = a^{49}$.三、解答题(每小题10分,共40分)1. 下列计算中,结果正确的是 ( )A.$3x + 5y = 8xy$B.$7x - x = 6$C.$x^6 \div x^2 = x^3$D.$x^3\cdot x^5 = x^8$2. 下列计算中,结果正确的是 ( )A.$4x + y = 5xy$B.$7x - x = 6x$C.$x^6 \div x^2 = x^3$D.$x^3\cdot x^5 = x^8$3. 下列计算中,结果正确的是 ( )A.$x + y = xy$B.$7x - x = 6$C.$x^6 \div x^2 = x^3$D.$x^3 \cdot x^5 = x^8$4. 下列计算中,结果正确的是 ( )A.$7x - x = 6$B.$x^6 \div x^2 = x^3$C.$x^8 \cdot x^2 =x^{16}$ D.$x^7 \div x^4 = x$。
初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A3. 如果a和b是两个不同的正整数,且a < b,那么下列哪个不等式一定成立?A. a + b > 0B. a - b < 0C. ab > 0D. a/b < 1答案:D4. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) × (-1)答案:A5. 一个数的绝对值是5,那么这个数可能是:B. -5C. 5或-5D. 0答案:C6. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B7. 如果一个数的平方等于9,那么这个数是:A. 3C. 3或-3D. 9答案:C8. 一个数的立方等于-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10答案:A10. 一个数除以-2等于-3,那么这个数是:A. 6B. -6C. 3D. -3答案:B二、填空题(每题4分,共40分)11. 一个数的绝对值是7,这个数可能是______。
答案:7或-712. 一个数的相反数是-4,这个数是______。
答案:413. 一个数的平方等于16,这个数是______。
答案:4或-414. 一个数的立方等于-27,这个数是______。
答案:-315. 一个等腰三角形的两边长分别为4和6,那么这个三角形的周长是______。
答案:14或1616. 计算表达式(-2) × (-3) + 4的结果是______。
七年级数学计算技能大赛试题随着科技的发展,数学在日常生活中的应用越来越广泛。
为了提高七年级学生对数学计算技能的实际应用能力,我们举办了一场别开生面的“七年级数学计算技能大赛”。
以下是本次大赛的试题。
一、选择题1、下列哪个数字是偶数?A. 11B. 19C. 20D. 272、下列哪个图形是三角形?A. ▭B. ▪C. ◯D. ▲3、下列哪个是5的倍数?A. 14B. 16C. 20D. 23二、填空题1、一个正方形的边长为x,则它的面积为____。
2、如果3x + 2 = 10,那么x的值是____。
3、若a = 5,b = 7,则a + b的值为____。
三、解答题1、请计算:2 + 3 × 4 - 5 + 62、请解方程:3x + 5 = 203、请描述如何判断一个数是否为质数或合数。
四、应用题1、小明买了3支铅笔,每支x元,他给了店主5元,应找回多少钱?2、小华和小明参加了一场比赛,小华完成了a个项目,小明完成了b个项目。
如果小华完成一个项目需要3天,小明完成一个项目需要5天,他们一共花了多少天完成所有项目?3、一个果园里有a棵苹果树,每棵树上有b个苹果。
如果每棵树上的苹果数量一样多,那么一共有多少个苹果?五、附加题(选做)1、请设计并解释一个你生活中的数学应用案例。
要求案例真实可行,并简要说明数学在其中起到的作用。
2、对于七年级的学生来说,学习和掌握数学计算技能的重要性是什么?请提出至少两点理由支持你的观点。
以上就是本次七年级数学计算技能大赛的全部试题。
通过这次大赛,我们期望能够激发同学们对数学学习的热情和兴趣,提升大家的数学应用能力和解决问题的能力。
也让大家了解到数学在日常生活中的应用广泛性,以及它在我们生活中的重要性。
A.圆B.等腰三角形C.平行四边形D.矩形A.有理数分为正数和负数B.无限不循环小数称为无理数C.整数和分数统称为有理数D.有理数包括正数和负数A. (2,3)B. (2,-3)C. (-2,-3)D. (2,3)A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)A. 3a+2a=5a2 BB. -4a+5b=a+bC. 3a2b-2a2b=a2bD. -7x2y+5x2y=-2x2y相交两圆的半径分别为5和7,则它们的圆心距可能是下列哪个数值()A. 14 BB. 10C. 16D. 8若代数式在实数范围内有意义,则c的取值范围是()A. c≥1B. c>1C. c≤1D. c<1若关于x的方程x+4=4-m的解为正数,则m的取值范围是()A. m<0 B. m>0 C. m≥0 D. m≤0将下列各数按从小到大的顺序排列,用“<”连接起来是()A. -4,-2,-1,0,1,2,3,4B. -30,-11,-9,0,11,23在比例尺为1:500的图纸上,量得甲、乙两地的实际距离是4m,则甲、乙两地的实际距离应是____m。
七年级上册数学竞赛题和经典题一、竞赛题与经典题。
1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。
再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。
然后进行除法运算32÷4 = 8。
最后进行加法运算-8+8 = 0。
2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。
所以化简结果为-2a + b。
3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。
再移项,3x-2x=6 + 3+2。
合并同类项得x = 11。
4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。
解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。
所以AB = 5-( 3)=5 + 3 = 8。
5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。
解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。
又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。
6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。
然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。
最后进行减法运算2-2 = 0。
7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。
七年级下册数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是整数?A. -5B. 0C. 3.14D. 20232. 一个长方形的长是宽的两倍,如果宽是a米,那么长方形的面积是多少?A. a^2B. 2a^2C. 3a^2D. 4a^23. 如果一个数的平方根是5,那么这个数是多少?A. 25B. -25C. 5D. -54. 下列哪个分数不能化简?A. 4/8B. 5/10C. 6/9D. 7/145. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π cmB. 20π cmC. 30π cmD. 40π cm二、填空题(每题2分,共10分)6. 如果一个数的立方是-27,那么这个数是______。
7. 一个数的相反数是-3,那么这个数是______。
8. 如果a和b互为倒数,那么ab等于______。
9. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。
10. 一个数的绝对值是5,那么这个数可以是______。
三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3x - 2y)(3x + 2y)。
12. 解方程:2x + 5 = 17。
13. 计算:(-2)^3 + 5 * (-3) - 4。
14. 简化分数:\(\frac{8}{12}\)。
四、解答题(每题10分,共30分)15. 一个班级有40名学生,其中2/3的学生参加了数学竞赛。
问有多少学生参加了数学竞赛?16. 一个商店销售两种类型的自行车,A型自行车每辆售价为300元,B型自行车每辆售价为400元。
如果商店总共卖出了20辆自行车,总收入为7200元,问A型和B型自行车各卖了多少辆?17. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米。
求这个长方体的表面积和体积。
五、应用题(每题15分,共30分)18. 某工厂计划在一个月内生产一批零件,如果每天生产120个零件,那么30天可以完成生产任务。
初一竞赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个算式的结果最大?A. 3 + 4B. 2 × 5C. 6 ÷ 2D. 8 - 3答案:B3. 一个数的平方是36,这个数是多少?A. 6B. -6C. 6 或 -6D. 36答案:C4. 一个长方体的长、宽、高分别是2cm、3cm、4cm,其体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A5. 一个圆的直径是10cm,那么它的半径是多少?A. 5cmB. 10cmC. 20cmD. 15cm答案:A6. 一个数的3倍加上4等于21,这个数是多少?A. 5B. 6C. 7D. 8答案:B7. 一个数的一半减去3等于6,这个数是多少?A. 15B. 12C. 10D. 9答案:A8. 一个数的2倍减去它的一半等于10,这个数是多少?A. 10B. 20C. 30D. 40答案:B9. 一个数的3倍加上它的一半等于18,这个数是多少?A. 6B. 4C. 5D. 3答案:A10. 一个数加上它的3倍等于24,这个数是多少?A. 6B. 8C. 12D. 16答案:B二、填空题(每题4分,共20分)11. 一个数的4倍加上5等于25,这个数是______。
答案:512. 一个数的5倍减去2等于18,这个数是______。
答案:4.613. 一个数的平方加上8等于37,这个数是______。
答案:±5√314. 一个数的立方等于27,这个数是______。
答案:315. 一个数的倒数是2,这个数是______。
答案:1/2三、解答题(每题10分,共50分)16. 一个数的2倍加上3倍等于30,求这个数。
答案:设这个数为x,则有2x + 3x = 30,解得x = 6。
17. 一个数的4倍减去它的2倍等于20,求这个数。
(word完整版)七年级上学期数学有理数运算口算竞赛100题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)七年级上学期数学有理数运算口算竞赛100题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)七年级上学期数学有理数运算口算竞赛100题(word版可编辑修改)的全部内容。
七年级上学期数学有理数口算竞赛100题班别_______ 姓名__________ 学号_____________ 评分__________(说明:要求直接写答案,30分钟内完成)(1) (―3)+(-7)= (2) (+12)+(-29)=(3) )41()43(+-+= (4) (-3。
6)+(-2.5)=(5) (+2)-(+9)= (6) (-3.8)-(+4.7)=(7) 3)312(-- = (8) )533()1072(---=(9)-3×(+2)= (10)(-5)×(-2)=(11)4)21(+⨯-= (12) )=(+2131⨯-(13) =⨯051- (14)-0。
125×8=(15) (-3)×(+12)= (16)(-1。
5)×(-4)=(17)(-0。
01)×(-264)= (18)=÷)(-)(- 1.541(19) )(-(-410.25)÷ = (20)-(+2)2= (21) 313724--÷ = (22)0.0454--÷⎪⎭⎫⎝⎛ =(23) -(-2)2= (24) (-3)3=(25) -33= (26) -(-2)3=(27) (-2)2×(-2)3= (28) (-2)5=(29) ( )2=16, (30)( )2=9;(31) ( )3=-8, (32) ( )3=27(33) -60÷(-5)= ; (34)(-90)÷3=(35) 4÷(-12)= ; (36) -48÷(-6)=(37) 化简__________836=- (38)1的倒数为(39)-1的倒数为 (40) 的倒数等于它本身(41)(-3)2= ; (42) -32= ;(43) (-2)4= ; (44) -24= ;(45)(-1)3= ; (46)-13= 。
七年级超难数学竞赛题带解析一、代数部分。
1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。
- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。
- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。
- 那么a^b = 3^-2=(1)/(9)。
2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。
- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。
- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。
- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。
3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。
- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。
4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。
- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。
七年级上册数学竞赛试题【试题一】题目:求证:对于任意正整数 \( n \),\( 1^2 + 2^2 + 3^2 +\ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \)。
解答:我们可以使用数学归纳法来证明这个等式。
首先验证 \( n=1 \) 时等式成立:\[ 1^2 = \frac{1(1+1)(2\cdot1+1)}{6} = 1 \]假设当 \( n=k \) 时等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \]现在我们需要证明当 \( n=k+1 \) 时等式也成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2 =\frac{k(k+1)(2k+1)}{6} + (k+1)^2 \]\[ = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} \]\[ = \frac{(k+1)(2k^2 + k + 6k + 6)}{6} \]\[ = \frac{(k+1)(2k^2 + 7k + 6)}{6} \]\[ = \frac{(k+1)(2(k+1)(k+3) + 1)}{6} \]\[ = \frac{(k+1)(k+2)(2(k+1)+1)}{6} \]这样我们就证明了对于任意正整数 \( n \),等式成立。
【试题二】题目:一个数列的前几项是 1, 2, 3, 4, ...,求第 \( n \) 项的表达式。
解答:观察数列的前几项,我们可以发现这是一个等差数列,首项 \( a_1 = 1 \),公差 \( d = 1 \)。
等差数列的通项公式为:\[ a_n = a_1 + (n-1)d \]将已知的首项和公差代入公式,得到:\[ a_n = 1 + (n-1) \times 1 = n \]【试题三】题目:如果一个三角形的三边长分别为 \( a \),\( b \),\( c \),且满足 \( a^2 + b^2 = c^2 \),证明这个三角形是直角三角形。
七年级下册数学竞赛题和经典题含解答共10题1. 题目:甲、乙两个正整数的和是300,差是120,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 300 (方程1)x - y = 120 (方程2)解方程组得到甲的数x = 210,乙的数y = 90。
2. 题目:某数的4倍减去该数的2倍等于30,求这个数。
解答:设这个数为x。
根据题意,我们可以得到以下方程:4x - 2x = 30化简得到2x = 30解方程得到x = 153. 题目:一个正整数加上自身的平方等于140,求这个正整数。
解答:设这个正整数为x。
根据题意,我们可以得到以下方程:x + x²= 140化简得到x²+ x - 140 = 0解方程得到x = 10 或x = -14,由题目要求为正整数,所以x = 10。
4. 题目:一个三位数加上它的逆序数等于1333,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:100x + 10y + z + 100z + 10y + x = 1333化简得到101x + 20y + 101z = 1333由于101为质数,所以x和z只能为1,y只能为6。
解方程得到x = 1,y = 6,z = 1,所以这个三位数为161。
5. 题目:甲、乙两个数的和是90,差是20,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 90 (方程1)x - y = 20 (方程2)解方程组得到甲的数x = 55,乙的数y = 35。
6. 题目:某个三位数的百位数是7,个位数是2,且各位上的数字之和是13,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:x = 7 (百位数是7)z = 2 (个位数是2)x + y + z = 13 (各位上的数字之和是13)代入得到7 + y + 2 = 13解方程得到y = 4所以这个三位数为742。