冶金传输原理复习习题
- 格式:doc
- 大小:38.50 KB
- 文档页数:6
冶金传输原理考试题一、判断下列说法是否正确(2分/题×15题=30分)1、迹线与流线是完全重合的。
2、本书中对应力的双下标描述中,第一个下标是应力的作用面的法向方向,第二个下标为作用力的方向。
3、利用量纲分析法导出准数方程,必须首先得到描述现象的微分方程式以及全部单值条件。
4、欧拉方程是N-S方程的简化。
5、管内流体层流流动时其最大速度是平均速度的两倍。
6、无论是圆管水流还是明渠水流,流态判别雷诺数均为2300。
7、在温度场中,等温面可以是连续的,也可以是不连续的。
8、导温系数就是导热系数。
9、温度梯度是矢量,其方向沿等温面的法线指向温度增加的方向。
10、普朗特准数反映了物体的导热能力与蓄热能力之间的关系。
11、自然界中黑体并不存在,但灰体是广泛存在的。
12、实际物体的辐射力总是小于黑体,其辐射能量的分布遵守普朗克定律。
13、黑体就是黑色的。
14、质量浓度就是密度。
15、球形物体在静止流体中传质时,谢伍德准数为一固定值。
二、选择题(2分/题×10题=20分)1、不同的液体其粘滞性_______,同一种液体的粘滞性具有随温度_______而降低的特性。
A 相同降低B 相同升高C 不同降低D 不同升高2、在研究液体运动时,按照是否考虑粘滞性,可将液流分为A 牛顿液体流动及非牛顿液体流动;B 可压缩液流及不可压缩液流;C 均匀流动及非均匀流动;D 理想液体流动及实际液体流动。
3、雷诺数的物理意义是A.惯性力与压力之比;B.惯性力与重力之比;C.惯性力与黏性力之比;D.惯性力与表面张力之比;4、非恒定流是:A、;B、;C、;D、。
5、如模型比尺为1:20, 考虑粘滞离占主要因素,采用的模型中流体与原型中相同,模型中流速为50m/s,则原型中流速为______m/s。
A 11.1B 1000C 2.5D 2236、下列那个方程可描述自然对流给热?A ()Pr Re,f Nu =;B ()Pr ,Gr f Nu =;C ()Gr f Nu Re,=;D()Sc f Sh Re,=7、根据兰贝特定律,黑体的辐射力是其辐射强度的 倍。
理想流体的有旋及无旋流动1.流体微团____ 。
(A) 具有规则的几何形状(B) 质量大小不受限制(C) 线尺度是小量2.流体微团的变形速度包括____ 。
(A) 线变形速度(B) 角变形速度(C) 旋转角速度(D) 前三者之和3.旋转角速度是____ 。
(A) 标量(B) 矢量(C) 既不是标量也不是矢量4.流体微团的旋转角速度____ 。
(A)于刚体转动的情况相同(B) 随时随地都可以改变(C) 收到变形速度的影响5.涡量和旋转角速度的关系是____ 。
(A) 相等(B) 涡量等于旋转角速度的两倍(C) 没有一定关系6.流体作有旋运动的特征是____ 。
(A)流体质点的运动轨迹是曲线(B) 速度的旋度非零(C) 涡量的三个分量都不等于零7.速度势只存在于____ 。
(A)不可压缩流体的流动中(B) 可压缩流体的定常流动(C) 无旋流动中(D) 二维流动中8.速度势函数____ 。
(A)梯度为速度(B) 满足拉普拉斯方程(B)在不可压缩流动中满足拉普拉斯方程(D) 在定常流动中满足拉普拉斯方程9.流函数存在于____ 。
(A)不可压缩流体的流动中(B) 可压缩流体的平面流动中(C) 不可压缩流体的轴对称流动中(D) 任意二维流动中10.平面流动的流函数____ 。
(A)在无旋条件下满足拉普拉斯方程(B)在流场中两点的差值与过两点间的曲线的流量相等(C)在流场中两点的差值与过两点间的曲线的环量相等11.不可压缩流体的平面无旋流动____ 。
(A)同时存在速度势函数和流函数(B) 等势线与流线正交(C) 不一定存在速度势函数和流函数(D) 速度势函数和流函数均为调和函数12.两个不可压缩的平面无旋流动的速度场叠加,则其____ 。
(A)速度势函数也叠加(B) 流函数也叠加(C) 速度势函数大喝流函数不满足叠加关系13.偶极子可以看成是____叠加的极限过程的产物。
(A)点源与点涡(B) 点汇与点涡(C) 等强度点源与点汇(D) 不等强度点源与点汇14.均匀流绕圆柱体无环量流动是由____和____叠加而成的。
冶金传输原理考试题一、选择题(每题2分,共30分)请在每道题的括号内选择出正确答案,并将其序号填写在答题卡上。
1. 冶金传输原理主要研究的是()。
A. 金属的冶炼过程B. 金属的物理性质C. 金属的化学性质D. 金属的机械性质2. 冶金传输原理课程的教学目标是培养学生掌握()。
A. 冶金工艺设计的基本原理B. 金属材料的性能分析方法C. 输送过程中温度、压力、流动速度等参数的计算能力D. 冶金设备的选择与配置能力3. 冶金传输原理的基本假设之一是()。
A. 金属在输送过程中不会发生相变B. 输送过程中不考虑能量损失C. 流体处于非稳定状态D. 输送过程中不考虑阻力4. 输送系统中由于管道摩擦而产生的能量损失称为()。
A. 动能损失B. 摩擦损失C. 管道耗散D. 流体摩擦阻力5. 管道输送中的瞬时损失主要是指()。
A. 弯头和管径突变带来的局部阻力B. 管道与周围环境的传热损失C. 由于管道内液体流动产生的压力波动造成的损失D. 输送过程中发生的事故导致的能量损失二、判断题(每题2分,共20分)请在每道题的括号内选择出正确答案,并将其序号填写在答题卡上。
1. 对于非牛顿流体,其粘滞系数与应变速率呈正相关。
()A. 正确B. 错误2. 液体在沿管道流动时,由于摩擦阻力将产生管道壁面附近的速度剖面,即流速剖面会变平整。
()A. 正确B. 错误3. 定常流体运动的主要特点是流量、速度和流态都随时间的变化而变化。
()A. 正确B. 错误4. 弯头对流体流动的阻力主要是由于流体在弯头处的对流和扰动效应引起的。
()A. 正确B. 错误5. 管道摩阻系数是和管道长度成正比的。
()A. 正确B. 错误三、简答题(每题10分,共30分)请简要回答下列问题,并将答案写在答题卡上。
1. 请简述流体的黏度和流变特性对管道输送过程的影响。
答案:黏度是流体流动的基本性质之一,对管道输送过程中的摩擦阻力、能量损失和泵功耗等起到重要影响。
冶金传输原理复习习题冶金传输原理复习习题一、当一平板在一固定板对面以0.61m/s的速度移动时(如下图),计算稳定状态下的动量通量(N/m2)。
板间距离为2mm,板间流体的粘度为2×10-3Pa.s。
动量通量的传递方向如何?切应力的方向呢?二、温度为38℃的水在一平板上流动(如下图)⑴、如果再x=x1处的速度分布为Vx=3y--y3,求该点壁面切应力。
38℃水的特性参数是⑵、在y=1mm和x=x1处,沿y方面传输的动量通量是多少?⑶、在y=1mm和x=x1处沿x方向有动量传输吗?若有,它是多少(垂直于流动方面的单位面积上的动量通量)?三、已知空气流动速度场为Vx=6(x+y2),Vy=2y+z3,Vz=x+y+4z,试分析这种流动状况是否连续?四、在金属铸造及冶金中,如连续铸造、铸锭等,通常用浇包盛装金属液进行浇注,如图所示。
设m i是浇包内金属液的初始质量,m c是需要浇注的铸件质量。
为简化计算,假设包的内径D是不变的、因浇口的直径d比浇包的直径小很多,自由液⑴的下降速度与浇口处⑵金属液的流出速度相比可以忽略不计,求金属液的浇注时间。
五、毕托管是用来测量流场中一点流速的仪器。
其原理如图所示,在管道里沿流线装设迎着流动方向开口的细管,可以用来测量管道中流体的总压,试求毕托管的测速公式?六、如图所示为测量风机流量常用的集流管实验装置示意图。
已知其内径D=0.3m空气重度γa=12.6N/m3,由装在管壁下边的U形测压管(内装水)测得Δh=0.25m。
问此风机的风量Q为若干?七、从换热器两条管道输送空气至炉子的燃烧器,管道横断面尺寸均为400m m×600mm,设在温度为400℃时通向燃烧器的空气量为8000kg/h,试求管道中空气的平均流速。
在标准状态下空气的密度为1.293kg/m3。
八、某条供水管路AB自高位水池引出如图所示。
已知:流量Q=0.034m3/s;管径D=15cm;压力表读数ΡB=4.9N/cm2;高度H=20m。
冶金传输原理考研试题及答案一、选择题(每题2分,共10分)1. 在冶金过程中,下列哪项不是影响金属传输速率的因素?A. 温度B. 压力C. 金属的化学性质D. 金属的物理状态答案:B2. 冶金传输原理中,扩散系数与温度的关系通常可以用以下哪个方程描述?A. D = D0 * exp(-Q/RT)B. D = D0 * exp(Q/RT)C. D = D0 / (1 + exp(Q/RT))D. D = D0 * (1 + exp(-Q/RT))答案:A3. 在冶金过程中,金属的传输主要通过哪种机制?A. 对流B. 扩散C. 过滤D. 电迁移答案:B4. 下列哪项不是影响金属溶解速率的因素?A. 金属的晶格结构B. 溶液的浓度C. 金属的表面粗糙度D. 溶液的pH值答案:C5. 在冶金传输原理中,哪种类型的边界条件通常用于描述固体表面的传输现象?A. 狄利克雷边界条件B. 诺伊曼边界条件C. 罗宾边界条件D. 周期性边界条件答案:C二、简答题(每题10分,共30分)1. 简述冶金过程中对流传输和扩散传输的区别。
答案:对流传输是指流体中的物质由于整体运动而发生的宏观传输,它与流体的流动速度直接相关,通常发生在流体中,传输速率较快。
扩散传输是指由于分子或原子的热运动导致的微观传输,它不需要整体运动,可以在静止的介质中发生,传输速率相对较慢。
2. 描述冶金传输原理中的菲克第一定律及其物理意义。
答案:菲克第一定律描述了稳态扩散过程中,单位时间内通过单位面积的扩散通量与浓度梯度成正比的关系,即J = -D * (dc/dx),其中J是扩散通量,D是扩散系数,dc/dx是浓度梯度。
这一定律的物理意义在于,它表明了物质从高浓度区域向低浓度区域传输的速率与浓度梯度的大小成正比,且与介质的扩散性质有关。
3. 解释为什么在冶金过程中需要考虑金属的热力学性质和动力学性质。
答案:在冶金过程中,金属的热力学性质决定了反应的方向和平衡状态,而动力学性质则决定了反应的速率。
第一章 流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。
解:由液体密度、重度和质量体积的关系知:)m /(88208.9900g 3N VG=*===ργ ∴质量体积为)/(001.013kg m ==ρν1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V VK ⎥⎦⎤⎢⎣⎡∆∆-=1 ΔV=995-1000=-5*10-6m 3注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10-9Pa -1。
注意:式中V 是指液体变化前的体积1.6 如图1.5所示,在相距h =0.06m 的两个固定平行乎板中间放置另一块薄板,在薄 板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v =0.3m/s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为YA F 0y x νητ==平板受到上下油面的阻力之和与施加的力平衡,即hh F 0162/22/h νηνηνητ=+==合代入数据得η=0.967Pa.s第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
第一章 流体的主要物理性质1-1谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
2、在图3.20所示的虹吸管中,已知H1=2m ,H2=6m ,管径D=15mm ,如果不计损失,问S 处的压强应为多大时此管才能吸水?此时管流速υ2及流量Q 各为若干?(注意:管B 端并未接触水面或探入水中)解:选取过水断面1-1、2-2及水平基准面O-O ,列1-1面(水面)到2-2面的贝努利程再选取水平基准面O ’-O ’,列过水断面2-2及3-3的贝努利程(B) 因V2=V3 由式(B)得 图3.20 虹吸管gpH gpa 220222121υγυγ++=++gppa 22222υγγ++=gp g p H H a 202)(2322221υγυγ++=+++ggp2102823222υυγ+=++)(28102水柱m p=-=γ)(19620981022a p p =⨯=)/(85.10)410(8.92)2(222s m ppg a =-⨯=--=γγυ)/(9.1)/(0019.085.104)015.0(3222s L s m A Q ==⨯⨯==πυ5、有一文特利管(如下图),已知d 1 =15cm ,d 2=10cm ,水银差压计液面高差∆h =20cm 。
若不计阻力损失,求常温(20℃)下,通过文氏管的水的流量。
解:在喉部入口前的直管截面1和喉部截面2处测量静压力差p 1和p 2,则由式const v p=+22ρ可建立有关此截面的伯努利程: ρρ22212122p v p v +=+ 根据连续性程,截面1和2上的截面积A 1和A 2与流体流速v 1和v 2的关系式为2211v A v A =所以 ])(1[)(2212212A A p p v --=ρ 通过管子的流体流量为 ])(1[)(2212212A A p p A Q --=ρ )(21p p -用U 形管中液柱表示,所以074.0))15.01.0(1(10)1011055.13(2.081.92)1.0(4])(1[)(22223332212'2=-⨯⨯-⨯⨯⨯⨯=--∆=πρρρA A h g A Q (m 3/s)式中 ρ、'ρ——被测流体和U 形管中流体的密度。
第一章 流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。
解:由液体密度、重度和质量体积的关系知:)m /(88208.9900g 3N VG=*===ργ ∴质量体积为)/(001.013kg m ==ρν1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): TT P V VK ⎥⎦⎤⎢⎣⎡∆∆-=1 ΔV=995-1000=-5*10-6m 3注意:ΔP=2-1=1MN/m 2=1*106Pa将V=1000cm 3代入即可得到K T =5*10-9Pa -1。
注意:式中V 是指液体变化前的体积1.6 如图1.5所示,在相距h =0.06m 的两个固定平行乎板中间放置另一块薄板,在薄板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v =0.3m/s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为YA F 0y x νητ==平板受到上下油面的阻力之和与施加的力平衡,即hh F 0162/22/h νηνηνητ=+==合代入数据得η=0.967Pa.s第二章 流体静力学(吉泽升版)2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
一、名词解释1 流体:能够流动的物体。
不能保持一定的形状,而且有流动性。
2 脉动现象:在足够时间,速度始终围绕一平均值变化,称为脉动现象。
3 水力粗糙管:管壁加剧湍流,增加了流体流动阻力,这类管称为水力粗糙管。
4 牛顿流:符合牛顿粘性定律的流体。
5 湍流:流体流动时,各质点在不同方向上做复杂无规那么运动,相互干扰的运动。
这种流动称为湍流。
6 流线:在同一瞬时,流场中连续不同位置质点的流动方向线。
7 流管:在流场取任意封闭曲线,通过该曲线上每一点,作流线,组成的管状封闭曲面,称流管。
8 边界层:流体通过固体外表流动时,在紧靠固体外表形成速度梯度较大的流体薄层称边界层。
9 伪塑性流:其特征为〔〕,当n<1时,为伪塑型流。
10非牛顿流体:不符合牛顿粘性定律的流体,称之为非牛顿流体,主要包括三类流体。
11宾海姆塑流型流体:要使这类流体流动需要有一定的切应力ι时流体处于固结状态,只有当切应力大于ι时才开场流动。
12稳定流:运动参数只随位置改变而与时间无关,这种流动就成为稳定流。
13非稳定流:流场的运动参数不仅随位置改变,又随时间不同而变化,这种流动就称为非稳定流。
14迹线:迹线就是流体质点运动的轨迹线,特点是:对于每一个质点都有一个运动轨迹,所以迹线是一族曲线,而且迹线只随质点不同而异,与时间无关。
16 水头损失:单位质量〔或体积〕流体的能量损失。
17 沿程阻力:它是沿流动路程上由于各流体层之间的摩擦而产生的流动阻力,也叫摩擦阻力。
18 局部阻力:流体在流动中因遇到局部障碍而产生的阻力。
19脉动速度:脉动的真实速度与时均速度的差值成为脉动速度。
20 时均化原那么:在某一足够长时间段以平均值的速度流经一微小有效断面积的流体体积,应该等于在同一时间段以真实的有脉动的速度流经同一微小有效断面积的流体体积。
21热传导:物体各局部之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动进展的热量传递称为热传导。
1.d2.c3.a (题目改成单位质量力的国际单位)4.b5.b6.a7.c8.a9.c (不能承受拉力) 10.a 11.d 12.b(d 为表现形式)13. 解:由体积压缩系数的定义,可得:()()69669951000101d 15101/Pa d 1000102110p V V p β----⨯=-=-⨯=⨯⨯-⨯ 14. 解:由牛顿内摩擦定律可知, d d x v F A y μ= 式中A dl π= 由此得d 8.57d xv vF A dl N y μμπδ==≈1.a2.c3.b4.c5. 解:112a a p p gh gh gh p ρρρ=++=+汞油水12220.4Fgh gh d h m g ρρπρ++⎛⎫ ⎪⎝⎭==油水(测压计中汞柱上方为标准大气压,若为真空结果为1.16m )6.解:(测压管中上方都为标准大气压)(1)()()13121a a p p g h h g h h p ρρ=+-=-+油水ρ=833kg/m 3(2)()()13121a a p p g h h g h h p ρρ=+-=-+油水h 3=1.8m.220.1256m 2D S π== 31=Sh 0.12560.50.0628V m =⨯=水()331=S 0.1256 1.30.16328V h h m -=⨯=油7.解:设水的液面下降速度为为v ,dz v dt=- 单位时间内由液面下降引起的质量减少量为:24d v πρ 则有等式:224d v v πρ=,代入各式得:20.50.2744dz d z dt πρ-=整理得: 120.5200.2740.2744t d zdz dt t πρ--==⎰⎰解得:()2121215180.2744d t s πρ⎛⎫=--= ⎪⎝⎭8. 解:10p p gh ρ=+a20s p p gh ρ=+()12a 248.7Pa s p p p gh ρρ∆=-=-=第三章习题参考答案(仅限参考)1.b2.c3.c4.c5.答:拉格朗日法即流体质点法必须首先找出函数关系x(a,b,c,t),y(a,b,c,t),z(a,b,c,t),ρ(a,b,c,t)等。
第一章动量传输的基本概念 1.流体的概念物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。
2 连续介质流体是在空间上和时间上连续分布的物质。
3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算) 4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。
1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。
这就是分子不规则运动的动量交换形成的粘性阻力。
2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。
5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为dydv x yx μτ±==A Fτyx 说明动量传输的方向(y 向)和所讨论的速度分量(x 向)。
符号表示动量是从流体的高速流层传向低速流层。
动力粘度μ,单位Pa·s 运动粘度η,单位m 2/s 。
ρμη=例题1-16.温度对粘度的影响粘度是流体的重要属性,它是流体温度和压强的函数。
在工程常用温度和压强范围内,温度对流体的粘度影响很大,粘度主要依温度而定,压强对粘性的影响不大。
当温度升高时,一般液体的粘度随之降低;但是,气体则与其相反,当温度升高时粘度增大。
这是因为液体的粘性主要是由分子间的吸引力造成的,当温度升高时,分子间的吸引力减小,μ值就要降低;而造成气体粘性的主要原因是气体内部分子的杂乱运动,它使得速度不同的相邻气体层之间发生质量和动量的交换,当温度升高时,气体分子杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以μ值将增大。
第一章 流體的主要物理性質1-1何謂流體,流體具有哪些物理性質?答:流體是指沒有固定的形狀、易於流動的物質。
它包括液體和氣體。
流體的主要物理性質有:密度、重度、比體積壓縮性和膨脹性。
2、在圖3.20所示的虹吸管中,已知H1=2m ,H2=6m ,管徑D=15mm ,如果不計損失,問S 處的壓強應為多大時此管才能吸水"此時管內流速υ2及流量Q 各為若干"(注意:管B 端並未接觸水面或探入水中)解:選取過水斷面1-1、2-2及水準基準面O-O ,列1-1面(水面)到2-2面的貝努利方程再選取水準基準面O ’-O ’,列過水斷面2-2及3-3的貝努利方程(B) 因V2=V3 由式(B)得圖3.20 虹吸管 gpH gpa 220222121υγυγ++=++gppa 22222υγγ++=gp g p H H a 202)(2322221υγυγ++=+++ggp2102823222υυγ+=++)(28102水柱m p=-=γ)(19620981022a p p =⨯=)/(85.10)410(8.92)2(222s m ppg a =-⨯=--=γγυ)/(9.1)/(0019.085.104)015.0(3222s L s m A Q ==⨯⨯==πυ5、有一文特利管(如下圖),已知d 1 =15cm ,d 2=10cm ,水銀差壓計液面高差∆h =20cm 。
若不計阻力損失,求常溫(20℃)下,通過文氏管的水的流量。
解:在喉部入口前的直管截面1和喉部截面2處測量靜壓力差p 1和p 2,則由式const v p =+22ρ可建立有關此截面的伯努利方程: ρρ22212122p v p v +=+根據連續性方程,截面1和2上的截面積A 1和A 2與流體流速v 1和v 2的關係式為2211v A v A =所以 ])(1[)(2212212A A p p v --=ρ 通過管子的流體流量為 ])(1[)(2212212A A p p A Q --=ρ )(21p p -用U 形管中液柱表示,所以074.0))15.01.0(1(10)1011055.13(2.081.92)1.0(4])(1[)(22223332212'2=-⨯⨯-⨯⨯⨯⨯=--∆=πρρρA A h g A Q (m 3/s)式中 ρ、'ρ——被測流體和U 形管中流體的密度。
第一章动量传输的基本概念 1.流体的概念物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。
2 连续介质流体是在空间上和时间上连续分布的物质。
3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算) 4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。
1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。
这就是分子不规则运动的动量交换形成的粘性阻力。
2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。
5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为dydv x yx μτ±==A Fτyx 说明动量传输的方向(y 向)和所讨论的速度分量(x 向)。
符号表示动量是从流体的高速流层传向低速流层。
动力粘度μ,单位Pa·s 运动粘度η,单位m 2/s 。
ρμη=例题1-16.温度对粘度的影响粘度是流体的重要属性,它是流体温度和压强的函数。
在工程常用温度和压强范围内,温度对流体的粘度影响很大,粘度主要依温度而定,压强对粘性的影响不大。
当温度升高时,一般液体的粘度随之降低;但是,气体则与其相反,当温度升高时粘度增大。
这是因为液体的粘性主要是由分子间的吸引力造成的,当温度升高时,分子间的吸引力减小,μ值就要降低;而造成气体粘性的主要原因是气体内部分子的杂乱运动,它使得速度不同的相邻气体层之间发生质量和动量的交换,当温度升高时,气体分子杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以μ值将增大。
冶金传输原理试题每题5分,共计30分1. 试由连续性方程说明速度散度的物理含义2. 请说明yx τ的物理含义3. 请写出标量的梯度、拉普拉斯算子运算及矢量的散度、旋度在直角坐标下的表达式,并说明运算后变量为标量还是矢量。
4. 请写出运动方程矢量式并说明各项的含义。
5. 请分别从扩散型与对流型通量的表达式说明动量传输、热量传输、质量传输的相似性。
6. 结合实例说明冶金传输原理在冶金工程中的作用7. 钢包内表面积为A 1,水口截面积为A 2,钢液初始深度为H ,不计阻力,计算钢包流空时间。
要点:2212220,2dMu A dtM hA u gh u ρρ=-=-==而:1222dhA u A dt=-=,积分之:21/2011/221()(/)HA dh h A H A A t ===⎰8.如图所示文特利管可测流量,如处于开口试验段,d=400mm,D=1m,h=150mm,空气和酒精密度分别为1.293,795 kg/m 3 计算出口处的气流速度。
要点:2211221122V P V P ρρ+=+ 12P P gh ρ-=洒所以:22211()2V V h g ρρ-=洒另据:22122 =43.6m/sD V d V V ==9.不可压缩流体沿无限大水平面做稳定流动,在只有重力作用下,赯压力与高度的关系要点:运动方程为:1Pg yρ∂=-∂ 积分可得:P gy C ρ=-+10.Re=3500, 20℃水(ρ=998.23kg/m 3621.00710/m s ν-=⨯)流过直径为50.8mm 长1.3m 的光滑管。
求:(1) 湍流、层流平均流速比、压力损失比 (2) 湍流总压降 (3) 层流时中心流速要点:(1)据Re 定义式,/1层湍=(2)22Lp d λρ∆=,0.250.3164/Re λ湍=,64/Re λ层=,/ 2.25p p ∆∆层湍=(3)Re /0.0694/;0.041,d m s νλ=⋅==湍v22.52/p N m ∆=(4)20.1388/m s ==center v v11.不可压缩流体在两个同轴垂直圆筒间作切向层流流动,外筒以角速度ω旋转,内筒静止,设端口效应可忽略,求流体的速度分布,内筒外径kR ,外筒内径R(可参考P75例题()()1()kR r r kR r Rk kθω-=-v )12.在一半径为R 的圆柱形容器内盛有 液体,该容器绕其自身轴以角速度ω旋转,求系统定态下自由表面的形状。
冶金传输原理试题11.牛顿黏性定律的物理意义说明流体所产生的黏性力的大小与流体的()和()成正比,并与流体的黏性有关。
2.()以流场中某一空间点作研究对象,分析该点以及该点与其他点之间物理量随()的变化过程来研究流体运动情况的。
3.按照流体流速、压力、密度等有关参数是否随时间而变化,可以将流体分为()和()。
4.流体密度的倒数称为流体的();气体重度γ与密度ρ的关系为()。
5.流体包括液体和气体,流体具有流动性、()和()。
6.超出大气压力的那部分压力称之为相对压力,一般测压仪表都是测定相对压力的,则又称为(),当相对压力为负值时称为负压,其差值的绝对值称为(),而()是以绝对真空作零压而计算的。
7.实际流体的动量平衡微分方程,又称纳维尔-斯托克斯方程,是()定律,即动量守恒定律在流体流动现象中的应用,当=0时,可简化为理想流体的动量平衡方程,亦称()方程;理想流体微小流束单位质量流体的伯努利方程可写成()=常数;质量守恒定律在流体力学中的具体表现形式为()方程。
8.水平圆管层流条件下,截面平均流速为管中心流速的()。
9.()以流场中某一空间点作研究对象,分析该点以及该点与其他点之间物理量随()的变化过程来研究流体运动情况的。
10.雷诺准数的定义式或表达式Re=()或(),其物理意义反映了流体流动过程中()的相对大小。
11.流态化现象中,随流体流速由小到大的变化,床层出现三个不同阶段,即()阶段、()阶段和()阶段。
12.流体流动时,由于外部条件不同,其流动阻力与能量损失可分为局部阻力损失和沿程阻力损失两种形式,沿程阻力损失也称作()损失。
13.压缩性气体流动能量转换关系具有显著特点,当流速增大,流体()减少时,会引起温度相应地降低。
14.作用在流体上的力可分为两大类:()、质量力或体积力。
15.准数是指几个有内在联系的物理量按无量纲条件组合起来的数群,它既反映所含物理量之间的内在联系,又能说明某一现象或过程的()。
《冶金传输原理—传热传质》部分习题集一、 概念题-11. 温度场2. 温度梯度3. 对流给热(对流换热)4. 热流量与热通量5. 流向传质与非流向传质6. 热通量与传质通量7. 黑体8. 黑度(辐射率) 9. 热辐射 10. 有效辐射 11. 角系数 12. 非稳态导热13. 导热问题第三类边界条件(导热问题第一类边界条件) 14. 热边界层(传质边界层) 15. 努塞尔特准数及其物理意义 16. 格拉晓夫准数及其物理意义 17. 施密特与修伍德准数的表达式 18. 傅立叶准数及其物理意义 19. 修伍德准数的表达式 20.傅立叶准数的物理意义二、 概念题-21. 在平板层流给热分析解法求解对流给热系数的过程中,层流边界层对流给热微分方程组有四个微分方程,若用文字或数学解析式表达,它们分别是① 、② 、③ 、和④连续性方程(0=∂∂+∂∂yv x v yx )。
2.影响流体对流给热系数的因素可以归结为四个方面。
他们是 、 、温度 和 壁面几何形状与位置。
3.求解传热微分方程或传质微分方程的定解条件一般有四类,分别是 、 、 和边界条件。
4. 根据斯蒂芬-波尔兹曼定律和有关实际物体黑度的定义,实际物体的辐射力与温度的关系可表示为:E = w/m 2,其中 称为物体的黑度,或称 ,其值介于0~1之间。
5. 对三维稳态导热的有限差分方法来说,任何一个内部节点的温度,其实就等于周围相邻节点温度的 ,即t i,j,k = 。
6. 影响流体对流给热系数的因素可以归结为四个方面。
它们分别为:流体流速、 、 和 。
7. 根据动量守恒定律,可以推导出纳维-斯托克斯方程;根据 ,可以推导出传热微分方程;根据质量守恒定律则可以分别推导出流体连续性方程方程和 微分方程。
8. 研究对流给热的主要任务,就是求解对流给热系数h 。
一般求解h 的方法有四种,它们分别是 、边界层近似积分解、 、和 。
9. 如果动量传输微分方程可以写作x x x x xz x y x x x g x pz v y v xv v z v v y v v x v v v +∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂ρτ1222222,则热量传输微分方程可以写作 ,质量传输微分方程可以写作 。
冶金传输原理复习习题
一、当一平板在一固定板对面以0.61m/s的速度移动时(如下图),计算稳定状态下的动量
通量(N/m2)。
板间距离为2mm,板间流体的粘度为2×10-3Pa.s。
动量通量的传递方向如何?切应力的方向呢?
二、温度为38℃的水在一平板上流动(如下图)
⑴、如果再x=x1处的速度分布为Vx=3y--y3,求该点壁面切应力。
38℃水的特性参数是
⑵、在y=1mm和x=x1处,沿y方面传输的动量通量是多少?
⑶、在y=1mm和x=x1处沿x方向有动量传输吗?若有,它是多少(垂直于流动方面的单位面积上的动量通量)?
三、已知空气流动速度场为Vx=6(x+y2),Vy=2y+z3,Vz=x+y+4z,试分析这种流动状况是
否连续?
四、在金属铸造及冶金中,如连续铸造、铸锭等,通常用浇包盛装金属液进行浇注,如图所
示。
设m i是浇包内金属液的初始质量,m c是需要浇注的铸件质量。
为简化计算,假设包的内径D是不变的、因浇口的直径d比浇包的直径小很多,自由液⑴的下降速度与浇口处⑵金属液的流出速度相比可以忽略不计,求金属液的浇注时间。
五、毕托管是用来测量流场中一点流速的仪器。
其原理如图所示,在管道里沿流线装设迎着
流动方向开口的细管,可以用来测量管道中流体的总压,试求毕托管的测速公式?
六、如图所示为测量风机流量常用的集流管实验装置示意图。
已知其内径D=0.3m空气重度
γa=12.6N/m3,由装在管壁下边的U形测压管(内装水)测得Δh=0.25m。
问此风机的风量Q为若干?
七、从换热器两条管道输送空气至炉子的燃烧器,管道横断面尺寸均为400mm×600mm,设
在温度为400℃时通向燃烧器的空气量为8000kg/h,试求管道中空气的平均流速。
在标准状态下空气的密度为1.293kg/m3。
八、某条供水管路AB自高位水池引出如图所示。
已知:流量Q=0.034m3/s;管径D=15cm;压
力表读数ΡB=4.9N/cm2;高度H=20m。
问水流在管路AB中损失了若干水头?
九、在如图所示的虹吸管中,已知H1=2m;H2=6m;管径d=15mm。
如不计损失,问S处的压
强应为多大时,此管才能吸水?此时管内流速v2及流量Q各为多少?(注意:管B端并未接触水面或深入水中)
十、沿直径d=305mm的管道,输送密度Ρ=980kg/m3,运动粘性系数ν=4cm2/s的重油。
若流
量Q=60L/s,管道起点标高Z1=85m,终点标高Z2=105m,管长l=1800m。
试求管道中重油的压力降及损失功率各为若干?
十一、长度l=1000m,内径d=200mm的普通镀锌钢管,用来输送运动粘性系数ν=0.355cm2/s 的重油,已测得其流量Q=38L/s。
问其沿程损失为若干?(查手册Δ=0.39,重油密度为880kg/m3)
十二、无介质磨矿送风管道(钢管,Δ=0.2mm),长l=30m,直径d=750mm,在温度t=20℃的情况下,送风量Q=30000m3/h。
问:
⑴、此风管中的沿程损失为若干?
⑵、使用一段时间后,其绝对粗糙增加到Δ=1.2mm,其沿程损失又为若干?
(t=20℃时,空气的ν=0.157cm2/s)
十三、沿空气从宽为40cm的平板表面流过,空气的流动速度V0=2.6m/s;空气在当时温度下的运动粘度ν=1.47×10-5m2/s。
试求流入深度x=30cm处的边界层厚度,距板面高
y=4.0mm处的空气流速及板面上的总阻力?
十四、常压下温度为30℃的空气以10m/s的流速流过一光滑平板表面,设临界雷诺数Re cr 3.2×105,试判断距离平板前缘0.4m及0.8m两处的边界层是层流边界层还是湍流边
界层?求出层流边界层相应点处的边界层厚度。
十五、假设在两小时内,通过152mm×152mm×13mm(厚度)试验板传导的热量为837J试验板两个平面的温度分别为19℃和26℃,求试验板的热导率。
十六、一窑炉的耐火硅砖炉墙为厚度δ=250mm的硅砖。
已知内壁面温度t1=1500℃,外壁面温度t2=400℃,试求每平方米炉墙的热损失。
十七、24℃的空气以60m/s的速度为外掠一块平板,平板保持216℃的板面温度,板长0.4m,试求平均表面传热系数(不计辐射换热)
十八、空气正面横掠外径d=20mm的圆管。
空气流速为1m/s。
已知空气温度t f=20℃,管壁温度t w=80℃,试求平均表面传热系数。
十九、有一O2(A)与CO2(B)的混合物,温度为294K,压力为1.59×105Pa,已知X A=0.40, V A=0.88m/s,V B=0.02m/s,试计算下列各值
⑴、混合物、组分A和组分B物质的量浓度C、C A和C B(mol/m3)
⑵、混合物、组分A和组分B的质量浓度р、рA和рB(kg/m3)
⑶、V A-V,V B-V(m/s)
⑷、V A-V m,V B-V m(m/s)
⑸、N(mol.m-2.S-1)
⑹、n A、n B、n(kg.m-2.s-1)
⑺、jB(kg/m2.s)JB(mol.m-2.S-1)。