北京工业大学 期末考试 概率统计试题 概统试题(工)
- 格式:doc
- 大小:418.50 KB
- 文档页数:6
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
北京工业大学2009—2010年度第一学期 概率论与数理统计考试试卷(工类,A 卷)学号 姓名 得分一. 填空题(每空两分,共30分)1. 已知P(A )=0.5,P(A ∪B )=0.8,且A 与B 相互独立,则P(A-B )= 0.2 , P(A B ⋃)= 0.8 。
2. 设随机变量X 服从参数是λ的泊松分布,且P(X=3)=2P(X=4),则λ= 2 ,P(X >1)= 1-3e -2。
3. 设连续型随机变量X 的概率密度函数为:⎩⎨⎧≤≤=其它,010,4)(3x x x f ,且P (X >a )=P (X <a ),则a= 2-1/4。
4. 若随机变量X 和Y 相互独立,且有相同的概率分布则随机变量Z=max{X,Y}的概率分布V=min{X ,Y}的概率分布 U=XY 的概率分布5. 设随机变量X ~B (n ,p ),已知E (X )=3,Var (X )=2.4,则n= 15 ,p= 0.2 。
6. 设X 1,X 2,…,X n 为独立同分布的随机变量,且X 1~N (0,1),则∑=ni i X 12~2n χ。
E21n i i X =⎛⎫ ⎪⎝⎭∑= n 。
Var 21n i i X =⎛⎫⎪⎝⎭∑= 2n 。
7. 设X 1,X 2,X 3是正态总体2(,)N μσ的随机样本,其中μ已知,2σ未知,在)(1),,,max(,2),(3121222123211321X X X X X X X X X X +++++σμ中,是统计量的有 ),,,max(,2),(313211321X X X X X X X μ+++8. 已知一批零件的长度X (单位:cm )服从正态分布N (μ,1),从中随机抽取16个零件,得到长度的平均值为40cm ,则μ的置信系数为0.95的置信区间为2ασZ nX。
二、计算题(每题14分)注意:每题要写出计算过程,无过程的不得分!1. 钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是40%、35%和25%。
《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。
从该批产品中随机抽查5个,计算至少有一个不合格品的概率。
解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。
不合格品的概率为 0.1,合格品的概率为 0.9。
则没有不合格品的概率为 (0.9)^5。
至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。
4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。
解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。
一个骰子点数大于3的概率为 3/6 = 1/2。
两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。
至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。
以上是《概率分析与数理统计》期末考试的部分试题及解答。
希望对你有帮助!。
《概率论与数理统计》期末考试试题A一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A) 11a a b -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭.2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ;(C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】 (A)()210=≤+Y X P ; (B) ()211=≤+Y X P ;(C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为 则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。
北京工业大学2004—2005年度第I 学期概率论与数理统计考试试卷(经,A 卷)及参考答案一. 填空题(每空两分,共30分)1. 若B A ,为随机事件,且6.0)(=A P ,2.0)(=-A B P .当A 与B 相互独立时,=)(B P 0.5 ;A 与B 互不相容时,=)(B P 0.2 。
2. 若每次试验时A 发生的概率都是2.0,X 表示50次独立试验中事件A 发生的次数,则=)(X E 10 ,=)(X Var 8 。
3. 若随机变量X 只取2±,1之三个可能值,且15.0)2(=-=X P ,5.0)1(==X P 。
则=)(X E 0.9 ,=)(X Var 1.69 。
4. 若随机变量21,X X 相互独立,且1X ~)3,3(2N ,2X ~)2,1(2N 。
令212X X X -=,则=)(X E 1 ,=)(X Var 25 ,)1(>X P = 0.5 。
5. 若n X X X ,,,21 为抽自正态总体),(2σμN 的随机样本,记 ∑==ni i X n X 11,212)(11X X n S ni i --=∑=. 则σμ/)(-X n ~)1,0(N , 2/)(S X n μ-~1-n t , 22/)1(σS n -~21-n χ。
进一步,记αZ 为标准正态分布上α分位点,)(αm t 为自由度为m 的t 分布上α分位点,)(2αχm 为自由度为m 的2χ分布上α分位点,m 为自然数,10<<α为常数。
当2σ已知时,μ的置信系数为α-1的置信区间为])/(,)/([2/2/αασσZ n X Z n X +-;当2σ未知时,μ的置信系数为α-1的置信区间为)]2/()/(),2/()/([11αα--+-n n t n S X t n S X ,2σ的置信系数为α-1的置信区间为⎥⎦⎤⎢⎣⎡-----)2/1()1(,)2/()1(212212αχαχn n S n S n 。
概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。
假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。
2. 至多有5件产品是不合格的。
试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。
2. X的方差Var(X)。
试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。
求:1. 该银行连续5天的总交易量超过500万元的概率。
2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。
试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。
2. 零件长度的95%置信区间。
试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。
品牌B:平均打印速度为每分钟55页,标准差为4页。
样本量均为30台打印机。
假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。
答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。
根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。
2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。
根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。
答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。
2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。
北京工业大学2013-2014学年第一学期期末数理统计与随机过程(研) 课程试卷学号 姓名 成绩注意:试卷共七道大题,请写明详细解题过程。
数据结果保留3位小数。
考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。
考试时允许使用计算器。
考试时间120分钟。
一、(10分)设学生某次考试成绩服从正态分布),(2σμN ,现从中随机抽取36位的考试成绩, 算得平均分为66.5,标准差为15分。
问在显著性水平0.05下,从样本看,(1)是否接受“70=μ”的假设? (2)是否接受“2216≤σ”的假设?解:已知 05.0,36,15,5.66====αn S X(1)70:,70:10≠=μμH H由书中结论知,检验问题的拒绝域为)1(702-≥-n t nSX α4.13615705.6670=-=-nSX ,查表得0301.2)35()1(025.02==-t n t α,所以,接受原假设。
,(2)22122016:,16:>≤σσH H检验问题的拒绝域为)1(16)1(222-≥-n S n αχ7617.301615)136(16)1(2222=-=-S n ,802.49)136()1(205.02=-=-χχαn ,所以,接受原假设。
二、(15分)在某公路上观察汽车通过情况,取15秒为一个时间单位,记下锅炉汽车分布?(显著性水平取0.05α=)解:805.020014113282681920ˆ=*+*+*+*+*==x λ并组后k=4,而此处r=1,故自由度为k-r-1=2,200.932-200=0.932<991.5)2(205.0=χ,所以是Poisson 分布 三、(15分)为考察某种维尼纶纤维的耐水性能,安排了一组试验,测得甲醇浓度x(1)建立“缩醇化度” y 对甲醇浓度x 的一元线性回归方程; (2)对建立的回归方程进行显著性检验:(取01.0=α); (3)在0x =36时,给出相应的y 的预测区间(取01.0=α)。
北京工业大学2012-2013学年第一学期期末数理统计与随机过程(研) 课程试卷学号 姓名 成绩注意:试卷共七道大题,请写明详细解题过程。
数据结果保留3位小数。
考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。
考试时允许使用计算器。
考试时间120分钟。
考试日期:2013年1月日一、(10分)欲对某班《数理统计与随机过程》的期末考试成绩作分析。
假设这门课成绩X (单位:分)服从正态分布2(,)N μσ。
若班级平均成绩在75分以上则认为该班成绩良好。
现从该班中随机抽取9名同学,得到他们成绩的平均分为78.44,标准差为11.40。
请根据以上结果回答如下问题:(1)取显著性水平α=0.05,分别给出下述两个问题的检验结果:检验问题I “H 0: 75μ≤,H 1: 75μ>” 检验问题II “H 0: 75μ≥,H 1: 75μ<” (2)对以上结论你如何解释? 二、(15分)将酵母细胞的稀释液置于某种计量仪器上,数出每一小格内的酵母细胞数X ,共观察了413个小方格,结果见下表。
试问根据该资料,X 是否服从Poisson 分布?(显著性水平取0.05α=)三、(15分)某公司在为期8个月内的利润表如下:(1)求该公司月利润对月份的线性回归方程;(2)对回归方程进行显著性检验:(取05.0=α);(3)解释回归系数的意义;(4)求第11月利润的预测区间(取050.=α)。
(本题计算结果保留两位小数)。
四、(15分)某消防队要考察4种不同型号冒烟报警器的反应时间(单位:秒)。
今将每种型号的报警器随机抽取5个安装在同一条烟道中,当烟量均匀时观测报警器的反应时间,得数据如下:) (2) 如果各种型号的报警器的反应时间有显著性差异,求均值差B A μμ-的置信水平为95%的置信区间。
五、(15分)设{N(t),t }是强度为的Poisson 过程,试求 (1) P{N(1)<2};(2) P{N(1)=1 且 N(2)=3}; (3) P{N(1)≥2|N(1)≥1}.六、(15分)设{}0,≥n X n 为时齐马氏链,状态空间{}3,2,1=I ,一步转移概率矩阵为 P=⎪⎪⎪⎭⎫⎝⎛05.05.05.005.05.05.00初始分布P (X 0=1)=P (X 0=2)=0.25。
北京工业大学2010-2011学年第一学期期末数理统计与随机过程(研) 课程试卷学号 姓名 成绩注意:试卷共七道大题,请写明详细解题过程。
数据结果保留3位小数。
考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。
考试时允许使用计算器。
考试时间120分钟。
考试日期:2011年1月4日1.某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,经计算得到样本均值为149.7,样本标准差为0.9,试在α=0.01的显著性水平上检验该制造商的说法是否可信?解: 已知μ0=150 H 0: μ≥150 H 1: μ<150 (1分)α=0.01 左检验临界值为负 -t 0.01(99)=-2.3640.3 3.3330.09x t -====- ∵t=-3.333<-t 0.01=-2.364 t 值落入拒绝域,∴在α=0.05的水平上拒绝H 0,即可以认为该制造商的说法不可信,认为该批产品平均每包重量低于150克。
2.某食品市场的经理将根据预期到达商店的顾客来决定职员分配数目以及收款台的数目。
为检验工作日上午顾客到达数(用5分钟时间段内进入商店的顾客数来定义)是否服从泊松分布,随机选取了一个由3周内工作日上午的128个5分钟时间段组解:H0:5分钟时间段内进入商店的顾客数服从泊松分布。
i p =0.006737947 0.033689735 0.084224337 0.140373896 0.175467370 0.1754673700.146222808 0.104444863 0.065278039 0.068093635i np = 0.8624572 + 4.3122861 10.7807152 17.9678587 22.4598233 22.4598233 0218210966405128128μ⨯+⨯+⨯++⨯===55()!!x x e e f x x x μμ--==18.7165194 13.3689425 8.3555890 8.71598522i f =100 100 144 324 484 484 256 144 362/i i f np =19.324631 9.275822 8.014311 14.425759 21.549591 25.85950919.148859 17.233974 4.1303423.一家关于MBA 报考、学习、就业指导的网站希望了解国内MBA 毕业生的起薪是否 与各自所学的专业有关,为此,他们在已经在国内商学院毕业并且获得学位的MBA 学生中按照专业分别随机抽取了5人,调查了他们的起薪情况,数据如下表所示(单位: 万元),根据这些数据他们能否得出专业对MBA 起薪有影响的结论?解:Analysis of Variance TableResponse: XDf Sum Sq Mean Sq F value Pr(>F)A 3 15.052 5.017 0.2987 0.8258Residuals 16 268.720 16.795>0.05(3,16) 3.240.2987F =>2221()~(1)k i i i i f e k p e χχ=-=--∑22220.050(1)10.9776 (911)14.07.k p H αχχχχ>--=--=拒域:不拒4.为定义一种变量,用来描述某种商品的供给量与价格之间的相关关系.首先要收集((2)对回归方程进行显著性检验(α=0.05);(3)当x=20时,求y的95%的预测区间。
北京工业大学2015—2016学年第一学期《概率论与数理统计》(工类、经类)考试试卷考试说明: 考试时间:2016年01月06日; 考试方式:闭卷。
承诺:本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。
若有违反,愿接受相应的处分。
承诺人: 学号: 班号: 注:本试卷共 三 大题,共 6 页,满分100分,考试时必须使用卷后附加的统一答题纸或草稿纸。
卷 面 成 绩 汇 总 表(阅卷教师填写)一、选择题(在各小题的四个备选答案中选出一个正确答案,填在题末的括号中。
本大题共6个小题,每小题2.5分,总计15分)1. 对任意互不相容的事件A 与B ,下列式子正确的是 ( D )A .()0P AB =; B .()()()P AB P A P B =;C .()()1P A P B =-;D. ()1P A B =。
2. 对任意事件A 与B ,当B A ⊂时,下列式子正确的是 ( A )A .()()P AB P A =; B .()()P AB P A =;C .()()|P B A P B =; D. ()()()P B A P B P A -=-。
3.设随机变量~()X P λ(参数为λ的泊松分布),且E[(X -1)(X -2)]=1, 则λ=( B )A .0;B .1;C .2;D .3。
E[(X-1)(X-2)]= E(X2)-3E(X)+2,利用D(X)得到E(X2) 4. 设随机变量2~(,)X N μσ,当σ增大时,{-}P X μσ<的值 ( C )A .增大;B .减少;C .不变;D .增减不定。
(由切比雪夫不等式得到为一个与σ无关的不等式) 5. 设连续型随机向量(X ,Y )服从单位圆域内均匀分布,则X 与Y ( D )A .独立同分布;B .独立不同分布;C .不独立,同分布;D .不独立也不同分布。
概率论与数理统计课程期末考试试卷(工类)
学号 姓名 得分
一. 填空题(每空3分,共30分)
1. 设()0.5P A =,()0.6P B =,()0.7P A B =,则()|P A B = 。
2. 若X 为[]1,0区间上均匀分布,记}
3.01.0{≤≤=X A ,Y 表示对X 进行25次独立观测时事件A 发生的次数。
则=)(Y E , =)(Y Var 。
3. 若随机变量21,X X 相互独立,且1X ~)3,3(2N ,2X ~)2,1(2N ,令212X X X -=,则X ~ ,{}46-<<P X = 。
注1:)(x Φ为正态分布N (0,1)的分布函数,8413.0)1(=Φ。
4. 设随机变量X 的数学期望()7E X =,方差()5=Var X ,用切比雪夫不等式估计得{}212P X <<≥ 。
5. 若)2(,,,21>n X X X n 为抽自正态总体),(2σμN 的随机样本,记 ∑∑==--==n i i n i i X X n S X n X 1
221)(11,1. 则σμ/)(-X n ~ ,2/)(S X n μ-~ ,22/)1(σS n -~ 。
6.设10021,,,X X X 是抽自正态总体)1,( μN 的简单样本,则μ的置信系数为0.95
的置信区间为[ , ]。
注2:Z 为正态分布N (0,1)的右分位点,01,96.1025.0=Z ,645.105.0=Z 。
二.计算题(每题14分,共70分,做题时须写出解题过程,否则不能得分)
1.有型号相同的产品两箱,第一箱装12件产品,其中两件为次品;第二箱装8件,其中一件为次品。
先从第一箱中随机抽取两件放入第二箱,再从
第二箱中随机抽取一件。
(1). 求从第二箱中取出次品的概率;
(2). 若从第二箱中取出了次品,求从第一箱中未取到次品的概率。
2. 设随机变量X 有概率密度函数 ⎪⎩
⎪⎨⎧∈--∈+=其他,,0],1,0(,1],
0,1(,1)(x x x x x f 令2X Y =。
(1). 求Y 的概率密度函数)(y f Y ;
(2). 求Y 的期望)(Y E 与方差)(Y Var 。
3. 设二维随机向量),(Y X 的联合概率密度函数为
⎩⎨⎧∞<≤≤⋅=-.,
00,),(其他,y x e c y x f y (1). 求常数c ;
(2). 求X 和Y 的边缘概率密度)(x f X 和)(y f Y ;
(3). 求)1(<+Y X P 。
4.若)2(,,,21>n X X X n 为抽自总体X 的随机样本,总体X 有概率密度函数
,0, (;)0,
0,x e x f x x θθθ-⎧≥=⎨<⎩ 其中θ>0常数。
求:(1).θ的矩估计θ
ˆ; (2).θ的极大似然估计θ。
5. 设一批1000克包装袋装食盐的重量服从正态分布),(2σμN ,其中μ和σ为未知常数, 0>σ。
为检查包装质量,从生产线上随机抽取食盐10袋,并称其重量,得样本均值998.4=x g , 样本方差2 5.76=s g 2。
对检验水平05.0=α,做检验:
(1). 0:1000H μ=, 1:1000H μ≠;(2). '20: 4.0H σ=, '21: 4.0H σ≠. 附 t 分布与2
χ分布表。