九年级数学: 22.1求二次函数解析式教学案例
- 格式:doc
- 大小:31.40 KB
- 文档页数:3
22.1二次函数的图象和性质22.1.1二次函数一、教学目标【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.【情感态度与价值观】在探究二次函数的学习活动中,体会通过探究发现的乐趣.二、课型新授课三、课时1课时四、教学重难点【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.五、课前准备课件六、教学过程(一)导入新课如图,从喷头喷出的水珠,在空中走过一条曲线后落到池中央,在这条曲线的各个位置上,水珠的竖直高度h与它距离喷头的水平距离x之间有什么关系?(出示课件2)教师问:上面问题中变量之间的关系可以用哪一种函数来表示?这种函数与以前学习的函数、方程有哪些联系?(二)探索新知探究一二次函数的概念出示课件4:教师问:正方体的六个面是全等的正方形(如下图),设正方形的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为.学生答:y=6x2①.出示课件5:教师问:多边形的对角线总条数d与边数n有什么关系?如果多边形有n条边,那么它有个顶点,从一个顶点出发,可以作条对角线.学生答:n;(n-3)教师问:多边形的对角线总数为,即.学生答:d=12n(n-3);d=12n2-32n②教师强调:②式表示了多边形的对角线总条数d与边数n之间的关系,对于n 的每一个值,d都有一个对应值,即d是n的函数.出示课件6:教师问:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?这种产品的原产量是20件,一年后的产量是件,再经过一年后的产量是件,即两年后的产量为,即.学生答:20(1+x);20(1+x)2;y=20(1+x)2;y=20x2+40x+20③教师强调:③式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有一个对应值,即y是x的函数.出示课件7:教师问:函数①②③有什么共同点?学生以小组形式讨论,并由每组代表总结.出示课件8:教师问:认真观察以上出现的三个函数解析式,分别说出哪些是常数、自变量和函数.函数解析式自变量函数y=6x2d=12n2-32ny=20x2+40x+20学生答:x;y;n;d;x;y教师问:这些函数有什么共同点?学生答:这些函数自变量的最高次项都是二次的!出示课件9:教师归纳:二次函数的定义:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠0)的函数,叫做二次函数.教师强调:(1)等号左边是变量y,右边是关于自变量x的整式.(2)a,b,c为常数,且a≠0.(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.(4)x的取值范围是任意实数.出示课件10:教师归纳:一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项.出示课件11:教师归纳:二次函数的形式:二次函数的一般形式:y=ax 2+bx+c (其中a、b、c 是常数,a≠0).二次函数的特殊形式:当b=0时,y=ax 2+c.(只含有二次项和常数项)当c=0时,y=ax 2+bx.(只含有二次项和一次项)当b=0,c=0时,y=ax 2.(只含有二次项)出示课件12:例1下列函数中是二次函数的有.222222422221211111()()=()y y x x x y x x y x x x x y x x y x +=+-=+-=+++=+①②③④⑤⑥学生自主思考后,学生口答:①⑤⑥出示课件13:师生共同完善认知:运用定义法判断一个函数是否为二次函数的步骤:(1)将函数解析式右边整理为含自变量的代数式,左边是函数(因变量)的形式;(2)判断右边含自变量的代数式是否是整式;(3)判断自变量的最高次数是否是2;(4)判断二次项系数是否不等于0.出示课件14:下列函数中,哪些是二次函数?(1)y=3(x-1)²+1;⑵1y x x =+;(3)s=3-2t²;⑷21y x x =-;(5)y=(x+3)²-x²;(6)v=10πr²;(7)y=x²+x³+25;(8)y =2²+2x.学生自主思考后解答:⑴⑶⑹是,⑵⑷⑸⑺⑻不是.出示课件15:例2关于x 的函数()m -m y =m +x 21是二次函数,求m 的值.学生共同思考后,师生共同解答如下:解:由二次函数的定义得m 2-m=2,m+1≠0.解得m=2.因此当m=2时,函数为二次函数.教师强调:注意:二次函数的二次项系数不能为零.出示课件16:11+=-()a y a x 是二次函数,求常数a 的值.学生自主思考后,独立解答.解:根据二次函数的定义,得,⎧+=⎪⎨-≠⎪⎩a a 1210.解得a=-1.探究二根据实际问题确定二次函数解析式师生共同完善认知:(出示课件17)根据实际问题建立二次函数模型的一般步骤:①审题:仔细审题,分析数量之间的关系,将文字语言转化为符号语言;②列式:根据实际问题中的等量关系,列二次函数关系式,并化成一般形式;③取值:联系实际,确定自变量的取值范围.出示课件18:例一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为xm,菜园的面积为ym2,求y与x之间的函数关系式,并说出自变量的取值范围.当x=12m时,计算菜园的面积.师生共同分析后,共同解答.解:由题意得:y=x(40-2x).即y=-2x2+40x.(0<x<20)当x=12m时,菜园的面积为y=-2x2+40x=-2×122+40×12=192(m2).教师点拨:确定实际问题中的二次函数关系式时,常常用到生活中的经验及数学公式(例长方形和圆的面积、周长公式)等.出示课件19:做一做:①已知圆的面积y(cm2)与圆的半径x(cm),写出y与x之间的函数关系式;②王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的存款年利率为x,两年后王先生共得本息和y万元,写出y与x之间的函数关系式;③一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.学生自主思考后,口答:①y=πx 2(x>0);②y=2(1+x)2(x>0);③S=4πr 2(r>0).说一说以上二次函数解析式的各项系数.(三)课堂练习(出示课件20-24)1.下列函数解析式中,一定为二次函数的是()A.y=3x-1B.y=ax 2+bx+cC.s=2t 2-2t+1D.y=x 2+21x 2.已知函数y=(m²﹣m)x²+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?3.下列函数中,(x 是自变量),是二次函数的为()A.y=ax 2+bx+cB.y 2=x 2-4x+1C.y=x 2D.y=22+x+14.函数y=(m-n)x 2+mx+n 是二次函数的条件是()A.m,n 是常数,且m≠0B.m,n 是常数,且n≠0C.m,n 是常数,且m≠nD.m,n 为任何实数5.一个圆柱的高等于底面半径,写出它的表面积s 与半径r 之间的关系式.6.n 支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数m 与球队数n 之间的关系式.7.当m 为何值时,函数y=(m-4)x m²-5m+6+mx 是关于x 的二次函数.参考答案:1.C2.解:(1)根据一次函数的定义,得m 2﹣m=0,解得m=0或m=1,又∵m﹣1≠0即m≠1,∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m 2﹣m≠0,解得m 1≠0,m 2≠1,∴当m 1≠0,m 2≠1时,这个函数是二次函数.3.C4.C5.S=4πr 2.6.m=12n(n-1),即m=12n 2-12n.7.解:由二次函数的定义,得256240,,m m m ⎧-+=⎨-≠⎩解得m=1.∴当m=1时,函数y=(m-4)x m²-5m+6+mx 是关于x 的二次函数.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.2)的相关内容.七、课后作业1.教材习题22.1第1、2、8题;2.配套练习册内容八、板书设计:九、教学反思:本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.。
22.1.4二次函数y=ax2+bx+c的图象和性质第2课时用待定系数法求二次函数的解析式典案二导学设计【学习目标】复习稳固用待定系数法由图象上三个点的坐标求二次函数的关系式.使学生掌握抛物线的顶点坐标或对称轴等条件求出函数的关系式.【学习重难点】稳固用待定系数法由图象上三个点的坐标求二次函数的关系式【课标要求】稳固用待定系数法内图象上三个点的坐标求二次函数的关系式一、一、情景创设1.如何用待定系数法求三点坐标的二次函数关系式?2.二次函数的图象经过A(0, 1), B(l, 3), C(-l, 1) o(1)求二次函数的关系式,(2)画出二次函数的图象;(3)说出它的顶点坐标和对称轴.3.二次函数yuC+bx+c的对称轴,顶点坐标各是什么?二、实践与探索例1.一个二次函数的图象过点(0, 1),它的顶点坐标是(8, 9),求这个二次函数的关系式.分析:二次函数y=ax r+bx-\-c通过配方可得y=a(x+h)2+k的形式称为顶点式,(—h, k)为抛物线的顶点坐标,由于这个二次函数的图象顶点坐标是(8, 9), 因此,可以设函数关系式为:y= ________________________由于二次函数的图象过点(0, 1),将(0, 1)代入所设函数关系式,即可求出a 的值.请同学们完本钱例的解答例2.抛物线对称轴是直线尸2,且经过(3, 1)和(0, —5)两点,求二次函数的关系式.例3、抛物线的顶点是(2, -4),它与y轴的一个交点的纵坐标为4,求函数的关系式.三、课堂练习1.二次函数当工二-3时,有最大值一1,且当工=0时,y=-3,求二次函数的关系式.小结:让学生讨论、交流、归纳得到:二次函数的最大值或最小值,就是该函数顶点坐标,应用顶点式求解方便,用一般式求解计算量较大.2.二次函数y=^ + px+q的图象的顶点坐标是(5, -2),求二次函数关系式.四、小结1,求二次函数的关系式,常见的有儿种类型?(1)一般式:y=«x2+Z?A-|-c(2)顶点式:y=a(x+h)2+k,其顶点是(一h, k)2.如何确定二次函数的关系式?让学生回忆、思考、交流,得出:关键是确定上述两个式子中的待定系数,通常需要三个条件.在具体解题时,应根据具体的条件,灵活选用适宜的形式,运用待定系数法求解.五、作业1.抛物线的顶点坐标为(一1, -3),与y轴交点为(0, -5),求二次函数的关系式.2.函数y=f+px+q的最小值是4,且当x=2时,y=5,求p和q.3.假设抛物线y=一—+bx+c的最高点为(一1, —3),求b和c.4.二次函数y=af+bx+c的图象经过A(0, 1), B(-l, 0), C(l, 0), 那么此函数的关系式是.如果y随x的增大而减少,那么自变量x的变化范围是______ O5.二次函数y=ad+以+c的图象过A(0, -5), B(5, 0)两点,它的对称轴为直线x=2,求这个二次函数的关系式.6.如图是抛物线拱桥,水位在AB位置时,水面宽4m米, 水位上升3米就到达警戒线CD,这时水面宽44米,假设洪水到来时, 水位以每小时0.25米速度上升,求水过警戒线后儿小时淹到拱桥顶?。
22.1.4用待定系数法求二次函数解析式教案一、教学目标1.熟练的掌握二次函数的y=ax+bx+c的性质,并会根据题目要求求出表达式;2.熟练的掌握二次函数的y=a (x-h)+k的性质,并会根据题目条件求出表达式;223.理解二次函数y=a (x-x1)(x-x2)的性质,并会根据题目求表达式.二、教学重难点重点:根据题目条件求二次函数的表达式.难点:理解两根式的表达式的推导过程.三、知识结构课题名称一般式的求解顶点式的求解两根式的求解重点一般式的基本形式顶点式的表达式两根式的理解难点解三元一次方程组根据题目找出顶点坐标找出图象与x轴的两个交点坐标三种表达式的综合应用综合应用根据题目选择合适的表达式四、名师解析知识点一:y=ax2+bx+c(a,b,c为常数,a≠0)的求解例1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式.巩固练习:已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式.知识点二:y =a (x -h )2+k (a ,h ,k 为常数,a ≠0)的求解例2.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式.巩固练习:已知二次函数的图象的顶点坐标为(1,-3),且经过点P (2,0)点,求二次函数的解析式.知识点三:y =a (x -x 1)(x -x 2)(a ≠0,x 1,x 2是抛物线与x 轴两交点的横坐标)的求解例3.二次函数的图象经过A (-1,0),B (3,0),函数有最小值-8,求该二次函数的解析式.巩固练习:1.已知x =1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式2.抛物线y =2x +bx +c 与x 轴交于(2,0)、(-3,0),则该二次函数的解析式知识点四:三种表达式的综合应用例4.根据下列条件求关于x 的二次函数的解析式(1)当x =3时,y最小值=-1,且图象过(0,7)2(2)图象过点(0,-2)(1,2)且对称轴为直线x =(3)图象经过(0,1)(1,0)(3,0)32(4)当x =1时,y =0;x =0时,y =-2,x =2时,y =3(5)抛物线顶点坐标为(-1,-2)且通过点(1,10)例5.已知抛物线y =x +kx -交点;234k 2(k 为常数,且k >0).证明:此抛物线与x 轴总有两个例6.已知关于x 的二次函数y =x -(2m -1)x +m +3m +4y =x 2-(2m -1)x +m 2+3m22+探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数例7.已知:关于x 的函数y =kx -7x -7的图象与x 轴总有交点,k 的取值范围是()2A 、k >7777B 、k ≥且k ≠0C 、k ≥-D 、k >-且k ≠044442例8.抛物线y =-x +bx +c 的部分图象如图所示,则方程-x +bx +c =0的两根2为.巩固练习:21.关于x 的一元二次方程x -x -n =0没有实数根,则抛物线y =x -x -n 的顶点在()2A .第一象限B.第二象限C.第三象限D.第四象限2.已知关于x 的二次函数y =2x -(3m +1)x +m (m >1).证明y =0的x 的值有两个.2练习:二次函数y =ax +bx +c (a ≠0)的图像如图所示,根据图像解答下列问题:2(1)写出方程ax +bx +c =0的两个根;(2)写出不等式ax +bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范值;(4)若方程ax +bx +c =k 有两个不相等的实数根,求k 的取什范围.22223五、课后练习1.当二次函数图象与x 轴交点的横坐标分别是x 1=-3,x 2=1时,且与y 轴交点为(0,-2),求这个二次函数的解析式22.已知二次函数y =ax +bx +c 的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
课题:22.1.4 二次函数y=ax ²+bx+c 的图象和性质第2课时 用待定系数法求二次函数的解析式一、教学目标:知识与能力:掌握二次函数解析式的表达方式。
会用待定系数法求二次函数的解析式。
学会利用二次函数解决实际问题。
过程与方法:能根据二次函数的图像及性质解决生活中的实际问题。
二、教学重难点重点:会用待定系数法求二次函数的解析式难点:会选用适当函数表达式求二次函数的解析式三、媒体运用班班通四、教学设计(一)温故而知新我们知道,在学习一次函数的过程中,已知同一直线上的不同两点的坐标,我们可以求出这条直线的解析式.例如:已知直线y=ax+b 经过点A (1.1),点 B (-1,-1),那么这条直线的解析式为:y=x.(二)探究(1)由几个点的坐标可以确定二次函数?这几个点应满足什么条件?(2)如果一个二次函数的图象经过(-1,10),(1,4),(2,7)三个点,能求出这个二次函数的解析式吗?如果能,求出这个二次函数的解析式.分析:(1)确定一次函数.用待定系数法,求出k,b 的值,从而确定一次函数解析式.类似的,我们可以写出这个二次函数的解析式y=ax 2+bx+c ,求出a,b,c 的值.由不共线三点(三点不在同一直线上)的坐标,列出关于a,b,c 的三元一次方程组就可以求出a,b,c 的值.(2)设所求二次函数为y=ax 2+bx+c 由已知,函数图象经过(-1,10),(1,4),(2,7)三点,得关于a,b,c 的三元一次方程组⎪⎩⎪⎨⎧=++=++=+-.724,4,10c b a c b a c b a解这个方程组,得a=2,b=-3,c=5所求二次函数是y=2x 2-3x+5(三)方法小结用待定系数法确定二次函数解析式的基本方法分四步完成:一设、二代、三解、四还原一设:指先设出二次函数的解析式;二代:指根据题中所给条件,代入二次函数的解析式,得到关于a、b、c的方程组三解:指解此方程或方程组四还原:指将求出的a、b、c还原回原解析式中(四)动手做一做已知当x=-1时,抛物线最高点的纵坐标为4,且与x轴两交点之间的距离为6,求此函数解析式。
二次函数的教学设计一、教学内容二次函数(新人教版九年级下册)二、教学目标1.知识技能通过对实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。
2.教学思考学生能对具体情境中的数学信息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。
3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学知识解决,体验问题“生活数学化”的过程。
4.情感态度通过观察、归纳、猜想、验证等教学活动,让学生体验成功,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。
三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。
2.教学难点根据函数解析式的结构特征,归纳出二次函数的概念。
四、教学流程安排教学活动流程活动内容和目的活动1:温故知新,揭示课题由回顾所学过的函数入手,引入函数大家庭中还会认识哪一种函数呢?再由打篮球的例子引入二次函数。
活动2:合作探究,获得新知通过学生自己独立解决运用函数知识表述变量间关系,合作探究环节学生互动,来自主探究新知,从而通过观察,归纳五、教学过程设计2.循序渐进2.请写出这些二次函数中a,b,c的值。
二次函数 a b cy=2x2 2 0 0y=x2+3 1 0 3y=(x+1)2+2 1 2 3y=3x2-2x-5 3 -2 -5特别强调:只有把解析式整理成一般形式,才能正确判断解析式中的a,b,c.【循序渐进】例1 一块矩形草地,它的长比宽多2m,设它的长为xm,面积为ycm2,请写出用x表示y的函数表达式,y是x的二次函数吗?例2 关于x的函数是二次函数, 求m的值.例3 已知二次函数y=x2+2x-3.(1)当x=1时,求她所对应的函数值y;(2)当y=0时,求它所对应的自变量x的值。
例4 已知二次函数y=x2+px+q,当x=1时,函数值为4,当x=2时,函数值为-5,求这个二次函数的解析式。
初中数学人教版九年级上册实用资料第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120 m,室内通道的尺寸如图,设一条边长为x (m),种植面积为y(m2).(一)教师组织合作学习活动:1.先个体探求,尝试写出y与x之间的函数解析式.2.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.(1)y=πx2(2)y=20000(1+x)2=20000x2+40000x+20000(3)y=(60-x-4)(x-2)=-x2+58x-112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法.教师归纳总结:上述三个函数解析式经化简后都具有y=ax2+bx+c(a,b,c是常数,a≠0)的形式.板书:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项.请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项.三、做一做1.下列函数中,哪些是二次函数?(1)y=x2(2)y=-1x2(3)y=2x2-x-1(4)y=x(1-x)(5)y=(x-1)2-(x+1)(x-1)2.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)y=x2+1(2)y=3x2+7x-12(3)y=2x(1-x)3.若函数y=(m2-1)xm2-m为二次函数,则m的值为________.四、课堂小结反思提高,本节课你有什么收获?五、作业布置教材第41页第1,2题.22.1.2二次函数y=ax2的图象和性质通过画图,了解二次函数y=ax2(a≠0)的图象是一条抛物线,理解其顶点为何是原点,对称轴为何是y轴,开口方向为何向上(或向下),掌握其顶点、对称轴、开口方向、最值和增减性与解析式的内在关系,能运用相关性质解决有关问题.重点从“数”(解析式)和“形”(图象)的角度理解二次函数y=ax2的性质,掌握二次函数解析式y=ax2与函数图象的内在关系.难点画二次函数y=ax2的图象.一、引入新课1.下列哪些函数是二次函数?哪些是一次函数?(1)y=3x-1(2)y=2x2+7(3)y=x-2(4)y=3(x-1)2+12.一次函数的图象,正比例函数的图象各是怎样的呢?它们各有什么特点,又有哪些性质呢?3.上节课我们学习了二次函数的概念,掌握了它的一般形式,这节课我们先来探究二次函数中最简单的y=ax2的图象和性质.二、教学活动活动1:画函数y=-x2的图象.(1)多媒体展示画法(列表,描点,连线).(2)提出问题:它的形状类似于什么?(3)引出一般概念:抛物线,抛物线的对称轴、顶点.活动2:在坐标纸上画函数y=-0.5x2,y=-2x2的图象.(1)教师巡视,展示学生的作品并进行点拨;教师再用多媒体课件展示正确的画图过程.(2)引导学生观察二次函数y=-0.5x2,y=-2x2与函数y=-x2的图象,提出问题:它们有什么共同点和不同点?(3)归纳总结:共同点:①它们都是抛物线;②除顶点外都处于x轴的下方;③开口向下;④对称轴是y轴;⑤顶点都是原点(0,0).不同点:开口大小不同.(4)教师强调指出:这三个特殊的二次函数y=ax2是当a<0时的情况.系数a越大,抛物线开口越大.活动3:在同一个直角坐标系中画函数y=x2,y=0.5x2,y=2x2的图象.类似活动2:让学生归纳总结出这些图象的共同点和不同点,再进一步提炼出二次函数y=ax2(a≠0)的图象和性质.二次函数y=ax2(a≠0)的图象和性质图象(草图) 开口方向顶点对称轴最高或最低点最值a>0当x=____时,y有最____值,是________.a<0当x=____时,y有最____值,是________.活动4:达标检测(1)函数y=-8x2的图象开口向________,顶点是________,对称轴是________,当x________时,y随x的增大而减小.(2)二次函数y=(2k-5)x2的图象如图所示,则k的取值范围为________.(3)如图,①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接________.答案:(1)下,(0,0),x=0,>0;(2)k>2.5;(3)a>b>d>c.三、课堂小结与作业布置课堂小结1.二次函数的图象都是抛物线.2.二次函数y=ax2的图象性质:(1)抛物线y=ax2的对称轴是y轴,顶点是原点.(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;|a|越大,抛物线的开口越小.作业布置教材第32页练习.22.1.3二次函数y=a(x-h)2+k的图象和性质1.经历二次函数图象平移的过程;理解函数图象平移的意义.2.了解y=ax2,y=a(x-h)2,y=a(x-h)2+k三类二次函数图象之间的关系.3.会从图象的平移变换的角度认识y=a(x-h)2+k型二次函数的图象特征.重点从图象的平移变换的角度认识y=a(x-h)2+k型二次函数的图象特征.难点对于平移变换的理解和确定,学生较难理解.一、复习引入二次函数y=ax2的图象和特征:1.名称________;2.顶点坐标________;3.对称轴________;4.当a>0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x轴的________(除顶点外);当a<0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x轴的________(除顶点外).二、合作学习在同一坐标系中画出函数y=12x2,y=12(x+2)2,y=12(x-2)2的图象.(1)请比较这三个函数图象有什么共同特征?(2)顶点和对称轴有什么关系?(3)图象之间的位置能否通过适当的变换得到?(4)由此,你发现了什么?三、探究二次函数y =ax 2和y =a(x -h)2图象之间的关系1.结合学生所画图象,引导学生观察y =12(x +2)2与y =12x 2的图象位置关系,直观得出y =12x 2的图象――→向左平移两个单位y =12(x +2)2的图象.教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系,如: (0,0)――→向左平移两个单位(-2,0); (2,2)――→向左平移两个单位(0,2); (-2,2)――→向左平移两个单位(-4,2).②也可以把这些对应点在图象上用彩色粉笔标出,并用带箭头的线段表示平移过程. 2.用同样的方法得出y =12x 2的图象――→向右平移两个单位y =12(x -2)2的图象.3.请你总结二次函数y =a(x -h)2的图象和性质.y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象. 函数y =a(x -h)2的图象的顶点坐标是(h ,0),对称轴是直线x =h.4.做一做 (1)(2)填空:①抛物线y =2x 2向________平移________个单位可得到y =2(x +1)2;②函数y =-5(x -4)2的图象可以由抛物线________向________平移________个单位而得到.四、探究二次函数y =a(x -h)2+k 和y =ax 2图象之间的关系1.在上面的平面直角坐标系中画出二次函数y =12(x +2)2+3的图象.首先引导学生观察比较y =12(x +2)2与y =12(x +2)2+3的图象关系,直观得出:y =12(x+2)2的图象――→向上平移3个单位y =12(x +2)2+3的图象.(结合多媒体演示) 再引导学生观察刚才得到的y =12x 2的图象与y =12(x +2)2的图象之间的位置关系,由此得出:只要把抛物线y =12x 2先向左平移2个单位,在向上平移3个单位,就可得到函数y=12(x +2)2+3的图象. 2.做一做:请填写下表:函数解析式 图象的对称轴图象的顶点坐标y =12x 2 y =12(x +2)2 y =12(x +2)2+33.总结y =a(x -h)2+k 的图象和y =ax 2图象的关系y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象――→当k >0时,向上平移k 个单位当k <0时,向下平移|k|个单位y =a(x -h)2+k 的图象.y =a(x -h)2+k 的图象的对称轴是直线x =h ,顶点坐标是(h ,k). 口诀:(h ,k)正负左右上下移(h 左加右减,k 上加下减)从二次函数y =a(x -h)2+k 的图象可以看出:如果a >0,当x <h 时,y 随x 的增大而减小,当x >h 时,y 随x 的增大而增大;如果a <0,当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小.4.练习:课本第37页 练习五、课堂小结1.函数y =a(x -h)2+k 的图象和函数y =ax 2图象之间的关系.2.函数y =a(x -h)2+k 的图象在开口方向、顶点坐标和对称轴等方面的性质. 六、作业布置教材第41页 第5题22.1.4 二次函数y =ax 2+bx +c 的图象和性质(2课时)第1课时 二次函数y =ax 2+bx +c 的图象和性质1.掌握用描点法画出二次函数y =ax 2+bx +c 的图象.2.掌握用图象或通过配方确定抛物线y =ax 2+bx +c 的开口方向、对称轴和顶点坐标. 3.经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及配方的过程,理解二次函数y =ax 2+bx +c 的性质.重点通过图象和配方描述二次函数y =ax 2+bx +c 的性质. 难点理解二次函数一般形式y =ax 2+bx +c(a ≠0)的配方过程,发现并总结y =ax 2+bx +c 与y =a(x -h)2+k 的内在关系.一、导入新课1.二次函数y=a(x-h)2+k的图象,可以由函数y=ax2的图象先向________平移________个单位,再向________平移________个单位得到.2.二次函数y=a(x-h)2+k的图象的开口方向________,对称轴是________,顶点坐标是________.3.二次函数y=12x2-6x+21,你能很容易地说出它的图象的开口方向、对称轴和顶点坐标,并画出图象吗?二、教学活动活动1:通过配方,确定抛物线y=12x2-6x+21的开口方向、对称轴和顶点坐标,再描点画图.(1)多媒体展示画法(列表,描点,连线);(2)提出问题:它的开口方向、对称轴和顶点坐标分别是什么?(3)引导学生合作、讨论观察图象:在对称轴的左右两侧,抛物线从左往右的变化趋势.活动2:1.不画出图象,你能直接说出函数y=-x2+2x-3的图象的开口方向、对称轴和顶点坐标吗?2.你能画出函数y=-x2+2x-3的图象,并说明这个函数具有哪些性质吗?(1)在学生画函数图象的同时,教师巡视、指导;(2)抽一位或两位同学板演,学生自纠,老师点评;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?活动3:对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?(1)组织学生分组讨论,教师巡视;(2)各组选派代表发言,全班交流,达成共识,抽学生板演配方过程;教师课件展示二次函数y=ax2+bx+c(a>0)和y=ax2+bx+c(a<0)的图象.(3)引导学生观察二次函数y=ax2+bx+c(a≠0)的图象,在对称轴的左右两侧,y随x 的增大有什么变化规律?(4)引导学生归纳总结二次函数y=ax2+bx+c(a≠0)的图象和性质.活动4:已知抛物线y=x2-2ax+9的顶点在坐标轴上,求a的值.活动5:检测反馈1.填空:(1)抛物线y=x2-2x+2的顶点坐标是________;(2)抛物线y=2x2-2x-1的开口________,对称轴是________;(3)二次函数y=ax2+4x+a的最大值是3,则a=________.2.写出下列抛物线的开口方向、对称轴和顶点坐标.(1)y=3x2+2x;(2)y=-2x2+8x-8.3.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该图象具有哪些性质.4.抛物线y=ax2+2x+c的顶点是(-1,2),则a,c的值分别是多少?答案:1.(1)(1,1);(2)向上,x=12;(3)-1;2.(1)开口向上,x=-13,(-13,-13);(2)开口向下,x=2,(2,0);3.对称轴x=-1,当m>0时,开口向上,顶点坐标是(-1,3-m);4.a=1,c=3.三、课堂小结与作业布置课堂小结二次函数y=ax2+bx+c(a≠0)的图象与性质.作业布置教材第41页第6题.第2课时用待定系数法求二次函数的解析式1.掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式.2.能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,对称轴,最值和增减性.3.能根据二次函数的解析式画出函数的图象,并能从图象上观察出函数的一些性质.重点二次函数的解析式和利用函数的图象观察性质.难点利用图象观察性质.一、复习引入1.抛物线y=-2(x+4)2-5的顶点坐标是________,对称轴是________,在________________侧,即x________-4时,y随着x的增大而增大;在________________侧,即x________-4时,y随着x的增大而减小;当x=________时,函数y最________值是________.2.抛物线y=2(x-3)2+6的顶点坐标是________,对称轴是________,在________________侧,即x________3时,y随着x的增大而增大;在________________侧,即x________3时,y随着x的增大而减小;当x=________时,函数y最________值是________.二、例题讲解例1根据下列条件求二次函数的解析式:(1)函数图象经过点A(-3,0),B(1,0),C(0,-2);(2)函数图象的顶点坐标是(2,4),且经过点(0,1);(3)函数图象的对称轴是直线x=3,且图象经过点(1,0)和(5,0).说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件.一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷.例2已知函数y=x2-2x-3,(1)把它写成y=a(x-h)2+k的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图象交x轴于A,B两点,交y轴于P点,求△APB的面积;(6)根据图象草图,说出x取哪些值时,①y=0;②y<0;③y>0?说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用函数图象判定函数值何时为正,何时为负,同样也要充分利用图象,要使y<0,其对应的图象应在x轴的下方,自变量x就有相应的取值范围.例3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:a________0;b________0;c________0;b2-4ac________0.说明:二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的符号的关系:系数的符号图象特征a的符号a>0 抛物线开口向____a<0 抛物线开口向____的符号-b2a-b2a>0 抛物线对称轴在y轴的____侧b=0 抛物线对称轴是____轴-b2a<0 抛物线对称轴在y轴的____侧c的符号c>0 抛物线与y轴交于____c=0 抛物线与y轴交于____c<0 抛物线与y轴交于____三、课堂小结本节课你学到了什么?四、作业布置教材第40页练习1,2.22.2二次函数与一元二次方程1.总结出二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根,两个相等的实根和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.3.会用计算方法估计一元二次方程的根.重点方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系.一、复习引入1.二次函数:y=ax2+bx+c(a≠0)的图象是一条抛物线,它的开口由什么决定呢?补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.2.二次函数y=ax2+bx+c(a≠0)的图象和性质:(1)顶点坐标与对称轴;(2)位置与开口方向;(3)增减性与最值.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当x=-b2a时,函数y有最小值4ac-b24a.当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小;当x=-b2a时,函数y有最大值4ac-b24a.二、新课教学探索二次函数与一元二次方程:二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x +2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳:二次函数y=ax2+bx+c的图象和x轴交点有三种情况:①有两个交点,②有一个交点,③没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac>0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac<0时,抛物线与x 轴没有交点.举例:求二次函数图象y =x 2-3x +2与x 轴的交点A ,B 的坐标.结论:方程x 2-3x +2=0的解就是抛物线y =x 2-3x +2与x 轴的两个交点的横坐标.因此,抛物线与一元二次方程是有密切联系的.即:若一元二次方程ax 2+bx +c =0的两个根是x 1,x 2,则抛物线y =ax 2+bx +c 与x 轴的两个交点坐标分别是A(x 1,0),B(x 2,0).例1 已知函数y =-12x 2-7x +152,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与y 轴的交点关于图象对称轴的对称点,然后画出函数图象的草图;(2)自变量x 在什么范围内时,y 随着x 的增大而增大?何时y 随着x 的增大而减少;并求出函数的最大值或最小值.三、巩固练习请完成课本练习:第47页1,2四、课堂小结二次函数与一元二次方程根的情况的关系. 五、作业布置教材第47页 第3,4,5,6题.22.3 实际问题与二次函数(2课时)第1课时 用二次函数解决利润等代数问题能够理解生活中文字表达与数学语言之间的关系,建立数学模型.利用二次函数y =ax 2+bx +c(a ≠0)图象的性质解决简单的实际问题,能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题.重点把实际生活中的最值问题转化为二次函数的最值问题. 难点1.读懂题意,找出相关量的数量关系,正确构建数学模型. 2.理解与应用函数图象顶点、端点与最值的关系.一、复习旧知,引入新课1.二次函数常见的形式有哪几种?二次函数y =ax 2+bx +c(a ≠0)的图象的顶点坐标是________,对称轴是________;二次函数的图象是一条________,当a >0时,图象开口向________,当a <0时,图象开口向________.2.二次函数知识能帮助我们解决哪些实际问题呢?二、教学活动活动1:问题:从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?活动2:问题:某商场的一批衬衣现在的售价是60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为每件40元,如何定价才能使利润最大?1.问题中的定价可能在现在售价的基础上涨价或降价,获取的利润会一样吗?2.如果你是老板,你会怎样定价?3.以下问题提示,意在降低题目梯度,提示考虑x的取值范围.(1)若设每件衬衣涨价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期少卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?(2)若设每件衬衣降价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期多卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?根据两种定价可能,让学生自愿分成两组,分别计算各自的最大利润;老师巡视,及时发现学生在解答过程中的不足,加以辅导;最后展示学生的解答过程,教师与学生共同评析.活动3:达标检测某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润w与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?答案:(1)y=-x+180;(2)w=(x-100)y=-(x-140)2+1 600,当售价定为140元,w 最大为1 600元.三、课堂小结与作业布置课堂小结通过本节课的学习,大家有什么新的收获和体会?尤其是数形结合方面你有什么新的体会?作业布置教材第51~52页习题第1~3题,第8题.第2课时二次函数与几何综合运用能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.重点应用二次函数解决几何图形中有关的最值问题.难点函数特征与几何特征的相互转化以及讨论最值在何处取得.一、引入新课上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用. 二、教学过程问题1:教材第49页探究1.用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 为多少米时,场地的面积S 最大?分析:提问1:矩形面积公式是什么? 提问2:如何用l 表示另一边?提问3:面积S 的函数关系式是什么?问题2:如图,用一段长为60 m 的篱笆围成一个一边靠墙的矩形菜园,墙长32 m ,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?分析:提问1:问题2与问题1有什么不同?提问2:我们可以设面积为S ,如何设自变量?提问3:面积S 的函数关系式是什么?答案:设垂直于墙的边长为x 米,S =x(60-2x)=-2x 2+60x.提问4:如何求解自变量x 的取值范围?墙长32 m 对此题有什么作用? 答案:0<60-2x ≤32,即14≤x <30.提问5:如何求最值?答案:x =-b 2a =-602×(-2)=15时,S max =450.问题3:将问题2中“墙长为32 m ”改为“墙长为18 m ”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?提问1:问题3与问题2有什么异同?提问2:可否模仿问题2设未知数、列函数关系式?提问3:可否试设与墙平行的一边为x 米?则如何表示另一边?答案:设矩形面积为S m 2,与墙平行的一边为x 米,则S =60-x 2·x =-x 22+30x.提问4:当x =30时,S 取最大值.此结论是否正确?提问5:如何求自变量的取值范围?答案:0<x ≤18.提问6:如何求最值?答案:由于30>18,因此只能利用函数的增减性求其最值.当x =18时,S max =378. 小结:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.三、回归教材阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?四、基础练习1.教材第51页的探究3,教材第57页第7题.2.阅读教材第52~54页.五、课堂小结与作业布置课堂小结1.利用求二次函数的最值问题可以解决实际几何问题.2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.作业布置教材第52页习题第4~7题,第9题.。
用待定系数法求二次函数解析式知识与技能1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。
2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
过程与方法让学生经历观察,比较,归纳,应用及猜想,验证的学习过程,使学生掌握类比,转化等数学方法,养成既能自主探究,又能合作探究的良好学习习惯。
情感、态度与价值观让学生在学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。
教学重点:用待定系数法求二次函数的解析式教学难点:会根据不同的条件选择适当的解析式,用待定系数法求二次函数的解析式。
教学过程一.创设情境导入激趣正比例函数的解析式为y=kx(k≠0),已知一个点的坐标,就可求出其解析式;一次函数的解析式为y=kx+b(k≠0),已知两个点的坐标,也可求出其解析式,那么二次函数的解析式是什么,又需知几个点的坐标,才可求出其解析式?二.课前自主探究求二次函数 y=ax2+bx+c 的解析式(1)关键是求出待定系数____________的值.(2)设解析式的三种形式:①一般式:________________________________,当已知抛物线上三个点时,用一般式比较简便;②顶点式:________________________________,当已知抛物线的顶点时,用顶点式较方便;③交点式(两根式):________________________,当已知抛物线与 x 轴的交点坐标(x1,0),(x2,0)时,用交点式较方便.三.课堂互动例1:已知一个二次函数的图象过点(-1,10)(1,4)(2,7)三点,求这个函数的解析式?点拨:用二次函数的一般式求。
例2:已知抛物线的顶点为(-1,-4),与Y轴交点为(0,-5),求该抛物线的解析式.点拨:用二次函数的顶点式求。
例3:已知抛物线与X轴交于A(-3,0),B(3,0)并经过点M(0,9),求抛物线的解析式?点拨:用二次函数的一般式、顶点式、交点式求。
一、新课导入问题1:正方体的六的面都是什么图形?(全等的正方形) (1)设正方体的棱长确定之后,正方体的表面积是否也随之确定了?y 是x 的函数吗?(2)x的值是否可以任意取?如果不能任意取,请求出它的范围。
x的值不能任意取,其范围是x0。
(3)求y 与x 的函数关系式.y=6(x0)。
问题2:n个球队参加比赛,每两个对之间进行一场比赛,比赛的场次数m与球队数n 有什么关系?师生合作探究:每个队要与其他(n-1)个球队各比赛一场,甲队对乙对的比赛与乙对对甲队的比赛是同一场比赛。
所以比赛的场次数m=,即问题 3 :某种产品现在的年产量是20t,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产;量y 将随计划所定的值而确定,y 与x 之间的关系应怎样表示?师生合作探究:这种产品的原产量是20t ,一年后的产量是20(1+x )t,再经过一年后的产量是20(1+x)(1+x)t,即两年后的产量y=20(1+x),即y= 二、探究新知教师引导学生观察函数关系式,提出以下问题让学生思考回答:(1) 上述函数关系式的自变量各有几个?(2) 上述函数关系式有什么共同点?师生共同探究:都是用自变量的二次多项式来表示的。
≥2x ≥)1(21-n n n n m 21212-=22040202++x x教师总结二次函数的定义:一般地,形如y =(a ,b,c是常数,a≠0)的函数,叫做x 的二次函数。
其中,x 是自变量,a ,b ,c 分别是函数解析式的二次项的系数、一次项的系数和常数项。
提出问题:概念中的二次项的系数a为什么不能是0?b 和c可以是0吗?如果b和c 有一个0,上面的函数式可以改写成怎样?你认为他们还是二次函数吗?如果b 和c 全为0,上面的函数式可以改写成怎样?你认为他还是二次函数吗?你认为一个函数是二次函数,关键是看什么?课堂练习下列函数中,哪些是二次函数?(1)y=5x+1;(2)4x;(3)y=2x ;(4)y=5x 三、巩固练习四、课堂小结本节课主要学习了:1、二次函数的概念,用二次函数的模型描述客观世界的某些变化规律. 2、 判断一个函数是否为二次函数的关键是看函数的最高项的次数是否为2。
初三数学二次函数c bx ax y ++=2的图象与性质——求解析式(2) 班级: 姓名:一、课前3分钟复习用配方法解方程: 010422=--x x知识点一:选用顶点式()k h x a y +-=2求二次函数解析式 已知条件选用二次函数的解析式 已知抛物线的顶点及另一点()k h x a y +-=2例1: 1.已知抛物线的顶点为(﹣1,2)且过(0,﹣1),求其解析式.知识点二:选用交点式()()21x x x x a y --=求二次函数解析式已知条件选用二次函数的解析式 已知抛物线与x 轴的两个交点及另一点()()21x x x x a y --=例2:2.已知抛物线过点(﹣3,0)、(5,0),(1,6),求其解析式.三.课堂分层练习A 层:1.已知抛物线的顶点坐标是(3,﹣1),且经过点(4,1),求二次函数的表达式.2.抛物线的对称轴为直线x =3,y 的最大值为﹣5,且与y =x 2的图象开口大小相同.则这条抛物线解析式为( )A .y =﹣(x +3)2+5B .y =﹣(x ﹣3)2﹣5C .y =(x +3)2+5D .y =(x ﹣3)2﹣5 3.如图,抛物线经过A .B 、C 三点,求它的解析式和顶点P 的坐标.B 层:4.已知一个二次函数,当x =1时,函数有最大值﹣6,且图象过点(2,﹣8).(1)求此二次函数的解析式;(2)若抛物线l 的开口大小和方向与(1)中抛物线相同,且与x 轴的交点为(﹣1,0),(5,0).求l 的解析式及顶点坐标.C 层:5.如图,抛物线y =ax 2+bx +c 经过点A (﹣1,0),点B (3,0),且OB =OC .(1)求抛物线的表达式;(2)如图,点D 是抛物线的顶点,求△BCD 的面积. 分层作业:A 层:1.已知抛物线经过点A (﹣1,0),B (5,0),C (0,5),求该抛物线的函数关系式.2.抛物线的顶点坐标为(2,﹣1),且过(3,0),求出这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图象如图所示.(1)对称轴方程为 ;(2)当x 时,y 随x 的增大而减小;当x 时,y 随x 的增大而增大;(3)求函数解析式.(4)当52<<-x 时,y 的取值范围是B 层:4.已知二次函数的图象经过点A (3,0).B (﹣1,0).且顶点M 的纵坐标是﹣4.(1)求函数解析式;(2)在下方表格中画出它的图象;(3)点P 在图象上,若△P AB 的面积是8,求P 点坐标.C 层5.已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),与x 轴交于另一点B ,与y 轴交于点C (0,3),对称轴是直线x =1,顶点是点M .(1)求二次函数的解析式;(2)求△MBC 的面积;(3)过原点的直线l 平分△MBC 面积,求l 的解析式.课堂小测1.已知抛物线y=ax2+bx+c与x轴的交点坐标为(﹣1,0),(3,0),y的最大值为12,求该解析式.。
人教版九年级数学上册22.1.6《用待定系数法求二次函数的解析式》说课稿一. 教材分析人教版九年级数学上册第22.1.6节《用待定系数法求二次函数的解析式》是二次函数内容的一部分。
这部分内容是在学生已经掌握了二次函数的一般形式,了解了二次函数的图象和性质的基础上进行学习的。
本节课的主要内容是用待定系数法求二次函数的解析式,待定系数法是解决这类问题的基本方法,对于学生来说是一个重要的数学方法。
本节课的内容对于学生来说难度较大,需要学生具有较强的逻辑思维能力和转化能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式和图象性质有一定的了解。
但是,学生在解决实际问题时,往往不知道如何运用已学的知识,对于待定系数法的运用还不够熟练。
此外,学生的逻辑思维能力和转化能力还有待提高。
三. 说教学目标1.知识与技能目标:让学生掌握用待定系数法求二次函数的解析式的方法,能够运用该方法解决实际问题。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力和合作意识。
3.情感态度与价值观目标:让学生感受数学在生活中的应用,提高学生学习数学的兴趣。
四. 说教学重难点1.教学重点:用待定系数法求二次函数的解析式。
2.教学难点:如何引导学生理解和运用待定系数法,以及如何将实际问题转化为数学问题。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.导入新课:通过一个实际问题,引入待定系数法求二次函数的解析式。
2.自主学习:让学生自主探究待定系数法的步骤和原理。
3.合作交流:学生分组讨论,分享各自的解题思路和方法。
4.教师引导:教师针对学生的讨论进行点评和指导,帮助学生解决问题。
5.巩固练习:给学生提供一些练习题,让学生运用待定系数法解决问题。
6.总结归纳:教师引导学生总结待定系数法的运用方法和注意事项。
求二次函数解析式教学案例
一、背景说明
学完二次函数后,为了巩固求二次函数解析式的几种方法,我上
了本堂的复习课。
目的是通过用多种方法求二次函数的解析式,从而培
养学生的一题多解能力及学生的探索意识.
二、探索过程
出示问题:已知二次函数的图象过点(1,0),与y轴交于(0,3),
对称轴是直线x=2,求它的函数解析式. (给学生一定的思考时间)。
师:大家有想法了吗?大多数学生都举起了手。
我叫了一个平时学
习一般,不是很灵活的学生。
生: 解:设二次函数解析式为y=ax2+bx+c,把(1,0),(0,3)代入,得
a+b+c=0,
c=3
又因为对称轴是x=2,所以-b/2a =2
所以得 a+b+c=0 解得 a=1
c=3 b=-4
-b/2a=2 c=3 所以所求解析式为y=x2-4x+3
师: 两点代入二次函数一般式无法解出三个未知数,能想到利用对称
轴,从而构成三元一次方程组解得a,b,c,很好!刚刚说到这儿就有一
名男生迫不及待的站起来说:“老师,我还有更简单的方法。
”
生: 我觉得用顶点式会更简单,即设二次函数解析式为y=a(x-2)2+k,
把(1,0),(0,3) 代入,得
a+k=0 解得 a=1
4a+k=3 k=-1
所以所求二次函数的解析式为y= (x-2)2-1,即y=x2-4x+3
师:真不错,用顶点式确实比刚才高小虎的方法简单.那还有没有其他方法,请大家再思考一下.有几个平时比较灵活的同学很是兴奋,马上闷头做了起来。
其他学生也在讨论、交流。
(学生沉默一会儿,有人举手发言)
生: 因为对称轴是直线x=2,在y轴上的截距为3,我认为该二次函数解析式可设为y=ax2 -4ax+3,在把(1,0)代入得a-4a+3=0,解得a=1,所以所求解析式为y=x2-4x+3
师: 你真是太聪明了,居然能利用对称轴巧妙地将两个字母变为了一个字母,这给运算带来很大方便,非常好,你真善于思考.那么大家再想想看,还有其他解题途径吗?(说实话,我真的很佩服学生的探究能力)(孩子们听到我这样问,马上又投入到了讨论之中。
当然有一些基础比较差的学生只能听基础比较好的学生在分析,特别是平时脑子比较灵活的男生,讨论的很激烈。
我发现有困难后,给与了提示,可以借助图像。
)不一会儿李杰就兴奋的站起来,我想到了……
生: 由于图象过点(1,0), 对称轴是直线x=2,所以与x轴的另一交点为(3,0),所以可用两点式设二次函数解析式为y=a(x-1)(x-3), 再把(0,3)代入, 得a=1,
所以二次函数解析式为y= (x-1)(x-3) ,即y=x2-4x+3
(同学们脸上流露出了羡慕加佩服的神色)
师: 函数本身与图形是不可分割的,我们必须做到能够数形结合,刚才李杰实际上是通过数形结合分析出了第三个条件从而使问题变得简单易解.
师:通过此例,你的收获是什么呢?
生:我知道了求二次函数解析式方法有: 一般式,顶点式,两点式.
籍永亮:我觉得解题时,一定要有信心,要动脑筋,一定会想出办法的。
三、回顾与反思
1.每一个学生都有丰富的知识体验和生活积累,每一个学生都会有各自的思维方式和解决问题的策略.而我对他们的能力经常低估,在以往的上课过程中,总喋喋不休,深怕讲漏了什么,但一堂课下来,学生收获甚微.本堂课,我赋予学生较多的思考和交流的机会,试着让学生成为数学学习的主人,我自己充当了一回数学学习的组织者,没想到取得了意想不到的效果,学生不但能用一般式,顶点式解决此题,还能深层挖掘巧妙地用两点式解决此题,学生的潜力真是无穷.
2. 通过本堂课的教学,我想了很多.新课程改革要求教师要有现代的教学观、学生观,才能培养出具有创新精神和实践能力的下一代。
本节课我始终与学生保持着平等和相互尊重,为学生探究学习提供了前提条件。
问题是无穷尽的,只有让学生主动探索,才能真正地理解,巩固知识点,从而运用知识点,即真正知其所以然.今后,我将不断尝试,不断完善自身,使学生的讨论和思考更有意义.。