建筑平面图形的几何性质
- 格式:ppt
- 大小:1.31 MB
- 文档页数:42
第五章 平面图形的几何性质§5-1 静矩和形心1.面积(对轴)矩:是面积与它到轴的距离之积(用S 表示)。
微面积dA 对X 轴的静矩微面积dA 对Y 轴的静矩 or如S=0 ↔ 轴过形心2.组合截面的静矩与形心:整个图形对某轴的静矩, 等于图形各部分对同轴静矩的代数和(由静矩定义可知)。
则 ∴ §5-2 极惯性矩、惯性矩、惯性积、惯性半径1.惯性矩: 是面积与它到轴的距离的平方之积。
图形对x 轴的惯性矩:图形对y 轴的惯性矩:2.极惯性矩:是面积对极点的二次矩。
图形对O 点的极惯性矩:3.惯性积:面积与其到两轴距离之积。
图形对xy 轴的惯性积:y A S x ⋅=d d xA S y ⋅=d d ⎰=⎰=⎰=⎰=A A y y A A x x A x S S A y S S d d d d y A S xA S x y ==i n i A A ∑==1:如x A x A S y A y A S i i n i y i i n i x =∑==∑===11⎪⎪⎪⎩⎪⎪⎪⎨⎧∑=∑A A y y A A x i i i i ⎰=⎰=A y A x A x I A y I d d 22y x AI I A I +=⎰=d 2ρρ⎰=Axy A xy I d如果x 或y 是对称轴,则Ixy =04.惯性半径 图形对x 轴的惯性半径: 图形对y 轴的惯性半径: §5-3 平行移轴公式1.平行移轴定理:以形心为原点,建立与原坐标轴平行的坐标轴如图注意: C 点必须为形心 图形对某坐标轴的惯性矩, 等于它对过形心且平行于该轴的坐标轴之惯性矩加上图形面积与两轴距离平方和的乘积.。
2.组合截面的惯性矩:§5-4 转轴公式 主惯性轴 主惯性矩1.惯性矩和惯性积的转轴定理2.截面的形心主惯性轴和形心主惯性矩⑴主惯性轴和主惯性矩:如坐标旋转到α=α0时;恰好有A I i A I i y y x x //==⎪⎩⎪⎨⎧+=+=C C y b y x a x A b bS I A b by y A b y A y I xC xC C A C A C A x 222222d )2( d )( d ++=++⎰=+⎰=⎰=0==C xC y A S A b I I xC x 2+=A b I I xC x 2+=A a I I yC y 2+=abA I I xCyC xy +=A b a I I C 2)(++=ρρxi n i x I I ∑==1yi n i y I I ∑==1xyi n i xy I I ∑==1⎩⎨⎧+-=+=ααααcos sin sin cos 11y x y y x x ⎪⎪⎪⎭⎫ ⎝⎛--++=αα2sin 2cos 221xy y x y x x I I I I I I ⎪⎪⎪⎭⎫ ⎝⎛---+=αα2sin 2cos 221xy y x y x y I I I I I I ⎪⎪⎪⎭⎫ ⎝⎛+-=αα2cos 2sin 211xy y x y x I I I I y I x I y I x I +=+110)2cos 2sin 2(0000=+-=ααxy y x y x I I I I则与α0对应的旋转轴x 0 ,y 0 称为主惯性轴。
——材料力学教案§A-1 引言不同受力形式下杆件的应力和变形,不仅取决于外力的大小以及杆件的尺寸,而且与杆件截面的几何性质有关。
当研究杆件的应力、变形,以及研究失效问题时,都要涉及到与截面形状和尺寸有关的几何量。
这些几何量包括:形心、静矩、惯性矩、惯性半径、极惯性短、惯性积、主轴等,统称为“平面图形的几何性质”。
研究上述这些几何性质时,完全不考虑研究对象的物理和力学因素,作为纯几何问题加以处理。
§A-2 静矩、形心及相互关系任意平面几何图形如图A-1所示。
在其上取面积微元dA ,该微元在Oxy 坐标系中的坐标为x 、y 。
定义下列积分:⎰=Ax A y S d ⎰=Ay A y S d (A-1)分别称为图形对于x 轴和y 轴的截面一次矩或静矩,其单位为3m 。
如果将dA 视为垂直于图形平面的力,则ydA 和zdA 分别为dA 对于z 轴和y 轴的力矩;x S 和y S 则分别为dA 对z 轴和y 轴之矩。
图A-1图形的静矩与形心图形几何形状的中心称为形心,若将面积视为垂直于 图形平面的力,则形心即为合力的作用点。
设C x 、C y 为形心坐标,则根据合力之矩定理⎭⎬⎫==C y C x Ax S Ay S (A-2)或⎪⎪⎭⎪⎪⎬⎫====⎰⎰A ydA AS y A xdA A S x A x CAyC (A-3) 这就是图形形心坐标与静矩之间的关系。
根据上述定义可以看出:1.静矩与坐标轴有关,同一平面图形对于不同的坐标轴有不同的静矩。
对某些坐标轴静矩为正;对另外某些坐标轴为负;对于通过形心的坐标轴,图形对其静矩等于零。
2.如果已经计算出静矩,就可以确定形心的位置;反之,如果已知形心位置,则可计算图形的静矩。
实际计算中,对于简单的、规则的图形,其形心位置可以直接判断。
例如矩形、正方形、圆形、正三角形等的形心位置是显而易见的。
对于组合图形,则先将其分解为若干个简单图形(可以直接确定形心位置的图形);然后由式(A-2)分别计算它们对于给定坐标轴的静矩,并求其代数和;再利用式(A-3),即可得组合图形的形心坐标。
建筑力学与结构、结构力学与建筑构造练习册(宁大专升本)姓名:学号:班级:任课教师:杭州科技职业技术学院作业一、静力学基本概念(一)判断题:1、使物体运动状态发生改变的效应称为力的内效应。
( ⨯ )2、在两个力作用下处于平衡的杆件称为二力杆。
( √ )3、力的可传性原理适用于任何物体。
( ⨯ )4、约束是使物体运动受到限制的周围物体。
( √ )5、画物体受力图时,只需画出该物体所受的全部约束反力即可。
( ⨯ )(二)选择题:1、对刚体来说,力的三要素不包括以下要素( B )。
(A )大小 (B )作用点 (C )方向 (D )作用线2、刚体受不平行的三个力作用而平衡时,此三力的作用线必( C )且汇交于一点。
(A )共点 (B )共线 (C )共面 (D )不能确定3、光滑圆柱铰链约束的约束反力通常有( B )个。
(A )一 (B )二 (C )三 (D )四4、如图所示杆ACB ,其正确的受力图为( A )。
(A )图A (B )图B (C )图C (D )图D成绩D(A )(D )(C )5、下图中刚架中CB 段正确的受力图应为( D )。
(A )图A (B )图B (C )图C (D )图D(三)分析题:1、画出下图所示各物体的受力图,所有接触面均为光滑接触面,未注明者,自重均不计。
解:(a)取球为研究对象,作受力图如下:∙C G(b)60︒(c)F CFB (C)F B∙ABC GAR(b)取刚架为研究对象,作受力图如下:(c)取梁为研究对象,作受力图如下:2、画出下图所示各物体的受力图,所有接触面均为光滑接触面,未注明者,自重均不计。
解:(a)先取AC 杆为研究对象,作受力图如下:(a) AC 杆、BC 杆、整体(b)AC 杆、BC 杆、整体q (c) AB 杆、BC 杆、整体 CAAx F B R F或:BB R60︒ Ay F BF CCx F再取BC 杆为研究对象,作受力图如下:最后取整体为研究对象,作受力图如下:(b) 先取AC 杆为研究对象,作受力图如下:再取BC 杆为研究对象,作受力图如下:最后取整体为研究对象,作受力图如图所示:BF BF CxFF 'T 'BB A F A Ax FAy FB Cx F F 'Bx F By FA Ax FAy FBBx FBy F(c) 先取AB 杆为研究对象,作受力图如下:再取BC 杆为研究对象,作受力图如上:最后取整体为研究对象,作受力图如下:二、平面汇交力系(一)判断题:1、求平面汇交力系合力的几何作图法称为力多边形法。