20全息照相实验
- 格式:doc
- 大小:867.00 KB
- 文档页数:4
全息照相实验报告如何做全息照相实验?实验报告又是如何写?那么,下面请参考公文站小编给大家分享的全息照相实验报告,希望对大家有帮助。
全息照相实验报告【实验目的】1.了解全息照相的基本原理。
2.掌握全息照相以及底片的冲洗方法。
3.观察物象再现。
【实验仪器】防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。
【实验原理】全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。
普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。
而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。
此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。
由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。
1.全息记录全息照相的光路图如下图所示:感光底板用激光光源照射物体,物体因漫反射发出物光波。
波场上没一点的振幅和相位都是空间坐标的函数。
我们用O表示物光波没一点的复振幅与相位。
用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。
这样在记录信息的底板上的总光场是物光与参考光的叠加。
叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为I=(O+R)(O*+R*)=OO*+RR*+OR*+O*R=IO+IR+OR*+O*R(式1)式子中,O*与R*分别是O和R的共轭量;I。
,IR分别为物光波和参考光波独立照射底版时的放光强度。
全息摄影实验实验报告全息摄影实验实验报告摘要:本实验旨在通过全息摄影技术,将三维物体的信息以全息图的形式记录下来,并通过光的衍射原理进行重建。
实验结果表明,全息摄影技术具有较高的重建准确性和图像质量。
引言:全息摄影是一种记录并再现物体三维信息的技术。
与传统摄影不同,全息摄影利用光的干涉和衍射原理,记录下物体的全部信息,包括物体的形状、大小、颜色等。
全息摄影技术在科学研究、艺术创作等领域具有广泛的应用前景。
本实验将通过搭建全息摄影实验装置,探究全息摄影技术的原理和应用。
实验材料与方法:材料:激光器、全息板、物体样品、光源、照相机等。
方法:1. 搭建实验装置:将激光器、全息板、物体样品、光源和照相机依次放置在光学台上。
2. 调整光路:通过调整激光器的位置和方向,使激光光束垂直射向全息板。
3. 拍摄全息图:将物体样品放置在激光器和全息板之间,保证物体样品与全息板之间的距离适当。
4. 开启光源:将光源打开,照亮物体样品,使激光光束照射到物体上。
5. 拍摄全息图:通过照相机拍摄全息图,并保证照相机的位置稳定。
6. 显示全息图:将全息板放置在光源下,使光线通过全息板,观察全息图的重建效果。
实验结果与分析:经过实验操作,我们成功地拍摄到了全息图,并进行了重建。
在重建过程中,我们观察到了全息图的特点和效果。
全息图具有真实的三维效果,能够清晰地显示出物体的形状和细节。
与传统的二维图像相比,全息图更加真实、立体,给人一种身临其境的感觉。
全息摄影技术的原理是利用光的干涉和衍射现象。
当激光光束照射到物体上时,光线会被物体反射、散射和折射。
其中一部分光线经过全息板时,会发生干涉和衍射现象,形成干涉条纹。
全息板将这些干涉条纹记录下来,形成全息图。
当光线再次通过全息板时,根据光的衍射原理,干涉条纹会重新产生,从而实现全息图的重建。
全息摄影技术具有广泛的应用前景。
在科学研究领域,全息摄影可以用于记录和分析微小的物体结构,如细胞、分子等。
全息照相实验报告全息照相实验报告引言:全息照相是一种利用光的干涉和衍射原理记录并再现物体的三维信息的技术。
它不同于传统的摄影技术,能够捕捉到更加真实的物体形态和细节。
本实验旨在探究全息照相的原理和应用,并通过实际操作进行验证。
一、实验装置与原理实验装置主要包括激光器、物体、全息板、参考光源和干涉平台。
激光器产生单色、相干的激光光源,物体是待记录的三维物体,全息板是记录物体信息的介质,参考光源提供参考光波,干涉平台用于固定和调整装置。
全息照相的原理是利用激光光源照射物体,物体的光波与参考光波相干叠加,形成干涉图样。
这些干涉图样被记录在全息板上,通过再次照射全息板,可以重建出物体的三维信息。
二、实验步骤1. 准备实验装置,确保激光器和参考光源的稳定输出。
2. 将物体放置在干涉平台上,并调整合适的位置和角度。
3. 调整全息板的位置和角度,使其与物体和参考光源的光波相交。
4. 打开激光器,照射物体和全息板,进行记录。
5. 关闭激光器,移除物体,重新照射全息板,进行重建。
三、实验结果与分析实验中,我们选择了一个小玩具作为物体,通过全息照相技术进行记录和重建。
在记录过程中,我们观察到物体的光波与参考光波相干叠加,形成了一幅干涉图样。
这个图样记录在全息板上,呈现出一种类似彩虹的条纹纹理。
在重建过程中,我们重新照射全息板,发现原先的条纹纹理被再次呈现出来,并且物体的三维形态也被恢复出来。
这种全息照相技术能够在一定程度上还原物体的真实形态,使得观察者能够从不同角度获得更加真实的观感。
四、全息照相的应用全息照相技术在科学研究、工程设计和艺术创作等领域都有广泛的应用。
在科学研究中,全息照相可以用于记录微小物体的形态和运动,为研究者提供更加详细的信息。
在工程设计中,全息照相可以用于检测和分析物体的缺陷和变形,提高产品的质量和可靠性。
在艺术创作中,全息照相可以用于创造立体感和动态效果,为艺术家带来更多的创作灵感。
然而,全息照相技术也存在一些挑战和限制。
全息照相的实验报告全息照相的实验报告引言:在现代科技的快速发展中,全息照相作为一种新兴的图像记录技术,引起了广泛的关注和研究。
本实验旨在通过实际操作,了解全息照相的原理、方法和应用,并探讨其在科学研究和工程领域中的潜在应用价值。
一、实验目的本次实验的主要目的有以下几点:1. 了解全息照相的基本原理和技术;2. 掌握全息照相的实验操作方法;3. 分析全息照相的优点和局限性;4. 探讨全息照相在现实生活和科学研究中的应用前景。
二、实验装置和步骤1. 实验装置:本次实验所使用的全息照相装置包括激光器、分束镜、物镜、参考光源、全息板等。
2. 实验步骤:(1)调整激光器和参考光源的位置,使其尽可能稳定;(2)将待拍摄的物体放置在全息板前方适当位置,并固定;(3)调整物镜位置,使物体的全息图像清晰可见;(4)打开激光器,使其发出一束单色、相干的激光;(5)用分束镜将激光分为两束,一束为参考光,另一束为物光,分别照射到全息板上;(6)关闭激光器,取下全息板;(7)将全息板放置在光学显影液中显影;(8)用显影液洗净全息板,使其干燥。
三、实验结果与讨论通过实验操作,我们获得了一张全息照片,并对其进行了分析和讨论。
1. 全息照片的特点:全息照片具有以下几个显著特点:(1)全息照片能够记录物体的全息信息,包括形状、光学特性等;(2)全息照片具有立体感,观看时可以从不同角度获得不同的视角;(3)全息照片具有高分辨率和高信息密度,能够保留更多的细节;(4)全息照片可以长时间保存,不易损坏。
2. 全息照相的应用:全息照相在科学研究和工程领域中具有广泛的应用前景,例如:(1)全息显微镜:通过全息照相技术,可以获得具有高分辨率的三维显微图像,有助于生物学和医学研究;(2)全息光学元件:全息照相可以制作出各种光学元件,如全息光栅、全息透镜等,用于光学通信、光学计算和光学存储等领域;(3)全息显示技术:全息照相可以实现真实感和立体感更强的显示效果,有望应用于虚拟现实、增强现实等领域。
一、实验名称全息摄影实验二、实验目的1. 了解全息摄影的基本原理及其特点。
2. 学习全息摄影的拍摄方法和实验技术。
3. 了解全息摄影再现物像的性质、观察方法。
三、实验时间2023年10月27日四、实验地点物理与光电工程学院实验室五、实验仪器1. 全息摄影系统2. 全息干版3. 激光器4. 全息图底片5. 物体模型6. 记录仪7. 照相机六、实验原理全息摄影是一种利用光的干涉和衍射原理进行成像的摄影技术。
它将物体光波波前记录在感光材料(全息干版)上,形成全息图。
当用激光照射全息图时,由于衍射原理,全息图上的干涉条纹会重新激发出物体光波的波前,形成与原物体完全相同的三维像。
七、实验步骤1. 将全息干版固定在支架上,确保其平整。
2. 将物体模型放置在激光器前,调整激光器角度,使激光垂直照射物体模型。
3. 打开激光器,观察物体模型在激光照射下的反射光。
4. 将全息干版放在物体模型与激光器之间,调整距离,使激光在干版上形成干涉条纹。
5. 记录干涉条纹的形状和间距。
6. 关闭激光器,将干版放入显影液中,显影。
7. 显影完成后,将干版取出,进行定影处理。
8. 使用照相机拍摄全息图,记录全息图。
9. 将全息图放入激光器后,观察再现的三维像。
八、实验结果与分析1. 干版上形成的干涉条纹清晰,间距均匀,符合全息摄影的要求。
2. 显影和定影过程中,干版上的干涉条纹没有明显变形,表明实验操作规范。
3. 拍摄的全息图清晰,再现的三维像与物体模型基本一致。
4. 在观察再现的三维像时,发现图像存在一定的畸变,可能是由于拍摄距离和角度的影响。
九、实验心得1. 全息摄影实验让我对全息摄影的基本原理有了更深入的了解。
2. 在实验过程中,我掌握了全息摄影的拍摄方法和实验技术。
3. 通过实验,我认识到全息摄影在光学、物理等领域具有广泛的应用前景。
4. 在实验过程中,我注意到了一些细节问题,如激光器角度的调整、干版与物体模型的距离等,这些对实验结果有重要影响。
第1篇一、实验目的1. 理解全息照相的基本原理和过程。
2. 掌握全息照相的实验操作技术,包括光源的选择、光路的搭建、全息图的记录与再现。
3. 通过实验观察全息图的特性,如三维立体感、干涉条纹等。
4. 分析实验中可能遇到的问题及其解决方法。
二、实验原理全息照相是一种记录和再现光波波前信息的技术。
它通过将物体反射或散射的光波(物光)与参考光发生干涉,将物光波前的振幅和相位信息以干涉条纹的形式记录在全息干板上。
当用适当的光照射全息图时,可以再现出物体的三维立体像。
全息照相的基本原理如下:1. 干涉原理:当两束相干光波相遇时,它们会相互干涉,形成明暗相间的干涉条纹。
这些条纹包含了光波的振幅和相位信息。
2. 记录原理:将物光和参考光干涉产生的干涉条纹记录在全息干板上,形成全息图。
3. 再现原理:用与参考光相干的光照射全息图,通过衍射和干涉作用,再现出物体的三维立体像。
三、实验仪器与材料1. 全息实验台2. 半导体激光器3. 分束镜(7:3)4. 反射镜5. 扩束镜6. 载物台7. 底片夹8. 被摄物体9. 全息干板10. 曝光定时器11. 显影及定影器材四、实验步骤1. 搭建光路:将激光器、分束镜、反射镜、扩束镜等仪器按照实验要求搭建好光路。
2. 选择被摄物体:将被摄物体放置在载物台上,确保其稳定。
3. 曝光:将全息干板放置在底片夹上,调整其位置,使物光和参考光在干板上形成干涉条纹。
使用曝光定时器控制曝光时间,确保干涉条纹清晰。
4. 显影与定影:将曝光后的全息干板放入显影液和定影液中处理,使干涉条纹固定。
5. 观察与记录:观察全息图上的干涉条纹,记录其特性,如条纹间距、形状等。
五、实验结果与分析1. 干涉条纹:实验中观察到的干涉条纹清晰,表明实验操作正确。
2. 再现效果:用激光照射全息图,可以看到物体的三维立体像,说明全息照相成功。
3. 影响因素:实验中发现,光路稳定性、曝光时间、显影与定影时间等因素都会影响实验结果。
近代物理实验报告《全息照相》
一、实验目的
1、掌握全息照相的基本原理和实验技术
2、掌握拍摄全息照相和再现信息的方法
3、了解全息照相技术的主要特点,并和普通照相进行比较
4、了解照相显影,定影,冲洗等暗室技术
二、实验仪器
相干光源、全息平台、光学元件(分束镜、反射镜、扩散镜、多维磁性微调架以及软尺等)、记录介质(底片)、暗室冲洗设备(显影液,定影液,冲洗设备和材料)
三、实验
原理利用光的干涉现
象把每个物点光波的振幅和相位信息转换成强度的函
数,在记录介质上以干涉图样的形式记录下来。
光的衍射——全息照相的再现
全息记录的主要特点
•立体感强
•具有可分割性
•同一张全息底片可重叠多个全息图
全息照相的拍摄条件
•光源:高度空间和时间相干性的光源,并有足够的功率,使用方便
•对系统的稳定性要求:整个系统组成一个刚体
•对光路的要求:光程差小
•对全息底片的要求:适合的记录介质
四、实验内容
(1)全息记录
1、调节光路
2、曝光照相
3、冲洗处理
(2)全息图像的观察
1、观察再现虚像
2、全息照相特点的研究
3、再现实像的观察
4、观察二次曝光全息照相。
全息照相实验简介全息照相是一种利用相干光的特性记录和重现物体的三维形态的技术。
通过全息照相,我们可以得到一张物体的全息图,这张全息图可以在透明介质(如光像玻璃)上显示出物体的全息图像,且不受观察角度的限制。
全息照相在科学、工程和艺术等领域都有广泛应用。
在本文档中,我们将介绍如何进行全息照相实验,包括所需材料、实验步骤和注意事项等内容。
实验材料•全息照相板(光像玻璃)•激光器•可调谐透镜•物体(可以是任意三维物体)实验步骤1.准备工作:将实验所需材料准备齐全,并确保实验环境光线暗,以避免外界干扰。
2.激光器设置:将激光器设置在合适的位置,并调整激光器的位置和角度,以使激光束直接照射到全息照相板上。
3.调整透镜位置:使用可调谐透镜,将透镜放置在全息照相板的前方,并调整透镜的位置,使激光束通过透镜后成为平行光束照射到全息照相板上。
4.摆放物体:选择一个适当的物体放置在激光束的路径上,确保物体在光路中心。
5.进行曝光:将激光器打开,使激光束照射到物体上,然后关闭激光器。
在关闭激光器后,保持物体静止不动。
6.曝光时间:根据物体和激光器的特性,设置适当的曝光时间。
曝光时间过长会导致图像模糊,曝光时间过短则无法记录到足够的信息。
7.固定全息照相板:在曝光后,使用相应的固定方法将全息照相板固定在原位,防止其移动和震动。
8.重现全息图:将固定好的全息照相板放置在一个合适的照明条件下(如激光光源),通过透射或反射方式观察全息图像,可看到物体的三维形态信息。
注意事项1.实验过程中需要注意激光器的使用安全。
避免直接照射到眼睛和皮肤,以免造成伤害。
2.全息照相板需要避免接触到油脂和灰尘等污染物,以保持其清洁度。
3.在曝光过程中要确保物体静止不动,避免全息照相板晃动或移动,以免影响曝光效果。
4.调整透镜的位置和角度时,要谨慎操作,以免破坏透镜或全息照相板。
5.曝光时间的选择需要根据实际情况进行调整,可以通过试验和实践来获得最佳曝光效果。
全息照片的摄制实验报告【实验目的】1. 掌握全息照相的原理2. 学习拍摄全息图的技术3. 了解全息照相的特点及全息技术的应用【实验仪器】全息实验台、半导体激光器、分束镜(7:3)、反射镜、扩束镜、载物台、底片夹、被摄物体、全息干板、曝光定时器、显影及定影器材等。
【实验原理】1.背景知识全息照相就是一种能够获得光场相位信息的技术。
全息照相通过将物体反射或散射光(物光)和参考光发生干涉,把来自物体的光波波阵面(物光波前)的振幅和位相信息以干涉条纹的形状、疏密和强度的形式记录在感光的全息干板上,因此保留了光波的全部信息。
在一定条件下,将所记录的全部信息完全再现出来,再现的物像是一个逼真的三维立体像。
2.全息照相的原理设想物体在空间的左侧。
光源照射物体,反射或散射光从物体表面出发,经过中间的平面传播到右侧。
根据惠更斯-菲涅耳原理,右侧的光场可以看成在中间平面的子波源发出的波的叠加。
因此,如果能够用某种方法产生一个光场,它与原始光场在中间平面附近相同(振幅和相位都相同),那么它向右传播,会在右边产生一个和原来的光场完全一样光场。
这时从右侧向左看过去,感觉和看一个实物没有任何区别。
全息照相就是通过复制一个面的光场达到复制空间光场的目的。
全息照相分为透射式全息和反射式全息两种。
透射式全息:由激光器发出激光束,通过分束镜BS 一分为二,其中透射光经反射镜M1反射和扩束镜L1扩束后照射到被摄物体上,然后经物体表面反射,照射到全息干板H 上,这束光称为物光。
而反射光经反射镜M2反射、扩束镜L2扩束后,直接照射到干板H 上,这束光称为参考光。
普通物理实验讲义2020 北京师范大学物理实验教学中心- 131 - 物光和参考光在干板H 上叠加,干涉形成明暗有规律的图样,干板上的感光介质可以记录下来这些图案。
反射式全息:其原理与透射式全息照相类似。
其特点是记录时物光和参考光分别从干板的前后方入射,再现时从干板的反射光看回去可以看到拍摄物。
全息照相大学物理实验总结8篇篇1引言全息照相技术是一种利用光的干涉和衍射原理记录和再现物体三维图像的技术。
在大学物理实验中,我们通过实验操作,对全息照相技术有了更深入的了解和掌握。
本文将对全息照相的实验过程进行总结,并分析实验结果及结论。
一、实验原理全息照相的原理是利用光的干涉和衍射原理,通过记录物体发出的光波的振幅和相位信息,再利用这些信息还原出物体的三维图像。
在实验中,我们需要使用激光器发出激光,照射到物体上,物体反射的光波会携带物体的振幅和相位信息。
这些信息会被记录在全息胶片上,形成全息图。
二、实验步骤1. 准备实验器材:包括激光器、全息胶片、支架、物体(如字母表、小物件等)。
2. 安装激光器:将激光器固定在支架上,调整激光器的角度和位置,使其发出的激光能够照射到物体上。
3. 放置全息胶片:将全息胶片放置在激光器和物体之间,调整全息胶片的位置和角度,使其能够记录物体发出的光波信息。
4. 照射物体:打开激光器,照射物体,使物体反射的光波照射到全息胶片上。
5. 记录全息图:当全息胶片记录足够的光波信息后,关闭激光器,并将全息胶片取出保存。
6. 再现图像:将全息胶片放置在再现台上,利用激光器发出的再现光照射全息胶片,即可观察到物体的三维图像。
三、实验结果及分析1. 全息图记录结果:通过实验操作,我们成功记录了物体的光波信息,形成了全息图。
全息图上的条纹清晰可见,分布均匀。
2. 再现图像结果:当我们使用再现光照射全息胶片时,能够清晰地观察到物体的三维图像。
图像的立体感强,细节清晰可见。
3. 实验误差分析:在实验过程中,可能存在一些误差因素影响实验结果。
例如,激光器的角度和位置调整不准确可能导致光波信息记录不完整;全息胶片的位置和角度调整不准确可能导致图像变形或模糊等。
因此,在实验过程中需要仔细调整实验器材的位置和角度,以获得最佳的实验结果。
四、结论与展望通过本次全息照相大学物理实验,我们深入了解了全息照相技术的原理和实验过程。
全息照相
全息照相的基本原理是以波的干涉和衍射为基础的。
它的物理思想早在1948年就由盖伯(D ·Gabor )首先创立,但由于当时缺乏相干性好的光源,因而几乎没有引起人们的注意。
直到1960年激光器问世后,才使全息照相技术得到迅速发展,成为科学技术上一个崭新的领域。
由于全息照相比普通照相具有更多的特点,所以在干涉计量、无损检测、信息存贮与处理、遥感技术、生物医学和国防科研中获得了极其广泛的应用。
一.实验目的与要求
1.了解光学全息照相的基本原理和它的主要特点。
2.学习静态全息照相的拍摄方法和有关技术。
3.掌握全息照相再现物像的性质和观察方法。
二.实验原理
1.全息照相与全息照相技术
照相是将物体上各点发出或反射的光记录在感光材料上。
由光的波动理论知道,光波是电磁波。
一列单色波可表示为:
式中,A 为振幅,ω为圆频率,λ为波长,ϕ为波源的初相值。
一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加:
因此,任何一定频率的光波都包含着振幅(A )和位相⎪⎭⎫ ⎝⎛
-+λπϕωr t 2两大信息。
光在传播过程中,借助于它们的频率、振幅和位相来区别物体的颜色(频率)、明暗(振幅平方)、形状和远近(位相)。
普通照相是通过成象系统(照相机镜头)使物体成象在感光材料上,材料上的感光强度只与物体表面光强分布有关,所以它只记录了光波的振幅信息,因为光强与振幅平方成正比。
无法记录物体光波的位相差别。
因此,普通照相记录的只能是物体的一个二维平面像,失去了立体感。
全息照相不仅记录了物体发出或反射的光波的振幅信息,而且把光波的位相信息也记录下来,所以全息照相技术所记录的并不是普通几何光学方法形成的物体像,而是物光光波本
1.激光器。
2.分束镜。
3和8.反射镜。
4和7.扩束镜。
5.被摄物。
6.感光胶片。
图9-1 全息照相光路图
图9-2 再现观察光路图 图9-3
身,它记录了光波的全部信息,并且在一定条件下,能将所记录的全部信息再现出来,因而再现的物像是一个逼真的三维立体象。
全息照相包含两个过程,第一,把物体光波的全部信息记录在感光材料上,称为记录(拍摄)过程,第二,照明已被记录下来的全部信息的感光材料,使其再现原始物体的光波,称为再现过程。
全息照相的基本原理是以波的干涉为基础的。
所以,除光波外,对其他的波动过程如声波、超声波等也都适用。
2.全息照相的基本过程——记录和再现。
(1)全息照相记录过程原理——光的干涉。
怎样才能把物光的全部信息同时记录下来呢?由物理光学可知,利用干涉的方法,以干涉条纹的形式就可以记录物光的全部信息。
图9-1是记录过程中所使用的光路。
相干性极好的He —Ne 激光器发出激光束,通过分束镜M 分成两束。
其中一束光经反射镜1M 反射,再由扩束镜1L 将光束扩大后均匀地照射到被摄物体D 上,经物体表面反射(或透射)后再照射到感光材料(实验中用全息感光胶片)H 上,一般称这束光为物光;另一束光经反射镜2M 反射、2L 扩束后,直接均匀地照射到H 上,一般称这束光为参考光。
这两束光在胶片H 上叠加干涉,出现了许多明暗不同的花纹、小环和斑点等干涉图样,被胶片H 记录下来,再经过摄影、定影等处理。
成了一张有干涉条纹的“全息照片”(或称全息图)。
干涉图样的形状反映了物光和参考光间的位相关系,干涉条纹明暗对比程度(称为反差)反映了光的强度关系,干涉条纹的疏密则反映了物光和参考光的夹角。
(2)全息照相再现过程的原理——光的衍射
我们知道,人之所以能看到物体,是因为从物体发出或反射的光波被人的眼睛所接收。
所以
如
果
要
想
从
全
息
照相
的“照片”上看到原来物体的象,直接
观察“照片”是看不到的,而只能看到复杂的干涉条纹。
如果要看到原来物体的象,则必须使“照片”能再现原来物体发出的光波,这个过程就被称为全息照片的再现过程。
这一过程所利用的是光栅衍射原理。
再现过程的观察光路如图9-2所示。
一束从特定方向或与原来参考光方向相同的激光束照明全息照片。
“照片”上每一组干涉条纹相当于一个复杂的光栅,它使再现光发生衍射。
我们沿衍射方向透过“照片”朝原来被摄物的方向观察时,就可以看到一个完全逼真的三维立体图象。
为讨论方便起见,取全息照片某一小区域ab 为例,同时把再现光看成是一束平
行光,且垂直照射于“照片”上,如图9-3所示。
按光栅衍射原理,再现光将发生衍射,其+1级衍射光是发散光,与物体在原
来位置时发出的光波完全一样,将形成一个虚象,与原物体完全相应,称为真象;-1级衍射光是会聚光,将形成一个共轭实象,称为膺像。
图9-4 从不同角度观察同一张全息照片
3.全息照相的主要特点和应用
(1)全息照相的体视特性。
全息照片再现的被摄物体是一幅完全逼真的三维立体图象。
因此,当我们移动眼睛从不同的角度去观察时,就好象面对原物体一样,可看到原被遮住的侧面,图9-4就是从不同的角度去观察同一张全息照片时的全面的视差特性。
(2)全息照相的可分割性。
全息照片上的任一小区域都分别记录了从同一物点发出的不同倾角的物光信息。
因此,通过全息照片的任一碎片仍能再现出完整的图象。
(3)全息照片的多重记录性。
在一次全息照相拍摄暴光后,只要稍微改变感光胶片的方位,如转过一定角度,或改变参考光的入射方向,就可在同一张感光胶片上进行第二次、第三次的重叠记录。
再现时,只要适当转动全息照片即可获得各自独立互不干涉的图象。
由于全息照相技术具有上述独特的特点,所以,在各个领域中已得到较广泛的应用。
如利用全息照相的体视特性,可作三维显示、立体广告、立体电影、立体电视等,利用全息照相的可分割性和多重记录特性,可作信息存贮、全息干涉计量、振动频谱分析、无损检测和测量位移、应力、应变等。
4.拍摄系统的技术要求
为了拍摄合乎要求的全息照片,对拍摄系统有一定的技术要求。
(1)对于全息照相的光学系统要求有特别高的机械稳定性。
如果物光和参考光的光程稍有不规则的变化,就会使干涉图象模糊不清。
即使象地面振动而引起工作台面的振动,光学元件及物体夹得不牢固而引起的抖动,强烈声波振动而引起空气密度的变化等,都会引起干涉条纹的不规则漂移而使图象模糊。
因此,拍摄系统必须安装在具有防振装置的平台上,系统中光学元件和各种支架都要用磁钢牢固地吸在钢板上。
在暴光过程中,人们不要走动,不要高声说话,以保证干涉条纹无漂移。
(2)要有好的相干光源。
一般实验中常采用He—Ne激光器作为光源。
同时物光和参考光的光程差要符合相干条件。
一般常使两者光程大致相等。
(3)物光和参考光的光强比要合适。
一般以1:4到1:10为宜;两者间夹角小于45°,因为夹角越大,干涉条纹间距越小,条纹越密,对感光材料分辨率的要求也越高。
三.实验仪器
全息实验台(包括激光器及各种镜头支架、栽物台、底片夹等部件和固定这些部件所用的磁钢),全息照相感光胶片(全息干板),暗室冲洗胶片的器材等。
四.实验内容与步骤
1.漫反射全息照片的拍摄
(1)光路的调整。
按图9-1光路放置各元、器件,并作如下调整:①使各元件等高;②使参考光均匀照亮胶片上白纸屏,使入射光均匀照明被摄物体,而其漫反射光能照射到白纸屏上,调节两束光的夹角约为30°;③使物光和参考光的光程大致相等。
(合适的光强比问题,实验室已根据被摄物的情况在选择分束镜M时一起考虑了。
)
(2)暴光、拍摄。
①根据物光和参考光的总光强确定暴光时间(实验室提供参考时间);
②关闭所有光源,在全暗条件下轻轻地将胶片装在胶片夹上(先取下夹上白纸屏),稍等片刻;③打开激光光源进行自动定时暴光,然后关闭激光光源,取下胶片仍用黑纸包好。
2.全息照片的冲洗
在照相暗室中,按暗室操作技术规定进行显影、停显、定影、水洗及冷风干燥等工作。
在白炽灯下观看时,若有干涉条纹,说明拍摄冲洗成功。
3.全息照片再现像的观察
按图9-2光路观察再现的虚象(真象)。
观察时,注意比较再现虚象的大小、位置与原物的情况,体会全息照相的体视性。
再通过小孔观察再现虚象,并改变小孔覆盖在全息照片上的位置,体会全息照相的可分割性。
详细记录观察结果。
五.注意事项
(1)所有光学元件不能用手摸,必要时用专用镜头纸轻轻擦。
(2)不要用眼睛直接对准激光束观察。
(3)遵守暗室操作规程。