时空数据模型简介18页PPT
- 格式:ppt
- 大小:2.22 MB
- 文档页数:18
ᰬঠᮦᦤ࠼᷆фᰬঠ᫇⁗ශᾸ2015 ᒤ 07 ᴸ 22 ᰕ 2016.08.12(Spatial Econometrics) (Spatial Effect) (Spatio-time Models)§1 ᓅᤦ(Spatial Econometrics) (Spatial Effect)(Anselin 1988, Anselin 1999) (Spatial Dependence) (Spatial Correlation), (Spatial Heterogeneity) Dependence) (Cross sectional data)(Crosssectional( Paelinck and Klaassen 1979, Cliff and Ord 1981, Upton and Fingleton 1985, (Spatial Interaction) Anselin 1988, Haining 1990, Anselin and Florax 1995) (Anselin and Bera 1998, Anselin 2001, Anselin 2002, Florax and Van DerVlist 2003, Anselin et al. 2004) (Spatio-temporal Data Analysis) (Spatial-temporal models) 2 3 4 5 61§2§2.1yit = xit Ø + ≤it yit ≤it i y = XØ + ≤ y = (y1 , y2 , ..., yT ) X NT £ K00(1) K £1 t (2) y NT £ 1 Ø K £1iytxitityi , i = 1, 2, ...T ≤ NT £ 1N £1(Spatial Ordering)E [≤it ≤jt ] 6= 0, 8i 6= j(Stability) (Homogeneity)§2.2 W j (Linkage) i j wij = 0 1s wijN £Nwij wij i j 0 1 wiji (Network) wij = 1ijs wij = wij /Pj(subjectivity) Cliff and Ord 1981( Weights)(ad hoc) ( 17-19 ) Ng (Lag operator) L (3) Anselin 1988( ) ) (Block (Case 1991, Case 1992, Lee 2002)1/Ng ° 1Lyt = yt°1 2, j wijziPjwij zj z W NT £ NT ziiW y = (IT ≠ WN )y W X = (IT ≠ WN )X W ≤ = (IT ≠ WN )≤ §2.3 (Spatio-time Lag Model) y = Ω(IT ≠ WN )y + X Ø + ≤ Ω Ω W (4)(Endogenous) i i i X ≤ y = [IT ≠ (IN ° ΩWN )°1 ]X Ø + [IT ≠ (IN ° ΩWN )°1 ]≤ t2 2 yt = Xt Ø + ΩWN Xt Ø + Ω2 WN Xt Ø + ... + ≤t + ΩWN ≤t + Ω2 WN ≤t ...jijj (Spatial Multiplier)ij (Anselin 2003)i y(5)(6)ytXtXt ≤tOLS (Spatial Filter) : [IT ≠ (IN ° ΩWN )]y = X Ø + ≤ (Detrend) Ω=1 §2.4 t T ¿N N £ (N ° 1)/2 N £ (N ° 1)/2 W IN ° ΩWN Ω=1 (7)3§2.4.1 (Direct Representation) (Geostatistics) 8i 6= j, t = 1, 2, ..., T : E [≤it ≤jt ] = æ 2 f (ø , dij ) ø dij i j ( ) f (Durbin 1988) æ (Isotropy) (8) (Cressie,1993)(Distance Decay Function)§2.4.2 (Spatial Error Process) (Spatial Autoregressive) (Spatial Moving Average) ≤t = µWN ≤t + ut µ ut N £12 E [ut ut ] = æu 2 Ωt,N = æu (BN BN )°10 0SAR (9)BN = IN ° µWN : (10)2 ΣN T = æ u [IT ≠ (BN BN )°1 ]0(11) WN (BN BN )°1 WN (Global)0WBN SAR 8t = 1, 2, ..., T : ≤t = ∞ WN ut + ut(12)2 Ωt,N = E [≤t ≤t ] = !u [IN + ∞ (WN + WN ) + ∞ 2 WN WN ]000(13)2 ΣN T = æ u (IT ≠ [IN + ∞ (WN + WN ) + ∞ 2 WN WN ])00(14) SARW SMA §2.4.3[IN + ∞ (WN + WN ) + ∞ 2 WN WN ] (Local)00(Spatial Error Components,SEC) son 1995, Anselin and Moreno 2003)KelejianRobinson(Kelijian and Robin-≤t = WN √t + ªt 4(15)ªtN £1√tE [√it ªjt ] = 0 8i, j, tN £108t02 2 Ωt,N = E [≤t ≤t ] = æ√ WN WN + æª IN(16)2 2 ΣN T = æxi IN T + æpsi (IT ≠ WN WN )0(17) SMASEC§2.4.4 (Two Way Error Component) ≤it = µi + ∏t + uit µi2 æµ ∏t 2 æ∏ uit 2 æu(18)µi∏t≤t = µ + ∏t ∂N + ut µ, ut N £1 ∏t ∂N0(19)1N £102 2 2 E [≤t ≤t ] = æµ IN + æ∏ ∂N ∂N + æu IN(20)≤ = (∂T ≠ IN )µ + (IT ≠ ∂N )∏ + u(21)2 2 2 ΣN T = æ µ (∂T ∂T ≠ IN ) + æ∏ (IT ≠ ∂N ∂N ) + æu IN T00(22)Andrews(2005) ≤it = ±i ft + uit ±i i j2 E [≤it ≤jt ] = ±i ±j æf(23)ft(Loading) uit (24)≤it = ±i ft + uit ± f m ft uit Ωij = ±i ±j 0 0 1 / (1 + ±i ±i ) 2 (1 + ±j ±j )1/200(25)(26)5§3§3.1 (Spatial SUR Model)(Anselin 1988 ≤t t = 1, 2, ..., T yt = Xt Øt + ≤t E [≤t ≤s ] = æts IN , s 6= t æts t s y = XØ + ≤ E [≤≤ ] = ΣT ≠ IN0 010)(27)(28)(29) (30)yt = Ωt WN yt + Xt Øt + ≤t 0 1(31)B B 0 X=B B ··· @ 0 0X10 X2 ··· 0··· ···C 0 C C ··· ··· C A · · · XT ··· ··· 0 10B B 0 RT = B B ··· @ 0Ω1C 0 C C ··· ··· ··· C A 0 · · · ΩT Ω2 (32)0y = (RT ≠ WN )y + X Ø + ≤ :Ω1 = Ω2 = ... = ΩT = Ωy = Ω(IT ≠ WN )y + X Ø + ≤(33)≤t = µt WN ≤t + ut(34)µ1 = µ2 = ... = µT = µ6§3.2 ≤it = µi + ∫it2 µi ª IID(0, æµ ) 2 ∫it ª IID(0, æ∫ )(35) µi ∫it (36)≤t = µ + ∫t µ N ≠1 ∫t = µWN ∫t + ut(37)2 2 ΣN T = E [≤≤ ] = æµ (∂T ∂T ≠ IN ) + æu [IT ≠ (BN BN )°1 ]000(38)BN = IN ° µWN(39) Kapoor2003 : ≤ = µ(IT ≠ WN )≤ + ∫ ∫ = (∂T ≠ IN )µ + u0 0 0(40)°1 °1 2 2 ΣN T = E [≤≤ ] = (IT ≠ BN )[æµ (∂T ∂T ≠ IN ) + æu IN T ](IT ≠ BN )(41)§3.3 (Space Recursive Model) yt = ∞ WN yt°1 + Xt Ø + ≤t ∞ WN yt°1 N £1 t°1 WN yt°1 WN Xt°1 Xt°1 WN Xt°1 (43) : (42) WN Xt2 yt = ∞ 2 WN yt°2 + Xt Ø + ∞ WN Xt°1 Ø + ≤t + ∞ WN ≤t°1yt = ¡yt°1 + ∞ WN yt°1 + Xt Ø + ≤t WN Xt 2004) WN Xt°1 (Time-space Simultaneous Models) yt = ¡yt°1 + ΩWN yt + Xt Ø + ≤t 7(44)(Giacomini, Granger(45)Ωyt = (IN ° ΩWN )°1 [¡yt°1 + Xt Ø + ≤t ] yt°1 : yt = (IN ° ΩWN )°1 [¡[(IN ° ΩWN )°1 (¡yt°2 + Xt°1 Ø + ≤t°1 )] + Xt Ø + ≤t ](46)(47)yt= ¡2 (IN ° ΩWN )°2 yt°2+(IN ° ΩWN )°1 Xt Ø + ¡(IN ° ΩWN )°2 Xt°1 Ø +(IN ° ΩWN )°1 ≤t + ¡(IN ° ΩWN )°2 ≤t°1X (Time-space Dynamic Models) yt = ¡yt°1 + ΩWN yt + ∞ WN yt°1 + Xt Ø + ≤t §3.4 Cliff 1975 Cliff Ord 1973 Marten Oeppen 1975 (48)zi (t) = p ¡kl q µklk=1 l=0p X ∏k X¡kl L(l) zi (t ° k ) ° ∏k k ≤i (t)k=1 l=0q X mk Xµkl L(l) ≤i (t ° k ) + ≤i (t) mk k(49)E [≤i (t)] = 0 ( æ 2 i = j, s = 0 E [≤i (t)≤j (t + s)] = 0 STARMA(p∏1 ,∏2 ,...∏p , qm1 ,m2 ,...mq )p X ∏k X q X mk X(Pfeifer and Deutsch 1980)z (t) = ≤(t)k=1 l=0¡kl W (l) z (t ° k ) °k=1 l=0µkl W (l) ≤(t ° k ) + ≤(t)(50)E [≤(t)] = 0 ( æ 2 IN 0 E [≤(t)≤(t + s) ] = 0 STARMA xu (Stationary)s=0 z (t) (51)∑ ∏ p X ∏k X p l p°k det xu I ° ¡kl W xu =0k=1 l=08|xu | < 1xu ∑ ∏ q X mk X q l q °k det xu I ° µkl W xu =0k=1 l=0(52) z (t)|xu | < 1 STARMA(0, qm1 ,m2 ,...mq )(Invertible)STARMA(p∏1 ,∏2 ,...∏p , 0)§4§4.1: y = ΩW y + ≤ E [≤≤ ] = æ 2 IN y = (I ° ΩW )°1 ≤ E [W y ≤ ] = E [W (I ° ΩW )°1 ≤≤ ] = æ 2 W (I ° ΩW )°1 6= 00 0 0(53)(54)(55)§4.2 (Ord 1975, Mardia and Marshall 1984, Anselin 1988, Cressie 1993, Anselin and Bera 1998)(4) L = ln |IT ≠ (IN ° ΩWN )| ° ≤ = y ° Ω(IT ≠ WN )y ° X Ø |IT ≠ (IN ° ΩWN )| L = T ln |IN ° ΩWN | ° NT 1 0 2 ln æ≤ ° 2≤ ≤ 2 2æ≤ Jacobi NT 1 0 2 ln æ≤ ° 2≤ ≤ 2 2æ ≤ (56) Jacobi(57)≤ = (∂T ≠ IN )µ + u0 0 1 1 0 2 2 2 2 ln |æµ (∂T ∂T ≠ IN ) + æu IN T | ° ≤ [æµ (∂T ∂T ≠ IN ) + æu IN T ]°1 ≤ 2 2(58)L = T ln |IN ° ΩWN | °(59)9(27) L= Xtln |IN ° Ωt WN | °N 1 0 1 ln |ΣT | ° ≤ (Σ° T ≠ IN )≤ 2 2(60) Anselin(1988)≤ = [IN T ° (RT ≠ WN )]y ° X Ø(Magnus 1978) ≤ ª N (0, Σ) L= (9)-(11) L=° ≤ = y ° XØ0 NT 1 0 2 ln æu + T ln |BN | ° 2 ≤ [IT ≠ (BN BN )]≤ 2 2æu1 1 0 ln |Σ| ° ≤ Σ°1 ≤ 2 2(61)(62) : (63)2 2 ¥ = æµ /æuØ ˆ = [X 0 (IT ≠ B 0 BN )X ]°1 X 0 (IT ≠ B 0 BN )y Ø N N (35)-(38)2 ΣN T = æ u ΨN TΨN T = ∂T ∂T ≠ ¥ IN + [IT ≠ (BN BN )°1 ] ΨN T |ΨN T | = |(BN BN )°1 + (T ¥ )IN ||BN |°2(T °1)1 Ψ° NT0 0 ∂T ∂T ∂T ∂T = ≠ [(BN BN )°1 + (T ¥ )IN ]°1 + (IT ° ) ≠ (BN BN ) T T 0 0 000(64)(65)(66)L = °0 NT 1 2 ln æu + (T ° 1) ln |BN | ° ln |(BN BN )°1 + (T ¥ )IN | 2 2 ∑ 0 ∏ ∑ ∏ 0 0 0 1 0 ∂T ∂T 1 0 ∂T ∂T ° 2≤ ≠ [(BN BN )°1 + (T ¥ )IN ]°1 ≤ ° 2 ≤ (IT ° ) ≠ (BN BN ) ≤ 2æu T 2æ u T≤ = y ° XØ §4.3(Anselin 1988, Anselin 1990, Kelejian and Prucha 1998, Kelejian and Prucha 1999, Conley 1999)XWX 10KelejianRobinson(1993) Kelejian Prucha(1998) Lee(2003) (4) (I T≠W N)X (I≠W N y) X (32) Z t=[W N y t,X t] ∞t=[Ωt,Ø0t]0Z=0BB B B@Z10 00Z2 0············00···Z T1CC C C AH t=[X t,W N X t]:H=0BB B B@H10 00H2 0············00···H T1CC C C Aˆ∞=∑Z0H[H0(ˆΣT≠I N)H]°1H0Z∏°1Z0H[H0(ˆΣT≠I N)H]°1H0y(67) ˆΣT≠I NVar[ˆ∞]=∑Z0H[H0(ˆΣT≠I N)H]°1H0Z∏°1(68) (3SLS) : (2SLS) ˆΣ (67) (Kelejian and Robinson1993,Kelejian and Prucha1998)(63) (9) µ µ (63) ØKelejian Prucha(1999)≤=µ(I T≠W N)≤+uu uªIID[0,æ2uI NT]E[1NTu0u]=æ2uE[1NTu0(I T≠W0N)(I T≠W N)u]=1Næu Tr(W0N W N) E[1NTu0(I T≠W N)u]=0u=≤°µ(I T≠W N)≤ ≤ µ,µ2,æ2u µ (63) ا5(33)-(34) H0:Ω1=Ω2=...=ΩT=0,µ1=µ2=...=µT=0(LM Test)(Anselin2001b)LM (Anselin 1988b) (Anselin1988,Baltagi 2003) Moran ILM Burridge(1980) Moran I (2)LM1=[e0W N e/(e0e/N)]2Tr(W2N+W0NW N)(69)(2) (2)LM1=[e0(I T≠W N)e/(e0e/NT)]2Tr[(I T≠W2N)+(I T≠W0N W N)](70)¬2(1) (I T≠W N) W N Anselin(1988) Ω=0 LM (4) AnselinLM2=[e0(I T≠W N)y/(e0e/NT)]2[(Wˆy)0M(Wˆy)/ˆæ2]+T Tr(W2N+W0NW N)(71)Wˆy=(I T≠W N)XØ M=I NT°X(X0X)°1X0 ¬2(1)(27)-(30) H0:µ1=...=µT Anselin(1988b) LMLM3=∂0T(ˆΣTØE0W N E)J°1(ˆΣ°1TØE0W N E)0∂T(72) Ø HadamardJ=[Tr(W2N)]I T+[Tr(W0N W N)](ˆΣ°1T؈ΣT)¬2(T)§6(1) (2) (3)Andrews,DonaldW.K.(2005).Cross-section regression with common shocks.Econometrica,73:1551 1585. Anselin,Luc(1988).Spatial Econometrics:Methods and Models.Kluwer Academic Publishers,Dor-drecht,The Netherlands.Anselin,Luc(1988b).A test for spatial autocorrelation in seemingly unrelated regressions.Economics Letters,28:335 341.Anselin,Luc(1990).Some robust approaches to testing and estimation in spatial econometrics.Regional Science and Urban Economics,20:141 163.Anselin,Luc(1999).Spatial Econometrics,An updated review.Regional Economics Application Labo-ratory(REAL),University of Illinois,Urbana-Champaign.Anselin,Luc(2001).Spatial econometrics.In Baltagi,Badi,editor,A Companion to Theoretical Econo-metrics,pages310 330.Anselin,Luc(2001b).Rao s score test in spatial econometrics.Journal of Statistical Planning and Inference,97:113 139.Anselin,Luc(2002).Under the hood.Issues in the specification and interpretation of spatial regression models.Agricultural Economics,27(3):247 267.Blackwell,Oxford.Anselin,Luc(2003).Spatial externalities,spatial multipliers and spatial econometrics.International Regional Science Review,26(2):153 166.Anselin,Luc and Bera,Anil(1998).Spatial dependence in linear regression models with an introduction to spatial econometrics.In Ullah,Amman and Giles,David E.A.,editors,Handbook of Applied Eco-nomic Statistics,pages237 289.Marcel Dekker,New York.Anselin,Luc and Florax,Raymond J.G.M.(1995).New Directions in Spatial Econometrics.Springer-Verlag,Berlin.Anselin,Luc,Florax,Raymond J.G.M.,and Rey,Sergio J.(2004a).Econometrics for spatial models, recent advances.In Anselin,Luc,Florax,Raymond J.G.M.,and Rey,Sergio J.,editors,Advances in Spatial Econometrics.Methodology,Tools and Applications,pages1 25.Springer-Verlag,Berlin. Anselin,Luc and Moreno,Rosina(2003).Properties of tests for spatial error components.Regional Science and Urban Economics,33(5):595 618.Baltagi,Badi H.,Song,Seuck Heun,and Koh,Won(2003b).Testing panel data regression models with spatial error correlation.Journal of Econometrics,117:123 150.Burridge,Peter(1980).On the Cliff-Ord test for spatial autocorrelation.Journal of the Royal Statistical Society B,42:107 108.Case,Anne C.(1991).Spatial patterns in household demand.Econometrica,59:953 965.Case,Anne C.(1992).Neighborhood influence and technological change.Regional Science and Urban Economics,22:491 508.Cliff,Andrew and Ord,J.Keith(1973).Spatial Autocorrelation.London:Pioneer.Cliff,Andrew and Ord,J.Keith(1981).Spatial Processes:Models and Applications.Pion,London. Paelinck,Jean and Klaassen,Leo(1979).Spatial Econometrics.Cliff,A.D.,Haggett,P.,Ord,J.K.,Bassett,K.A.and Davies,R.B.(1975).Elements of Spatial Structure: A Quantitative Approach.New York:Cambridge University Press.Conley,Timothy G.(1999).GMMestimation with cross-sectional dependence.Journal of Econometrics, 92:1 45.Cressie,Noel(1993).Statistics for Spatial Data.Wiley,New York.Dubin,Robin(1988).Estimation of regression coefficients in the presence of spatially autocorrelated errors.Review of Economics and Statistics,70:466 474.Florax,Raymond J.G.M.and Van DerVlist,Arno J.(2003).Spatial econometric data analysis:Moving beyond traditional models.International Regional Science Review,26(3):223 243.Giacomini,Raffaella and Granger,Clive W.J.(2004).Aggregation of spacetime processes.Journal ofEconometrics,118:7 26.Haining,Robert(1990).Spatial Data Analysis in the Social and Environmental Sciences.Cambridge University Press,Cambridge.Kelejian,Harry H.and Robinson,Dennis P.(1993).A suggested method of estimation for spatial inter-dependent models with autocorrelated errors,and an application to a county expenditure model.Papers in Regional Science,72:297 312.Kelejian,Harry H.and Robinson,Dennis P.(1995).Spatial correlation:A suggested alternative to the autoregressive model.In Anselin,Luc and Florax,Raymond J.G.M.,editors,New Directions in Spatial Econometrics,pages75 95.Springer-Verlag,Berlin.Kelejian,Harry H.and Prucha,Ingmar(1998).A generalized spatial two stage least squares procedures for estimating a spatial autoregressive model with autoregressive disturbances.Journal of Real Estate Finance and Economics,17:99 121.Kelejian,Harry H.and Prucha,Ingmar(1999).A generalized moments estimator for the autoregressive parameter in a spatial model.International Economic Review, 40:509 533.Kapoor,Mudit,Kelejian,Harry H.,and Prucha,Ingmar R.(2003).Panel data models with spatially correlated error components.Working paper,University of Maryland,College Park,MD.Lee,Lung-Fei(2002).Consistency and efficiency of least squares estimation for mixed regressive,spatial autoregressive models.Econometric Theory,18(2):252 277.Lee,Lung-Fei(2003).Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances.Econometric Reviews,22:307 335.Magnus,Jan(1978).Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix.Journal of Econometrics,7:281 312.Corrigenda,Journal of Economet-rics10,261.Mardia,K.V.and Marshall,R.J.(1984).Maximum likelihood estimation of models for residual covari-ance in spatial regression.Biometrika,71:135 146.Martin,R.L.and Oeppen,J.E.(1975).The identification of regional forecasting models using space time correlation functions.Trans.Inst.British Geographers,66,95-118.Ord,J.Keith(1975).Estimation methods for models of spatial interaction.Journal of the American Statistical Association,70:120 126.Pfeifer,P.E.and Deutsch,S.J.(1980),A three-stage iterative procedure for space-time modelling.Tech-nometrics,22,35-47.Upton,Graham J.and Fingleton,Bernard(1985).Spatial Data Analysis by Example.Volume1:Point Pattern and Quantitative Data.Wiley,New York.。