高频通道阻波器的原理分析与检测方法研究
- 格式:pdf
- 大小:300.79 KB
- 文档页数:4
继电保护高频通道原理、调试与故障处理郭爱军【摘要】本文主要介绍了线路高频保护的高频通道构成及其原理,对高频通道的调试方法、典型故障的处理方法进行了探讨。
本文为高频保护的维护及运行人员提供参考。
【关键词】高频通道原理调试故障处理1 概述线路高频保护的高频通道由保护高频收发信机、高频电缆、阻波器、结合滤波器、耦合电容、输电线路构成。
本文将结合我厂实际,对高频通道原理、调试、故障的处理等有关内容进行介绍。
2 继电保护高频通道(相地制)的组成继电保护高频通道主要由高频收发信机、高频加工设备、高频结合设备、输电线路四个部分构成,如图1:图1:继电保护高频通道(相地制)的组成图1中:1—输电线路;2—高频阻波器;3—耦合电容器;4—结合滤波器;5—高频电缆;6—放电间隙;7—接地刀闸;8—高频收发信机;9—保护装置。
这里有几个专业术语,需要解释一下:(1)高频加工设备,是指阻波器,因为它串联在输电线路中,其含义是对输电线路进行再加工。
(2)高频结合设备,是指高频电缆、结合滤波器、耦合电容器,其含义是将高频收发信机与输电线路结合再一起。
(3)关于高频信号的“高频”:所谓高频是相对于工频50HZ而言的,高频纵联保护信号频率范围一般为几十~几百千HZ;(4)输电线路的“高频纵联保护”:线路纵联保护是当线路发生故障时,使两侧开关同时快速跳闸的一种保护装置,是线路的主保护。
线路两侧保护将判别量借助通信通道传送到对侧,然后,两侧分别按照对侧与本侧判别量之间的关系来判别区内故障或区外故障。
判别量和通道是纵联保护装置的主要组成部分。
线路纵联保护的信号通道可以是微波通道、光纤通道,或电缆线通道,而利用电力载波通信通道构成的线路纵联保护则称为电力线载波纵联保护,即高频纵联保护。
3 高频纵联保护的高频收发信机原理、调试,及故障处理高频收发信机的作用是发送和接收高频信号。
高频发信机部分是由继电保护来控制。
高频收信机接收由本侧和对侧所发送的高频信号,经过比较判断之后,再动作于跳闸或将保护闭锁。
高频通道元件的测试方法一、高频阻波器 1.试验接线阻波器图中: R1为去谐电阻;阻值1.5~3K Ω R2为无感电阻;阻值100Ω P 为选频电平表2.阻抗特性试验按上图接线,振荡器输出阻抗选择“0”Ω,输出电平“0”dB 。
选频表输入阻抗选择“∞”。
表头指示的是电压电平。
从84(或60、70)kHz ~500kHZ 测试若干个点,振荡器每改变一次频率,选频表就测试一次P1、P2值。
在全部试验过程中,振荡器输出电平始终维持不变。
然后按下式计算阻抗值。
阻抗计算公式:2)21(05.0)110(R Zp p ⨯-=-要求:在84kHz ~500kHz 的范围内,阻抗值不小于570Ω(厂家出厂标准)。
二、结合滤波器1.工作衰耗测试 (1)电缆侧 试验接线:R1CR2振荡器图中: R1 75Ω无感电阻,模拟高频电缆输出阻抗R2 300Ω无感电阻,模拟线路输入阻抗。
如果线路为单根导线,R2取400Ω。
双分裂导线取300ΩC 5000pf 电容,模拟结合电容器电容(以现场实际电容值选取)T 结合滤波器在50kHz ~500kHz 之间,选取若干个点测试,振荡器每改变一次频率,选频表就测试一次P1、P2值。
然后计算工作衰耗。
测试时,振荡器输出阻抗选择“0” Ω,输出电平可以为“0”dB ,但是在测试中应始终维持不变。
选频表输入阻抗选择无穷大。
选频表所读数值为电压电平。
工作衰耗计算公式:功率电平 12214l o g 10R Rp p b g +-= (dBm )** 关于上述公式的推导:用电压表测量:因为是测量工作衰耗,所以,结合滤波器的输入阻抗与电阻R1相等。
因此结合滤波器电缆侧输入端的功率为:12112114)2(R U R U P == 结合滤波器线路侧负载阻抗R2所得到的功率为:2242R U P =工作衰耗为:10=g b ㏒10)2(log 1022412121==R U R U P P ㏒102421+U U ㏒124R R 20=G b ㏒1041+U U ㏒124R R用电平表测量:1041+-=p p b G ㏒124R R (2)线路侧试验接线:R2T振荡器C图中: R1 300Ω无感电阻 R2 75Ω无感电阻C 5000pf 电容 T 结合滤波器测试方法与电缆侧相同。
阻波器故障对高频保护系统的危害及其隐蔽性Line Trap failure’s Harm for H-F Telprotection and its Concealment郭香福陈宇辉(北京电力设备总厂,北京102401)摘要:本文分析了阻波器调谐元件故障不能及时发现的原因及其引起保护误动的危险,并就此提出了检验阻波器阻塞效果的试验方法以及解决调谐元件故障应注意的几个问题。
关键词:高频保护;误动;阻波器;调谐元件;分流损耗;测试Abstract: this paper analy ze the origin of that the line trap tuning device’s failure can not be discovered in time as well as the risk of high –frequency telprotection’s misoperation caused by this failure. This paper propose a test method for blocking effect of line traps and some matters which should be taken care when eliminate the failure. Keywords: H-F telprotection, misoperation, line trap, tuning device, taping loss, test0.引言根据现场试验,严格按照IEC60353生产的阻波器调谐元件,耐受操作冲击的次数最多10次到100次[1]。
某些规格的产品(各规格安全裕度不同),甚至一次开关操作就会引起当场损坏[2,3]。
可以肯定地说,挂网运行5年以上的大中型阻波器,大多数调谐元件要出现绝缘故障。
2000年5月,为了调查阻波器故障率,我们特意对华东某220kV 变电站10台额定电感1.0mH、额定短路电流40kA的阻波器进行了阻塞性能测试。
220kV线路高频保护通道组成,作用及如何测试高频通道?一、220kV线路高频保护通道的组成:• 1.输电线路• 2.高频阻波器• 3.耦合电容器• 4.结合滤波器(连接阻波器)• 5.高频电缆• 6.放电间隙(保护间隙)•7.接地开关•8.收发信机•二.各组成部分的作用•.1.输电线路A、B、C三相线路都用以传送高频信号其中B相输电线路除作为保护通道外,还是公用通道;A、C相只作为保护专用通道使用。
• 2.高频阻波器的作用:高频阻波器的电感线圈合可调电容器组成并联谐振回路,当其谐振频率为选用的载波频率时,对载波电流呈现很大的阻抗(在1000Ω以上),从而使高频电流限制在被保护线路的输电线路以内(即两侧高频阻波器内),而不致流到相邻线路上去。
对50Hz工频电流而言,高频阻波器的阻抗仅是电感线圈的阻抗,其值约为0.04Ω,因而工频电流可以畅通无阻• 3.耦合电容器的作用:耦合电容器的电容量很小,对工频电流具有很打的阻抗,可防止工频高压侵入高频收发信机。
对高频电流则阻抗很小,高频电流可顺利通过。
耦合电容器与结合滤波器(连接滤波器)共同组成带通滤波器,只允许此带通频率内的电流通过。
• 4.结合滤波器(连接滤波器)的作用:由于电力线路的波阻抗约为400Ω,电力电缆的波阻抗约为100Ω或75Ω,因此利用结合滤波器与他们其阻抗匹配作用,以减小高频信号的衰耗,使高频收信机收到的高频功率最大同时还利用结合滤波器进一步使高频收发信机与高压线路隔离,以保证高频收发信机及人身安全。
• 5.高频电缆的作用:高频电缆的作用是把户外的带通滤波器和户内保护屏上的收发信机连接起来,并屏蔽干扰信号。
• 6.接地开关:接地开关是高频通道的辅助设备。
在检查、调试高频保护时,将接地刀闸合上,可防止高压窜入确保保护设备和人身安全.•7.高频收发信机的作用:收发信机是发送和接收高频信号的设备.1.输电线路2.高频阻波器3.耦合电容器4.结合滤波器(连接阻波器)5.高频电缆6.放电间隙(保护间隙)7.接地开关8.收发信机阻波器是载波通信及高频保护不可缺少的高频通信元件,它阻止高频电流向其他分支泄漏,起减少高频能量损耗的作用。
目录1、阻波器基本原理与测试方法2、论PLC通道传输衰耗的不对称性3、阻波器在相相耦合通道中的分流损耗4、阻波器故障隐蔽性及其危害5、调谐元件故障分析与判断6、载波通道理论小结与故障处理要点7、阻波器避雷器和调谐元件的选择与更换8、结合设备原理与测试阻波器基本原理与测试方法1.变电站母线的高频特性及其对载波通道的并联分流作用阻波器串联插入在母线与耦合电容器在输电线的接点之间,阻波器后边除母线外,还有隔离开关、断路器、互感器等。
母线上接有其他方向的线路以及变压器等。
同一母线其他输电线路无论是否复用载波通信,都对载波信号表现出一定的对地阻抗。
变压器、互感器、开关等具有对地杂散电容,母线自身除带有分布电容外,还有分布电感、分布电阻和电导。
这种具有分布参数的导体将所有高压设备的对地电容以及所有进出线的阻抗连接起来,形成一个非常复杂的网路,对不同的频率以及接在不同位置的线路,表现出不同的复阻抗。
这些复阻抗被称作母线或变电设备的对地高频等效阻抗,以Zb表示。
这一高频等效阻抗对于沿线路传来的载波信号而言,相当于与结合设备并联连连接,对于从结合设备发往线路的信号而言,这一阻抗则与线路并联(见下图)。
因此对于载波通道的任一方向的信号,变电站的高频阻抗都会产生并联分流的影响,使通道中的信号减小。
由于线路及结合设备具有一定数值的阻抗(例如400欧姆),变电站母线高频等效阻抗越小,所分掉的载波电流越大,阻抗越高,所分掉的电流越小。
只有隔离开关和接地刀闸打开时,才不会产生分流影响。
2.分流损耗2.1 分流损耗的本质变电站高频等效阻抗对载波通道的分流影响用分流损耗表示,分流损耗又称作变电站的介入损耗。
所谓介入损耗,顾名思义,就是这个具有分流作用的阻抗介入载波通道前后,载波通道(线路或结合设备)所获得功率相对比值的对数的10倍,如式(1)所示。
它反映的是收信功率的相对变化量,而不是收信功率绝对变化量(瓦数)的绝对电平值。
如果对公式中的分子分母同时除以1mW,那么分流损耗就从形式上化为通道介入上述分流阻抗前后两种状态下所获得的绝对功率电平的差值。
继电保护高频通道基本知识及调试方法高频通道基本知识及调试方法高频通道基本知识及调试方法第一节用途在超高压电力系统,系统的稳定问题比较突出。
随着电网的日益发展和强大,对系统的稳定要求也越来越高。
如果系统稳定被破坏,将造成事故的扩大而影响电力系统的安全运行。
因此,目前220KV以上的超高压输电线路都配置了双套主保护,作为提高系统稳定的重要措施。
在超高压电力系统,简单的距离保护和零序保护是不能作为线路主保护的。
因为它们在原理上只反应一侧电气量的变化,因而无法区分本线路末端和相邻线路首端的故障,不能保证选择性。
而为了要保证选择性,瞬动段的保护范围就要缩小。
这样一来,就不能做到全线速动。
所以,这种类型的保护不能作为主保护。
为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。
这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。
快速性、选择性都得到了保证。
为了将线路一端的保护动作信号传送到对端,一般采用电力线载波的方式,将线路一端的工频电气量或保护动作信号与高频信号经过调制,利用电力线本身进行传送。
我们都知道,电力线本身是传送工频电力的,而且属于高电压和大电流。
然而,通过对输电线路进行加工和改造,就可以使它能够同时传送工频电力和高频信号。
经过调制后的高频信号送到线路对端后经过解调,将其变成具有工频特征的电气量或脉冲形式的保护动作信号,送至保护装置。
这就是电力线载波的传输方式。
采用高频信号的原因是便于与工频信号区分开。
采用电力线复用的方式,主要是经济可靠,节省人力和投资。
而且电力线路杆塔坚固,绝缘程度高。
不利的因素是危险的高电压及强大的杂音干扰。
但若采取适当的措施是可以解决这些问题的。
综上所述,可以看出,高频保护是利用被保护线路作为高频信号传输通道的。
因此,继电保护高频通道的基本用途就是用来加工和传输含有保护动作信号特征的高频信号,以构成快速的继电保护装置。
高频通道元件的测试方法一、高频阻波器 1.试验接线阻波器图中: R1为去谐电阻;阻值1.5~3K Ω R2为无感电阻;阻值100Ω P 为选频电平表2.阻抗特性试验按上图接线,振荡器输出阻抗选择“0”Ω,输出电平“0”dB 。
选频表输入阻抗选择“∞”。
表头指示的是电压电平。
从84(或60、70)kHz ~500kHZ 测试若干个点,振荡器每改变一次频率,选频表就测试一次P1、P2值。
在全部试验过程中,振荡器输出电平始终维持不变。
然后按下式计算阻抗值。
阻抗计算公式:2)21(05.0)110(R Zp p ⨯-=-要求:在84kHz ~500kHz 的范围内,阻抗值不小于570Ω(厂家出厂标准)。
二、结合滤波器1.工作衰耗测试 (1)电缆侧 试验接线:R1CR2振荡器图中: R1 75Ω无感电阻,模拟高频电缆输出阻抗R2 300Ω无感电阻,模拟线路输入阻抗。
如果线路为单根导线,R2取400Ω。
双分裂导线取300ΩC 5000pf 电容,模拟结合电容器电容(以现场实际电容值选取)T 结合滤波器在50kHz ~500kHz 之间,选取若干个点测试,振荡器每改变一次频率,选频表就测试一次P1、P2值。
然后计算工作衰耗。
测试时,振荡器输出阻抗选择“0” Ω,输出电平可以为“0”dB ,但是在测试中应始终维持不变。
选频表输入阻抗选择无穷大。
选频表所读数值为电压电平。
工作衰耗计算公式:功率电平 12214l o g 10R Rp p b g +-= (dBm )** 关于上述公式的推导:用电压表测量:因为是测量工作衰耗,所以,结合滤波器的输入阻抗与电阻R1相等。
因此结合滤波器电缆侧输入端的功率为:12112114)2(R U R U P == 结合滤波器线路侧负载阻抗R2所得到的功率为:2242R U P =工作衰耗为:10=g b ㏒10)2(log 1022412121==R U R U P P ㏒102421+U U ㏒124R R 20=G b ㏒1041+U U ㏒124R R用电平表测量:1041+-=p p b G ㏒124R R (2)线路侧试验接线:R2T振荡器C图中: R1 300Ω无感电阻 R2 75Ω无感电阻C 5000pf 电容 T 结合滤波器测试方法与电缆侧相同。
高频通道直流录波的分析及改进王澎(辽宁调度通信中心继电处,辽宁沈阳110006)摘要:系统事故中,高频录波多有不良情况发生。
文中就目前在辽宁电网中使用的收发信机的高频直流录波回路及与录波器匹配情况进行了分析,指出存在的问题并提出改进办法。
关键词:高频通道; 检波回路; 录波器; 收发信机中图分类号:T M73 文献标识码:B 文章编号:100324897(2001)0720044202图2 Y BX -137、39端输出信号实测1 概述系统事故中,高频录波多有不良情况发生,究竟是录波器的问题还是收发信机的问题过去从没有过追究。
我们就辽宁电网中使用的收发信机和录波器在实验室和现场测试发现:不同型号的收发信机输出的直流高频录波信号幅值和带负载能力差异很大;不同型号的录波装置其高频录波的反应能力和自身功耗也各不相同,问题是:为确保收发信机性能不受影响,收发信机制造部门不愿向高频录波分支提供更强的录波信号源,而录波装置制造部门又没能将录波装置的功耗作得更低,灵敏度作得更高,造成二者从研发设计时就存在参数不匹配问题,究竟谁是谁非无从谈起,制造部门自己说不清,我们查了相关的规程国家也没具体量化标准,因此,高频录波完好率低必然是全国普遍存在的问题,根源是无标准可依。
图1 Y BX -1检波回路原理接线图2 几种收发信机输出高频录波信号的检测与评说2.1 Y BX -1型机它的高频录波检波回路接在机器的“线滤”后,如图1。
实测情况说明Y BX -1型机上检波回路及参数设计不合理:带负载能力低,直流信号很弱,受杂波干扰大,检波回路输出端子(T40)与高频通道共地。
现场实测信号如图2(a )、(b ),高频通道信号(直流)均小于2V 。
2.2 G SF -6A 型机检波回路原理如图3。
从图上看,它的检波回路由线滤和功放之间引出,并从37、39端子输出,符合规定要求,但电路设计有严重缺陷,检波回路只能输出二极管管压降的微弱信号。