不等式性质
- 格式:ppt
- 大小:400.50 KB
- 文档页数:18
不等式的性质知识点及题型归纳总结知识点精讲一、不等式的基本性质不等式的性质是证明和解不等式的主要依据.运用时,对每一条性质要弄清条件和结论,注意条件加强和放宽厚条件和结论之间的变化;不仅要记住不等式运算法则的结论形式,还要掌握法则成立的条件,避免由于忽略某些限制条件而造成解题失误.1. 两个不等式的同向合成,一律为“”(充分不必要条件)(1)(传递性,注意找中间量)(2)(同向可加性)(3)(同正可乘性,注意条件为正)注:如,其逆命题不成立,如但是.2. 一个不等式的等价变形,一律为“”(充要条件),这是不等式解法的理论依据(1).(2)(对称性)(3)(乘正保号性)(4)(5)(不等量加等量)(6)(乘方保号性,注意条件为正)(7)(开方保号性,注意条件为正)(8)(同号可倒性);.最为重要的3条不等式性质为:①;②;③,在不等式问题中都有重要的应用,但应注意他们的适用条件,可以用口诀“同.向同正可乘.......”来记忆......;同号取倒需反向题型归纳及思路提示题型1 不等式的性质思路提示应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.例7.1 对于实数,有以下命题:①若,则;②若,则;③若则;④若,则;⑤若,则. 其中真命题的个数是()A. 2个B. 3个C. 4个D. 5个分析:判断命题的真假,要紧扣不等式的性质,应注意条件与结论之间的联系.解析:①中值的正负或是否为零未知,因而判断不等关系缺乏依据,故该命题是假命题;②中,由可知,则,故该命题是真命题;③中,不等式两边同乘,可得,若同乘,可得,易知成立,故该命题为真命题;④中,由可知,故有,又因,由“同向同正可乘”性可知成立. 故该命题为真命题;⑤中,由已知,因为,故,又,所以,故该命题为真命题. 综上所述,②③④⑤都是真命题,故选C.评注:准确记忆各性质成立的条件,是正确应用的前提. 在不等式的判断中,特殊值法是非常有效的方法,如变式3.变式1设,若,则下列不等式中正确的是()A. B. C. D.变式2设是非零实数,若,则下列不等式中成立的是()A. B. C. D.变式3 若,则下列结论中正确的是()A. 和均不成立B. 和均不成立C. 不等式和均不成立D. 不等式和均不成立变式4若,且,则下列代数式中值最大的是A. B. C. D.题型2 比较数(式)的大小与比较法证明不等式思路提示比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小. 作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若,则;;;若,则;;;例7.2若且,试比较与的大小.解析:解法一:,因为且,所以,所以.解法二:,因为且,所以,又,所以.变式1若,试比较与的大小变式2设且,试比较与的大小例7.3 在锐角中,若函数在上单调递减,则下列命题中正确的是()A. B.C. D.解析:因为在锐角中有,由在上为单调递增函数,所以,且,又函数在上单调递减,所以,故选D.变式1 已知函数是上的偶函数,且在区间上是增函数,令,则()A. B. C. D.变式2已知函数,那么的值()A. 一定大于0B. 一定小于0C. 等于0D. 确定题型3 已知不等式的关系,求目标式的取值范围思路提示在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.例7.4已知,且,则的取值范围是.解析:解法一:令得,,解得.即. 由得,所以. 故的取值范围是.解法二:本题还可以利用“线性规划”的方法求解.如图7-1所示,当直线过点时,取最大值,点的坐标为,所以;当直线过点时,取最小值,当的坐标为,所以,又本题不取边界,因此的取值范围是.评注:不能求出独立的范围内,简单利用不等式性质求解,可结合后面线性规划理解并求解.变式1已知且,,求的范围.变式2设为实数,满足,则的最大值是.最有效训练题1. 如果满足,且,那么下列选项中不一定成立的是()A. B. C. D.2. 设,则下列不等式中成立的是()A. B. C. D.3. 已知,并且,那么一定成立的是()A. B. C. D.4. 若为实数,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则5. 若,则的值是()A. 大于0B. 等于0C. 小于0D. 符号不能确定6. 已知,下列四个条件中,使得成立的必要而不充分条件是()A. B. C. D.7. 已知四个条件:能推出成立的有个.8. 若,则的取值范围是.9. 已知下列三个不等式:①;②;③,以其中两个作为条件,余下一个作为结论,则可能成个正确命题.10. 已知且,求的取值范围.11. 设,且,求的取值范围.12. 若实数满足,试比较的大小.。
不等式的性质不等式是数学中一种重要的关系表达方式。
它描述了数值大小之间的关系,常用于解决优化问题、证明数学定理等。
在学习不等式的过程中,我们需要了解不等式的性质,这有助于我们更好地理解和应用不等式。
1. 不等式的传递性不等式的传递性是指,如果一个不等式A > B成立并且B > C成立,那么A > C 也一定成立。
同样地,如果A < B成立并且B < C成立,那么A < C也一定成立。
传递性在解决不等式问题时起到了重要的作用。
通过利用不等式的传递性,我们可以将一个复杂的不等式问题转化为一系列简单的不等式问题,从而更容易求解。
2. 不等式的加法性和减法性不等式的加法性是指,如果一个不等式A > B成立,那么A + C > B + C也一定成立。
类似地,不等式的减法性是指,如果一个不等式A > B成立,那么A - C > B - C也一定成立。
加法性和减法性使得我们可以在不等式两边加上或减去相同的数,从而得到等效的不等式,方便我们进行问题的变形和求解。
3. 不等式的乘法性和除法性不等式的乘法性是指,如果一个不等式A > B成立,并且C > 0,那么A * C >B * C也一定成立。
类似地,如果A > B成立,并且C < 0,那么A * C < B * C也一定成立。
乘法性使得我们可以在不等式两边乘以正数或负数,从而改变不等式的方向。
需要注意的是,当乘以负数时,不等式的方向会颠倒。
除法性是乘法性的逆运算。
不等式的除法性是指,如果一个不等式A > B成立,并且C > 0,那么A / C > B / C也一定成立。
类似地,如果A > B成立,并且C < 0,那么A / C < B / C也一定成立。
乘法性和除法性在求解不等式时起到了重要的作用。
它允许我们在不改变不等式的基本性质的情况下,对不等式进行一些操作,从而得到更简单的形式。
不等式的定义与性质不等式是数学中常见的一种关系表达式,用来表示两个数、变量或数与变量之间的大小关系。
在代数学和几何学中,不等式具有重要的作用,而理解不等式的定义与性质对于解决各种数学问题至关重要。
一、不等式的定义在数学中,不等式是指通过不等号(<,>,≤,≥)来表示两个数或表达式之间的大小关系。
一个基本的不等式方程形式为:a > b,其中a和b是两个数或表达式。
不等式的表示方式可以分为两种形式:严格不等式和非严格不等式。
严格不等式使用大于号(>)或小于号(<)来表示,表示不等式两边的值不相等;非严格不等式使用大于等于号(≥)或小于等于号(≤)来表示,表示不等式两边的值可以相等。
二、不等式的性质1. 反身性质:对于任意实数a,a≥a或a≤a是成立的,即任何数与自身相等或小于等于自身。
2. 传递性质:如果a>b且b>c,则a>c。
也就是说,如果一个数大于另一个数,而这个数又大于另一个数,那么第一个数一定大于最后一个数。
3. 相加性质:对于任意实数a,b和c,如果a>b,则a+c>b+c。
也就是说,对不等式两边同时加上相同的数,不等式的大小关系保持不变。
4. 相乘性质:对于任意实数a,b和c,如果a>b且c>0,则ac>bc。
也就是说,如果一个数大于另一个数,而且还与一个正数相乘,那么乘积的大小关系保持不变。
以上性质在解决不等式问题时经常会使用,可以帮助我们推导和证明不等式的结果。
三、解不等式的方法解不等式是求解满足给定条件的变量范围。
常用的解不等式的方法包括移项法、分段法和因式法等。
1. 移项法:将含有未知数的项移到一边,常用于解一元一次不等式。
例如,对于不等式3x+5>7,我们可以通过将5移到不等式的右边,得到3x>2,再将不等式两边同时除以3,得到x>2/3。
2. 分段法:将不等式根据不同的条件范围进行分段,进而分别求解不等式。
不等式的基本性质知识导引不等式和方程一样,也是代数里的一种重要模型,在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且数学的基本结果往往是一些不等式而不是等式. 本讲的主要知识点:1、不等号有“≠”,“>”,“<”,“≥”,“≤”。
“≥”表示大于或等于;“≤”表示小于或等于.2、一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,即不等式的解集.3、不等式性质1:不等式两边同时加上或减去一个相同的数,不等号方向不变;不等式性质2:不等式两边同时乘以或除以同一个正数,不等号方向不变;不等式性质3:不等式两边同时乘以或除以同一个负数,不等号方向改变;4、在数轴上表示解集,必须注意空心圈与实心点表示的不同含义.5、不等式解集口诀:大大取大,小小取小,小大大小连起写,大大小小题无解.6、解决与不等式相关的问题,常用到分类讨论、数形结合等相关概念和方法.典例精析例1:下列四个命题中,正确的有( )①若a >b ,则a +1>b +1;②若a >b ,则a -1>b -1;③若a >b ,则-2a <-2b ;④若a >b ,则2a <2b .A 、1个B 、2个C 、3个D 、4个例1—1:已知a ,b ,c 是有理数,且a >b >c ,则下列式子中正确的是( )A 、ab >bcB 、a +b >b +cC 、a -b >b -cD 、c b c a > 例2:若实数a >1,则实数a M =,32+=a N ,312+=a P 的大小关系为( ) A 、P >N >M B 、M >N >P C 、N >P >M D 、M >P >N例3:解不等式5456110312-≥+--x x x ,并把它的解集在数轴上表示出来.例3—1:请你写出一个满足不等式2x -1<6的正整数x 的值: .例3—2:若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为 .例4:某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%,为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革,改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人每月的工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元,工人小张争取六月份工资不少于1200元,则小张在六月份至少应加工多少套童装?探究活动例:三边均不相等的△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.学力训练A 组 务实基础1、若a >b ,c 为有理数,则下列各式一定成立的是( )A 、ac >bcB 、ac <bcC 、22bc ac >D 、22bc ac ≥2、不等式121>-x 的解集是( ) A 、21->x B 、2->x C 、2-<x D 、21-<x3、四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,则他们体重的大小关系是( )A 、P >R >S >QB 、Q >S >P >RC 、S >P >Q >RD 、S >P >R >Q4、如果不等式(a -1)x >a -1的解为x <1,则a 必须满足( )A 、a <1B 、a >1C 、a >0D 、a <05、已知三角形的两边分别是2,6,第三边长也是偶数,则三角形的周长是 .6、关于x 的方程2(x +a )=a +x -2的解是非负数,在a 的取值范围是 .7、如果x ≥-5的最小值是a ,x ≤5的最大值是b ,则a +b = .8、规定一种新运算:a △b =ab -a -b +1,如3△4=12-3-4+1,请比较:(-3)△4 4△(-3)(填“>”、“<”或“=”).9、已知关于x 的方程3(x -2a )+2=x -1的解适合不等式2(x -5)≥8a ,求a 的取值范围.10、关于x 的不等式64141a x x ->-+的解都是不等式2214x x -<-的解,求a 的取值范围.B 组 瞄准中考1、(邵阳中考)如图,数轴上表示的关于x 的一元一次不等式的解集为( )A 、x ≤1 B、x ≥1 C、x <1 D 、x >12、(烟台中考)不等式4-3x≥2x-6的非负整数解有( )A 、1个B 、2个C 、3个D 、4个3、(深圳中考)已知a 、b 、c 均为实数,若a >b ,c ≠0,下列结论不一定正确的是( )A 、a +c >b +cB 、c -a <c -bC 、22cb c a > D 、22b ab a >> 4、(凉山中考)下列不等式变形正确的是( )A 、由a >b ,得ac >bcB 、由a >b ,得-2a <-2bC 、由a >b ,得-a >-bD 、由a >b ,得a -2<b -25、(乐山中考)下列不等式变形正确的是( )A 、由a >b ,得a -2<b -2B 、由a >b ,得-2a <-2bC 、由a >b ,得b a >D 、由a >b ,得22b a > 6、解不等式x x 329721-≤-,得其解的范围为( ) A 、61≥x B 、61≤x C 、23≥x D 、23≤x 7、(永州中考)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需的电话费至少为( )A 、0.6元B 、0.7元C 、0.8元D 、0.9元8、(临沂中考)有3人携带会议材料乘坐电梯,这三人的体重共210kg ,每捆材料重20kg ,电梯的最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料.9、(重庆中考)解不等式3132+<-x x ,并把解集在数轴上表示出来.10、(苏州中考)解不等式:1)1(23<--x .11、(广州中考)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.一直小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算:所购买商品的价格在什么范围内时,采用方案一更合算?C 组 冲击金牌1、⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++52154154354324321321a x x x a x x x a x x x a x x x a x x x ,其中1a ,2a ,3a ,4a ,5a 是常数,且1a >2a >3a >4a >5a ,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A 、1x >2x >3x >4x >5xB 、4x >2x >1x >3x >5xC 、3x >1x >4x >2x >5xD 、5x >3x >1x >4x >2x2、不等式100<+y x 有 组整数解.3、已知121219991998++=M ,121220001999++=N ,那么M ,N 的大小关系是 . 4、已知x <0,-1<y <0,将x ,xy ,2xy 按从小到大的顺序排列.5、实数a ,b 满足不等式b a a b a a +-<+-)(,试判定a ,b 的符号.6、解不等式:1325<+--x x .7、已知:正有理数1a 是3的一个近似值,设12112++=a a ,求证:3介于1a 和2a 之间.8、某地区举办初中数学联赛,有A、B、C、D四所中学参加.选手中,A,B两校共16名,B,C脸两校共20名,C,D两校共34名,并且各校选手人数的多少是按A、B、C、D中学的顺序选派的,试求各中学的选手人数.不等式的基本性质参考答案典例精析1、C 1—1、B2、D3、x ≤2,数轴上表示略 3—1、1或2或33—2、3 4、(1)设企业每套奖励x 元,由题意得:200+60%×150x ≥450,解得x ≥2.78,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y 套,由题意得:200+5y ≥1200,解得y ≥200.因此,小张在六月份至少应加工200套童装.探究活动解:设长度为4和12的高所对的边为a 、b ,又设第三边及其边上的高为c 、h ,则4a =12b =ch .a :b =3:1=3h :h ,b :c =h :12,∴a :b :c =3h :h :12,可设三边长为3hk ,hk ,12k (k 为正整数),∵3hk >hk ,∴3hk +hk >12k ,hk +12k >3hk ,即3<h <6,又∵h 是整数,∴h =4(舍去),5,∴h =5.学力训练A 组1、D2、C3、D4、A5、146、a ≤-27、08、=9、a ≤-6.5 10、a ≤14.5B 组1、D2、C3、D4、B5、B6、A7、B8、429、解集为x <2,数轴上表示略. 10、x >2 11、(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x ,解得x >1120,所以当购买商品的价格超过1120元时,采用方案一更合算.C 组1、C2、197023、m >n4、∵x -xy =x (1-y ),且x <0,-1<y <0,所以x(1-y )<0,即x <xy ,∵0)1(2<-=-y xy xy xy ,∴xy xy <2,因为)1)(1(2y y x xy x =+=-<0,∴2xy x <,综上所述,x <2xy <xy .5、a 为负,b 为正6、x <-7或31>x 7、略 8、A 校7人,B 校9人,C 校11人,D 校23人.。
不等式的基本性质不等式是数学中常见的一种关系式,它描述了两个数或者两个代数式之间的大小关系。
在学习不等式的过程中,了解不等式的基本性质是非常重要的。
本文将介绍不等式的基本概念、用于解不等式的基本性质以及不等式的图像表示方法。
1. 不等式的基本概念不等式是表示数或者代数式之间大小关系的数学符号。
常见的不等式符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
例如,对于实数a和b,a>b表示a大于b,a<b表示a小于b,a≥b表示a大于等于b,a≤b表示a小于等于b。
在不等式中,等号“=”可以出现,表示两个数或者代数式相等。
2. 不等式的基本性质(1)加法性质:如果对于任意实数a、b和c,如果a>b,则a+c>b+c。
同样地,如果a<b,则a+c<b+c。
也就是说,不等式两边同时加上同一个数,不等式的方向不变。
(2)减法性质:如果对于任意实数a、b和c,如果a>b,则a-c>b-c。
同样地,如果a<b,则a-c<b-c。
也就是说,不等式两边同时减去同一个数,不等式的方向不变。
(3)乘法性质:如果对于任意实数a、b和c,如果a>b且c>0,则ac>bc。
如果a<b且c<0,则ac>bc。
也就是说,不等式两边同时乘以同一个正数,不等式的方向不变;不等式两边同时乘以同一个负数,不等式的方向改变。
(4)除法性质:如果对于任意实数a、b和c,如果a>b且c>0,则a/c>b/c。
如果a<b且c<0,则a/c<b/c。
也就是说,不等式两边同时除以同一个正数,不等式的方向不变;不等式两边同时除以同一个负数,不等式的方向改变。
(5)取反性质:对于任意实数a和b,有a>b当且仅当-b<-a。
也就是说,不等式的两边取反,不等号的方向改变。
(6)传递性质:如果对于任意实数a、b和c,如果a>b且b>c,则a>c。
简述不等式的4个基本性质不等式是数学中一类非常重要的结构,其中内容涉及多个知识点,为研究和应用这类结构提供了有效的框架。
其中,不等式的4个基本性质是很重要的,它们是:(1)不等式的交换性;(2)不等式的可分解性;(3)不等式的传递性;(4)不等式的联合性。
本文旨在阐述这4个基本性质,并通过实例阐释它们的作用。
首先,让我们讨论不等式的交换性。
它的定义是:对于任一不等式,如果其双边都是相同的,那么可以交换左右两边。
比如,a>b,b<c,那么有a>c的结果,即a>b,b<c的结果等价于a>c的结果。
交换性的作用是,当某一不等式的两边均有相同的运算符时,可以通过交换左右两边,得到一个不同的不等式,而其结果也是完全相同的。
其次,让我们讨论不等式的可分解性。
它的定义是:对于一个不等式,可以将其分解成几个不等式的乘积,且其中的乘法操作不会改变其结果。
比如,有一个不等式x>2,那么,可以将其分解成x+1>3和x-3>-1两个不等式的乘积,且两边乘积的结果是不变的。
可分解性的作用是,可以将一个复杂的不等式,分解成若干个相对简单的不等式,有效拆解复杂问题,达到简化分析过程的目的。
第三,让我们讨论不等式的传递性。
它的定义是:如果某一不等式的两边都有相同的运算符,并且有一个中间变量,那么这个不等式的结果可以从左到右或者从右到左传递。
比如,a>b,b>c,那么可以得到a>c的结果。
传递性的作用是,当某一不等式的两边均有相同的运算符,并且有一个中间变量时,可以以中间变量为准,从左到右或者从右到左传递这个不等式的结果,从而可以得到更精确的结果。
最后,让我们讨论不等式的联合性。
它的定义是:当不等式上有满足某一条件的两个变量时,可以联合这两个变量,形成一个更大的范围。
比如,x>2,y>3,那么有x和y同时大于2和3,即x、y>2、3。
联合性的作用是,当不等式上有满足某一条件的两个变量时,可以将其联合,得到一个更大的范围,从而可以获得更精确的结果。