路灯节能控制系统设计
- 格式:doc
- 大小:728.50 KB
- 文档页数:10
基于单片机控制的智能路灯控制系统设计一、本文概述随着科技的不断进步和城市化进程的加速,城市照明系统作为城市基础设施的重要组成部分,其智能化改造已成为提升城市管理水平和节能减排的重要措施。
智能路灯控制系统作为城市照明系统的核心,其设计和实现对于提高路灯的运行效率、降低能耗、增强城市照明的智能化水平具有重要意义。
本文旨在探讨基于单片机控制的智能路灯控制系统的设计方法和实现策略。
本文将介绍智能路灯控制系统的基本概念和功能需求,阐述其在城市照明中的作用和意义。
将详细分析单片机控制系统的工作原理及其在智能路灯控制中的应用,包括单片机的选型、外围设备的选择、控制算法的设计等关键技术问题。
接着,本文将重点介绍智能路灯控制系统的设计流程,包括硬件设计、软件编程、系统测试等环节,并结合实际案例,展示该系统在实际应用中的效果和优势。
本文将对智能路灯控制系统的发展趋势进行展望,探讨未来可能的技术革新和应用拓展。
通过本文的研究和分析,期望能够为相关领域的工程技术人员和研究人员提供有益的参考和启示,推动智能路灯控制系统的发展,为建设更加智能、节能、环保的城市照明系统贡献力量。
二、智能路灯控制系统总体设计本节将详细介绍基于单片机控制的智能路灯控制系统的总体设计。
该系统设计旨在实现路灯的智能化管理,提高能源利用效率,同时确保道路照明质量。
能效优化:通过精确控制路灯的开关和亮度,减少能源浪费,实现节能减排。
单片机控制单元:作为系统的核心,负责处理传感器数据,控制路灯的开关和亮度。
传感器单元:包括光强传感器和运动传感器,用于检测环境光线强度和行人车辆流动情况。
单片机根据传感器数据,通过预设的控制算法,决定路灯的开关和亮度。
通信协议:采用稳定可靠的通信协议,确保数据传输的实时性和安全性。
三、单片机控制模块设计单片机控制模块是整个智能路灯控制系统的核心部分,负责接收传感器信号、执行控制逻辑、以及驱动路灯的开关。
在本设计中,我们采用了广泛应用的STC89C52单片机作为核心控制器。
智能路灯控制系统设计毕业设计智能路灯控制系统设计——毕业设计一、课题背景随着城市的不断发展和智能化的进步,传统路灯系统已经不能满足人们的需求。
智能路灯控制系统可以通过智能化的技术手段,对路灯进行智能化的管理和控制,实现路灯的智能化,提高路灯的使用效率,同时也为城市节能减排做出了积极的贡献。
因此,设计一套可靠性高、易于操作、具有智能化管理和控制功能的智能路灯控制系统成为当今的热门课题。
二、设计思路本次毕业设计的智能路灯控制系统主要包括智能控制器、路灯控制中心和手机App三个部分。
具体实现方式如下:1.智能控制器:智能控制器使用单片机(MCU)和无线通讯模块组成,通过感应器检测环境光强度、路灯实际功率和亮度,并实时反馈传感器数据到路灯控制中心。
控制器安装在路灯杆上,通过网络通讯可以与路灯控制中心实现实时通讯。
2.路灯控制中心:路灯控制中心是智能路灯系统的核心部分,由服务器和数据库组成,实现对智能控制器、路灯和App的智能管理和监控。
路灯控制中心可以对路灯进行智能化管理,如控制路灯的开关、设置灯光亮度等,同时具备实时监控路灯的工作状态,当路灯损坏时,可以及时进行维修和更换,避免路灯故障对城市安全带来的影响。
3.手机App:智能路灯控制系统提供了手机App,用户可以通过手机App对路灯进行管理和控制,例如通过App对路灯开关进行控制、调整灯光亮度等,用户还可以通过App监控路灯的工作状态和及时反馈意见。
三、技术实现方案1.硬件设计:将传感器等硬件设备与单片机(MCU)相连,通过编写程序实现路灯的智能管理和控制。
2.通信技术:选择物联网通信技术,采用GPRS、WiFi等网络通讯技术,通过路灯控制中心实现智能管理和监控。
3.软件设计:采用云计算技术,实现路灯的实时监控和远程操作,使用Web接口和App接口等软件技术,与MCU设备通信协议进行通讯。
四、实验结果及分析本次毕业设计成功实现了一套三部分智能路灯控制系统,实现了路灯的智能化管理和控制,减少了能源的浪费,大大提高路灯的使用效率,为城市的节能减排做出了积极贡献。
智能路灯系统的设计与实现智能路灯系统是一种结合了智能化技术和照明技术的新型路灯系统,通过引入各种先进的传感器、通信技术以及智能控制算法,实现对路灯的自动控制和管理。
它不仅能够实现节能减排的目标,还能够提高路灯的使用寿命、提升道路安全性和智能化管理水平。
一、智能路灯系统的设计原理智能路灯系统的设计可以分为硬件和软件两个方面。
在硬件方面,需要考虑路灯的照明效果、节能性能以及系统的可靠性。
在软件方面,需要设计智能控制算法、建立数据传输和处理模块,并且实现对路灯的远程监控和管理。
在智能路灯系统的设计中,首先需要选择适合的传感器来感知环境的变化,如光照传感器、温湿度传感器、噪声传感器等。
这些传感器可以实时监测环境参数的变化,并利用数据传输模块将数据传输至后台服务器进行处理。
同时,系统还需考虑使用节能的LED灯作为照明光源,通过对光照强度、光色等参数的调节,实现智能控制,从而提高能源利用效率。
其次,智能路灯系统需要具备远程监控和管理功能。
通过使用通信模块,可以实现对路灯状态的实时监控和控制。
同时,利用云平台的支持,可以实现对整个路灯系统的集中式管理,如路灯开关、亮度调节、故障检测等操作都可以通过后台系统进行远程控制和管理。
这样一来,不仅能够方便运营管理人员进行实时操作,还能够大大降低维护成本和提高工作效率。
二、智能路灯系统的实现步骤1. 硬件设计与组装首先,需要根据系统需求设计并选购合适的传感器、控制模块以及通信模块。
之后,需要进行硬件组装和安装,包括将传感器固定在路灯中、安装控制和通信模块等。
这一步骤的关键在于确保硬件的稳定性和可靠性,以保证系统正常运行。
2. 软件开发与编程接下来,需要进行软件开发与编程。
包括建立数据传输和处理模块,开发智能控制算法,实现远程监控和管理功能等。
此外,还需要开发用户端App或者Web端界面,方便管理人员对路灯系统进行操作和监控。
3. 网络配置和实验测试在系统开发完成后,需要进行网络配置和实验测试。
太阳能LED路灯控制系统设计一、设计目标随着人们对环境保护意识的增强和能源消耗的压力,太阳能照明系统作为一种新型照明方式逐渐被广泛应用。
本设计旨在设计一套太阳能LED路灯控制系统,使其能够实现按需调节光照亮度、延长路灯使用寿命、提高能源利用效率和减少能源浪费。
二、系统组成该太阳能LED路灯控制系统主要由三部分组成:太阳能光电转换装置、储能装置和LED路灯控制装置。
1.太阳能光电转换装置:通过太阳能电池板将太阳能转化为电能,并将其充电送到储能装置。
太阳能电池板应根据实际情况选择合适的功率,以满足夜间照明需求。
2.储能装置:由电池组成,用于存储白天由太阳能电池板转化的电能,以供夜晚照明使用。
储能装置应具有较大的容量和高效的充放电特性,以确保路灯能够持续工作数天。
3.LED路灯控制装置:主要由控制器、传感器和LED路灯组成。
控制器采用微处理器控制,能够根据不同的环境条件和光照需求调节路灯的亮度,实现节能调光。
传感器可以负责检测环境亮度和电池电量,以便对路灯的亮度进行调节,并进行充电和放电管理。
LED路灯采用高效节能的LED光源,能够提供优质的照明效果。
三、系统工作原理当太阳能电池板接收到太阳能并转化为电能时,控制器通过传感器来调节LED路灯的亮度。
在光线较暗的时候,控制器会自动提高LED路灯的亮度,以确保良好的照明效果。
当光线足够亮时,控制器会自动降低LED路灯的亮度,以实现节能减排的目的。
储能装置起到了存储电能的作用,当夜晚来临时,路灯可以从储能装置中获取电能来提供照明。
当电池电量较低时,控制器会自动调整LED路灯的亮度,以延长电池的寿命。
同时,控制器也会监测电池电量,当电量过低时,会自动调节LED路灯的亮度或者关停路灯,以充电恢复电量。
四、系统特点1.节能环保:太阳能光电转换装置将太阳能转化为电能,具有非常高的能源利用效率,是一种非常环保的照明方式。
而LED路灯作为光源,比传统的荧光灯和白炽灯更加节能。
节能环保型智能LED路灯控制系统设计一、引言随着城市化进程的加速,城市路灯数量呈现快速增长的趋势。
传统的路灯采用白炽灯或高压钠灯,能耗高、寿命短、光效低等问题逐渐显现。
为了解决这些问题,设计一种节能环保型智能LED路灯控制系统是非常必要的。
二、设计目标本设计的主要目标是实现对LED路灯的智能控制,以实现节能、环保和提高路灯的效能。
具体来说,设计要求包括:1.路灯智能控制:实现对路灯的开关控制和亮度调节,能够根据天气条件和道路使用情况自动调整亮度。
2.路灯网络化管理:实现对路灯的集中监控和管理,包括开灯状态、功率消耗、故障检测等,方便运维人员及时发现并解决问题。
3.能耗监测与统计:能够记录和统计每个区域的路灯能耗情况,为城市能源管理提供参考。
4.省电节能功能:通过智能调光和定时开关功能,实现路灯的节能功能,减少能耗及环境污染。
5.绿色环保:选用环保材料和能效高的LED灯作为光源,减少对环境的污染。
三、设计方案1.硬件设计(1)控制器:选用嵌入式微处理器作为控制器,具有较高的计算能力和稳定性。
(2)LED光源:采用高效节能的LED光源,并根据实际需求选择适当的功率和色温。
(3)感应器:安装感应器以感知外界环境的亮度和运动情况,根据感应结果智能控制路灯的开关和亮度。
(4)通信模块:安装无线通信模块,实现路灯的远程监控和管理。
2.软件设计(1)控制算法:根据感应器和天气数据,设计智能控制算法,实现路灯的自动调光和定时开关。
(2)管理系统:实现对路灯的集中管理,包括实时监控、故障检测和报警等功能。
(3)能耗统计与分析:通过数据采集和处理,实现对每个区域的路灯能耗的统计和分析。
四、设计实施1.硬件部署(1)安装控制器和感应器:将控制器和感应器安装在每个路灯上,确保能够感知路灯周围的环境变化。
(2)安装LED光源:将高效节能的LED光源更换到每个路灯上,确保路灯的亮度和能效都有所提升。
(3)安装通信模块:为每个路灯安装无线通信模块,确保能够远程监控和管理路灯。
LED智能路灯控制系统设计LED智能路灯控制系统是一种基于现代通信技术、智能控制技术、计算机技术、传感器技术等多种技术的综合应用系统。
它可以实现对路灯的远程控制、自动化控制和节能控制,提高了路灯的运行效率,并且减轻了管理人员的工作压力。
本文将探讨一下LED智能路灯控制系统的设计。
一、系统架构LED智能路灯控制系统由三部分组成:路灯控制中心、路灯控制装置和路灯节点。
它们之间通过无线通信方式(或者有线通信方式)实现信息传输和控制命令传递。
其中,路灯控制中心是整个系统的核心部分,它是对路灯进行全局控制的地方。
二、系统功能(一)远程控制功能路灯控制中心可以实现对路灯的远程控制,管理人员可以随时通过网络操控中心控制路灯的开关、亮度、颜色等。
这种功能强化了路灯的可操作性,方便了管理人员的工作。
同时,路灯控制中心还可以根据路灯的实际情况,及时调整路灯的亮度和颜色,确保路灯的实用性和美观性。
路灯控制系统可以根据天气变化、节假日等情况,自动调节路灯的亮度和颜色。
例如,在晴天时,路灯可以降低亮度,节省能源;在节假日时,路灯可以变化颜色,增加节日氛围。
这些自动化控制的功能可以降低管理人员的工作量,提高了路灯的使用效率和质量。
路灯控制系统可以定时启动和关闭路灯,减少路灯运行时间,进而减少路灯能耗。
当路灯节点接收到中央控制的关灯指令时,智能节点掌握灭灯时间,路灯自动切断电源,灯头停止供电。
这种节能控制的功能可以降低管理成本,提高路灯的节能效率,并且降低对环境的影响。
三、系统优势(一)运行稳定LED智能路灯控制系统采用模块化设计以及B/S架构模式,系统稳定性高,具有很强的扩展性,可以在不中断其他路灯的工作情况下,对部分或全部的路灯进行控制,确保系统不会出现故障或意外中断的情况。
(二)易于操作LED智能路灯控制系统是一种高智能化的系统,它可以自动化完成大部分的控制操作,而且操作简单方便,易于管理操作人员上手学习,减少了工作量和工作强度。
《城市智能路灯施工方案(节能与监控系统设计)》一、项目背景随着城市化进程的不断加快,城市照明需求日益增长。
传统路灯存在能源浪费、管理不便等问题,已不能满足现代城市发展的需求。
为了提高城市照明的能效,实现智能化管理,本项目旨在建设城市智能路灯系统,该系统将结合节能技术和监控系统设计,为城市提供高效、可靠、智能的照明服务。
城市智能路灯系统具有以下优势:1. 节能高效:采用先进的节能技术,如 LED 光源、智能调光等,可大幅降低能源消耗,减少运营成本。
2. 智能监控:通过监控系统实现对路灯的远程监控和管理,及时发现故障并进行维修,提高路灯的可靠性和稳定性。
3. 环保可持续:减少能源消耗和碳排放,符合国家环保政策,促进城市可持续发展。
4. 提升城市形象:智能路灯系统可以实现多种照明效果,提升城市的美观度和夜间景观。
二、施工步骤(一)施工准备1. 技术准备(1)熟悉施工图纸和相关技术规范,了解智能路灯系统的组成和工作原理。
(2)进行现场勘查,确定路灯的安装位置、线路走向和基础形式。
(3)制定施工方案和技术交底,明确施工工艺和质量要求。
2. 材料准备(1)根据施工图纸和材料清单,采购智能路灯系统所需的材料和设备,包括路灯杆、灯具、控制器、传感器、电缆等。
(2)对采购的材料和设备进行检验和测试,确保其质量符合要求。
3. 人员准备(1)组建施工队伍,包括项目经理、技术负责人、施工员、安全员、质检员等。
(2)对施工人员进行技术培训和安全交底,提高施工人员的技术水平和安全意识。
4. 现场准备(1)清理施工现场,拆除障碍物,平整场地。
(2)设置施工标志和安全警示标志,确保施工现场的安全。
(二)基础施工1. 测量放线根据设计图纸,使用全站仪或经纬仪进行测量放线,确定路灯基础的位置和尺寸。
2. 基础开挖采用挖掘机进行基础开挖,按照设计要求控制基础的深度和尺寸。
开挖过程中,要注意保护地下管线和设施。
3. 基础浇筑(1)在基础底部铺设一层碎石垫层,然后浇筑混凝土基础。
市区路灯节能改造设计方案市区路灯是城市夜晚的重要照明设施,既保障了居民的出行安全,也提升了城市的整体形象。
随着环保意识的提高和节能减排政策的实施,对路灯的节能改造愈发成为公共管理者的重要任务。
结合现实需求,以下是市区路灯节能改造的设计方案。
LED光源的应用传统的高压钠灯和荧光灯寿命短,能耗大,不利于节能目标的达成。
对于新改造的路灯,采用LED光源是首选方案。
LED灯具不仅具有更高的光效,能达到较好的照明效果,还有助于降低能耗。
其寿命长达五万小时,几乎可以做到免维护,这在很大程度上降低了后续的维修成本。
智能控制系统在路灯改造中,集成智能控制系统至关重要。
利用传感器技术,路灯可以实时监测环境光线强度与交通流量。
当天色逐渐暗去或有车辆经过时,灯光可自动调节亮度。
这样的设计不仅提高了电能的使用效率,也延长了灯具的使用寿命。
实践中,智能控制系统能够实现新能源的“非全亮”模式,在人流较少的时段,实现灯光的柔和照明,充分降低能耗。
太阳能路灯结合在部分适合阳光照射的区域,太阳能路灯的应用成为一种绿色的选择。
太阳能路灯不依赖于电网,可以通过白天的太阳能储存,实现夜间照明。
虽然初期投入相对较高,但长期使用中的节能效果是显而易见的。
尤其适合在公园、景区等人流量变化大的地方应用,避免了电力资源的浪费。
路灯布局优化合理的路灯布局可以进一步提升节能效果。
需进行详细的光照需求评估,合理规划路灯间距与分布。
对于城市主干道来说,路灯之间的距离可以适当增大,而在小巷或人流密集的区域,灯具间距应相对较小,以保证安全和美观。
优化布局后,路灯的利用率和能效都将提升,减少不必要的光污染。
光源色温的选择光源的色温也关系到节能与舒适度。
选择合适的光色有助于提升路灯的照明质量。
研究显示,3000K到4000K的色温最为适合路面照明,既能提供良好的视觉效果,又不至于给周围环境造成过强的光污染。
实施色温适配方案不仅减少了电力消耗,更为市民创造出一个更为舒适的夜间环境。
路灯照明智能控制系统1概述在我国,据统计,2005年城市公共照明耗电量占我国照明耗电量的30%,约439亿kWh,以平均电价0。
65元/kWh计算,一年开支285亿元.想要让路灯亮起来,让城市亮起来,而且亮得更科学,亮得省电省钱,就必须依靠科技创新,采用新技术,大力开发节能高新技术产品,制定相应的新产品推广应用配套政策,推动我国道路照明节电节能工作的全面展开.我们研发的智能路灯控制系统使路灯管理智能化、规范化,提高管理水平和工作效率;使工作人员从繁复的“巡检"工作中解放出来,减少维护和更换灯具对道路运行安全的影响;给用户提供良好服务和安全保障的同时也提高大桥安全系数.路灯控制系统通过配电箱内的智能控制器对照明灯进行监控,实现全线照明灯开启/关闭;路段照明灯开启/关闭;照明灯气象信息联动(需气象参数采集单元)等功能;我们的智能路灯控制系统不仅为节约电能,节约人力、物力提供了有效手段,同时也为提高城市现代化形象,保证道路交通安全等级,实现良好的社会效益.2智能路灯照明系统构成智能路灯照明控制系统由路灯控制中心、智能照明路段控制器、终端智能控制器及通讯系统等组成。
监控中心:系统需要路灯智能控制系统工作站1套照明配电箱:控制系统工作站连接多台智能照明路段控制器终端智能控制器:全线路灯每杆路灯配置1台3系统结构原理图:4系统功能路灯控制采用智能照明监控方式,每杆路灯处安装一个智能终端控制器控制路灯及雾灯;每个路灯段(每台路灯照明配电箱处)安装一台智能照明控制器,控制由监控中心通过通讯网络实现远程控制;智能照明监控系统具备如下功能:4.1地理信息功能:可在地图屏上动态显示全线的任一处路灯控制段及每个路灯和雾灯的工作状态、地理位置(公里标,方向)及灯组编号.4.2降压启动/自动稳压功能:通过降压启动降低冲击电流,保护线路,自动稳压克服电压波动对光通量影响,提高光源寿命,降低电能消耗。
4.3自动/人工调光功能:在正常光通量运行工况下,后半夜通过智能系统的指令,光通量下调30%;也可根据环境需求,在控制中心人工无级调节(系统/区域/单灯)路灯的光通量。
自动节能控制路灯课程设计一、课程目标知识目标:1. 学生能够理解自动节能控制路灯的基本原理,掌握电路组成及各部分功能。
2. 学生能够掌握路灯节能控制的方法,了解传感器的工作原理及应用。
3. 学生能够了解我国节能减排政策及智能照明技术在其中的应用。
技能目标:1. 学生能够运用所学知识,设计简单的自动节能控制路灯电路。
2. 学生能够运用传感器进行路灯亮度的检测,并根据环境光线自动调节亮度。
3. 学生能够通过课程实践,提高动手操作能力和团队协作能力。
情感态度价值观目标:1. 学生能够认识到节能减排的重要性,树立环保意识,关注可持续发展。
2. 学生能够通过课程学习,培养对电子技术的兴趣,激发创新精神。
3. 学生能够通过团队协作,培养合作意识,提高沟通能力。
课程性质:本课程为电子信息类学科,以实践为主,注重理论联系实际。
学生特点:初三学生,具备一定的物理知识和电子技术基础,对新技术充满好奇,动手能力强。
教学要求:结合学生特点,采用讲授、实践、讨论等多种教学方法,注重培养学生的动手能力、创新意识和团队协作能力。
在教学过程中,关注学生的个体差异,充分调动学生的积极性,使学生在实践中掌握知识,提高能力。
通过本课程的学习,使学生能够将所学知识应用于实际生活,为我国节能减排事业作出贡献。
二、教学内容1. 自动节能控制路灯原理- 路灯控制系统组成及功能- 节能控制方法及其优缺点分析- 传感器工作原理及在路灯控制中的应用2. 路灯电路设计- 基本电子元件及其作用- 简单电路图的识别与绘制- 自动节能控制路灯电路设计实例3. 传感器应用与调试- 光敏传感器选型与应用- 传感器信号处理方法- 路灯亮度自动调节实现方法4. 课程实践与案例分析- 设计并搭建自动节能控制路灯模型- 调试与优化电路,实现节能控制功能- 分析实际案例,探讨智能照明技术的应用与发展教学内容安排与进度:第一课时:自动节能控制路灯原理学习第二课时:路灯电路设计与基本元件认识第三课时:传感器工作原理及选型第四课时:传感器应用与调试第五课时:课程实践与案例分析教材章节及内容关联:本课程内容与教材《电子技术基础与应用》第四章“传感器及其应用”相关。
智能路灯控制系统设计方案设计方案:1. 系统结构设计:- 路灯感应模块:通过光敏传感器感知周围环境光照强度,根据设定的阈值来判断是否需要开启路灯。
- 控制模块:负责接收路灯感应模块的信号,并进行处理控制,控制路灯的开关状态。
- 通信模块:负责与中心服务器进行通信,接收服务器发送的控制指令,并将路灯的状态和数据上报给服务器。
- 中心服务器:负责接收和处理路灯控制模块上传的数据,根据数据分析统计路灯使用情况,向控制模块发送指令实现集中管理。
2. 功能设计:- 光敏感应控制:路灯感应模块根据光敏传感器感知到的环境光照强度来判断是否需要开启灯光。
- 定时控制:设定路灯的开关时间,根据时间自动开启或关闭路灯。
- 节能模式:根据路灯使用情况和环境光照强度动态调整灯光亮度,实现节能效果。
- 异常监测:监测路灯的工作状态,如灯泡是否损坏、线路是否有故障等,及时发出警报并通知维修人员。
3. 技术选型:- 光敏传感器:选择高灵敏度的光敏传感器,能够准确感知到周围的光照强度。
- 控制模块:选择高性能的嵌入式开发板,如Arduino、Raspberry Pi等,具备较强的计算和控制能力。
- 通信模块:选择网络通信模块,如GPRS、NB-IoT等,实现与中心服务器的数据传输。
- 中心服务器:选择稳定可靠的服务器,具备存储和处理大量数据的能力,能够实现对路灯系统的集中管理和控制。
4. 系统流程设计:- 路灯感应模块不断感知周围的环境光照强度。
- 当环境光照强度低于设定的阈值时,感应模块发送信号给控制模块。
- 控制模块接收到信号后判断是否需要开启灯光,并控制路灯的开关状态。
- 控制模块将路灯的状态和数据通过通信模块上传到中心服务器。
- 中心服务器接收到数据后进行分析统计,并根据需要发送控制指令给控制模块。
- 控制模块接收到指令后执行相应的操作,如调整灯光亮度。
- 中心服务器实时监测路灯的工作状态,发现异常情况时及时报警并通知维修人员。
一、引言随着城市化进程的加快,路灯照明系统在夜间城市照明中发挥着越来越重要的作用。
传统的路灯照明系统存在能源消耗大、维护成本高、控制方式单一等问题。
为了解决这些问题,本文设计了一种基于单片机的路灯控制器,通过光控、声控、人体感应等多种控制方式,实现对路灯的智能控制,提高照明效率,降低能源消耗。
二、系统设计1. 系统总体方案本系统采用单片机作为核心控制器,结合光敏电阻、声音传感器、人体红外感应模块等传感器,实现对路灯的智能控制。
系统主要由以下几个模块组成:(1)传感器模块:包括光敏电阻、声音传感器、人体红外感应模块等。
(2)单片机控制模块:采用STC89C52单片机作为核心控制器,负责接收传感器模块的信号,并根据预设的控制策略进行控制。
(3)执行模块:包括LED路灯、继电器等,负责根据单片机的控制指令实现路灯的开关和亮度调节。
(4)电源模块:采用太阳能电池板和蓄电池,为系统提供稳定的电源。
2. 系统硬件设计(1)传感器模块:光敏电阻用于检测环境光线强度,声音传感器用于检测周围环境声音,人体红外感应模块用于检测有人经过。
(2)单片机控制模块:STC89C52单片机具有丰富的I/O口、中断、定时器等功能,能够满足系统控制需求。
(3)执行模块:LED路灯具有节能、寿命长、亮度高、响应速度快等优点,适用于路灯照明。
继电器用于控制路灯的开关。
(4)电源模块:太阳能电池板将太阳能转换为电能,蓄电池用于储存电能,为系统提供稳定的电源。
3. 系统软件设计(1)系统初始化:单片机启动后,对各个模块进行初始化,包括I/O口、定时器、中断等。
(2)传感器数据处理:对光敏电阻、声音传感器、人体红外感应模块的信号进行采集和处理,得到相应的状态信息。
(3)控制策略:根据预设的控制策略,对路灯进行控制。
如:当环境光线较弱时,启动路灯;当检测到声音或有人经过时,调节路灯亮度。
(4)数据传输:通过无线通信模块,将路灯状态信息传输到监控中心。
节能路灯毕业设计节能路灯毕业设计随着城市化进程的加快,城市的照明需求也日益增长。
传统的路灯照明方式不仅能耗高,而且对环境造成了一定的污染。
因此,设计一种节能的路灯系统成为了一项具有挑战性的毕业设计课题。
一、设计目标与原则节能是设计路灯系统的核心目标。
传统的路灯系统采用高压钠灯作为光源,其能耗较高。
因此,我们的设计目标是降低能耗,提高能源利用效率。
其次,环境友好也是我们的设计原则之一。
传统的路灯系统会产生大量的光污染,对夜间生态环境造成破坏。
我们希望设计一种能够减少光污染的路灯系统,保护夜间生态环境。
二、设计方案为了实现节能和环境友好的目标,我们采用了以下设计方案:1. LED光源:传统的高压钠灯使用较高的功率,而LED光源具有高效节能的特点。
因此,我们选择了LED光源作为路灯的照明源,能够显著降低能耗。
2. 光控系统:为了进一步降低能耗,我们设计了光控系统。
该系统能够根据环境光强度自动调节路灯的亮度。
在夜间光强较低的情况下,路灯亮度适度降低,以减少能耗。
3. 智能控制系统:为了提高路灯系统的智能化程度,我们引入了智能控制系统。
该系统能够通过感应器检测行人和车辆的存在,并在有需求时自动调节路灯亮度。
这不仅能够提高能源利用效率,还能够提高行人和车辆的安全性。
三、设计实施与效果我们将设计方案实施到一座城市的路灯系统中,并进行了一段时间的实际运行测试。
测试结果表明,我们的设计方案取得了良好的效果。
首先,LED光源的使用显著降低了能耗。
与传统的高压钠灯相比,LED光源的能耗仅为其一半左右。
这使得整个路灯系统的能耗大幅度下降,为城市节约了大量的能源。
其次,光控系统的应用进一步降低了能耗。
在夜间光强较低的情况下,路灯亮度适度降低,能够节约更多的能源。
同时,由于路灯亮度的适度降低,也减少了光污染对夜间生态环境的破坏。
最后,智能控制系统的引入提高了路灯系统的智能化程度。
通过感应器的检测,路灯能够根据行人和车辆的存在自动调节亮度。
模拟路灯节能控制系统的设计
1 引言
在倡导绿色用电的今天,路灯节能控制日益成为人们关注的话题,这里设计并制作一套模拟路灯节能控制系统。
节能控制系统结构如图1 所示。
图1 模拟路灯节能控制系统结构图
模拟路灯节能控制系统实现的功能: 支路控制器有时钟功能,能设定、显示开关灯时间,控制整条支路按时开灯和关灯; 能根据环境明暗变化,自动开灯和关灯,能根据交通情况自动调节亮灯状态;并能分别独立控制单只路灯的开灯和关灯时间; 当图1 模拟路灯节能控制系统结构图路灯出现故障时( 灯不亮) ,支路控制器发出声光报警信号,并显示有故障路灯的地址编号。
单元控制器具有调光功能,路灯驱动电源输出功率能在规定时间按设定要求自动减小,该功率应能在20% ~100% 范围内设定并调节,调节误差≤2%。
2 总体设计方案
2. 1 设计思路
设计采用PWM 脉宽调制技术和恒流源电路对路灯的驱动和亮度调节。
通过单片机和传感器及其检测电路完成路灯工作状态的控制。
显示部分利用液晶显示模块,菜单式操作,显示时间、故障路灯地址、支路开关灯时间、每只灯的开关时间等功能。
2. 2 设计原理
根据模拟路灯节能控制系统结构图,将整体电路分成为五部分: 环境控制电路、时钟电路、交通状况的传感器检测电路、显示控制模块、LED 恒流驱动及故障检测电路。
2. 2. 1 环境控制电路
利用光敏电阻的阻值与光照度呈反比例关系,采样其两端的电压信号,利用采样的电压信号通过施密特触发器输出的TTL 电平来控制LED 灯的开关。
电路可靠,有效地避免由于短时间光照剧烈变化引起的误动作,操作者可以通过电位器方便的进行调试。
2. 2. 2 时钟电路
使用时钟专用芯片DS1302进行时钟控制,通过外加很少的电路就可以实现高精度的时钟信号。
外围电路简单可靠,时间精度高,采用串口通信可以节省I /O 口的资源,通过外接锂电池后可以实现时间信息储存。
2. 2. 3 交通状况的传感器检测电路
使用红外传感器,来判断物体是否通过相关位置,并送入单片机判断执行相关程序。
它具有光电传感器的优点,又避免了LED 灯的灯光干扰。
2. 2. 4 显示控制模块
使用128 × 64 液晶点阵进行信息显示,使用独立键盘进行功能切换和时间调整。
信息量大,外围电路简单,通过下拉式菜单方便操作,人机界面友好。
2. 2. 5 LED 恒流驱动及故障检测电路
利用三端可调稳压集成块LM317,实现恒流输出。
PWM 脉宽调制法来控制灯的亮度,可以精确的控制灯的亮度和功率,而且LED 灯在从暗到亮的变化中过度平滑。
可以选用单片机内部集成有两路PWM脉宽,能方便的产生所需要的PWM 脉宽调制信号。
2. 3 系统组成
2. 3. 1 根据以上的设计思路及设计原理确定系统组成框图如图2。
图2 系统组成框图
2. 3. 2 每只LED 灯控制逻辑关系图
每只LED 灯控制逻辑关系图如图3 所示。
在规定的时间条件成立( 开灯时间) 或环境明暗条件成立( 暗到一定程度) 的情况下开灯; 当有物体( 如人、车等) 通过到规定的区域内时灯亮,当物体离开规定区域时灯灭,实现节能要求。
图3 LED 灯控制逻辑关系图
3 单元电路设计
3. 1 环境光控制电路
环境控制电路是对环境光亮度的检测,将检测信号送单片机P15,从而实现自动开灯关灯。
图4为环境控制电路图。
明暗检测采用光敏电阻RG1 和R12 ( RP2 ) 分压,提取电压信号,送到由555 定时器组成的施密特触发器。
当环境暗到一定程度( 通过RP2 可以方便的调节) ,RG1 阻值上升,施密特触发器翻转,将电平信号送单片机处理。
C8 为抗干扰设计,如天暗时,闪电的干扰,C8 使555 的2 脚电压不会突变,防止误动作。
D2 为指示灯,方便调试。
图4 环境控制电路图
3. 2 时钟电路
DS1302 是一款高精度时钟集成电路,它可以进行年、月、日、星期、时、分、秒计时,功能强大。
电路如图5 所示。
图5 时钟电路图
3. 3 交通状况的传感器检测电路
传感器检测电路如图6 所示。
传感器采用E18-D80NK 红外传感器,是一种集发射与接收于一体的光电传感器。
检测到目标是低电平输出,正常状态是高电平输出; 检测距离可以根据要求进行调节。
图6 传感器检测电路图
3. 4 显示控制模块
显示控制模块如图7 所示。
控制见软件设计。
图7 显示控制模块
3. 5 LED 恒流驱动及故障检测电路
恒流驱动及故障检测电路如图8 所示。
图8 是其中一路LED 恒流驱动电路。
恒流驱动最简单的两端线性恒流驱动电路。
它借用三端集成稳压器LM317 组成恒流电路,外围仅用两个元件:
电流取样电阻R42 和抗干扰消振电容C9。
J9、J10、J12 分别是路灯、压降测试端、电流测试端。
恒流值I 由R42 值来确定: I = 1. 25 /R42。
1. 25 V 是LM317 的基准电压。
反过来,根据所要求的恒流值I,可计算电流取样电阻: R42 =1.
25 / I。
LM317 最大输出电流可达1. 5 A,工作压差≤40V,稳流精度高,可达± 1 ~ 2% ,内部设有过流、过热保护,使用安全可靠。
LM317 工作在线性状态,其功率损耗P = UI,在恒流值I 已定的情况下,只有降低工作压差U 才能降低功耗。
合适的工作压差选择在4 ~ 8V 范围。
低于3V 将不恒流了。
单片机输出PWM 加在IRF540栅极,控制其通断,来达到调整LED 亮度( 功率) 的功能。
PWM频率一般取值经验500 ~ 1000Hz,通过信号发生器实际测试PWM 占空比在20 ~ 100% 范围调节,频率到1000Hz 左右时路灯无闪烁感。
故障检测电路,采集IRF540 漏极电压,经D6、R40、C7 峰值检波电路得到直流电压信号,与LM393组成的比较器的2 脚电压比较输出电平信号送单片机P10 检测。
按图元件取值,实测路灯正常时,C7 电压为3. 3V,断路故障时0V,短路故障时7. 2V。
实际电路只做了检测断路故障,平时P1. 0为高电平,断路故障时3932 脚电压为0V,比较器翻转输出低电平。
R39 调节比较器基准电压,可以在1V 左右,防止干扰信号。
R37 取值关键,影响C7 的放电时间。
经实验取300K较合适。
短
路检测原理同上。
注意PWM 的占空比只能在20% ~99. 5% 之间调节,当输出100% 的PWM 时,IRF540始终处于导通状态,C7 不会被充电,会影响故障检测。
图8 恒流驱动及故障检测电路
图9 键盘及液晶显示流程图
4 软件设计
软件设计的关键是按要求对路灯控制和液晶的操作界面设置。
4. 1 软件实现的功能
(1) 时钟功能。
( 2 ) 路灯控制。
( 3 ) 2 路PWM 控制。
(4) 键盘及液晶显示。
4. 2 键盘及液晶显示
液晶显示和功能设置采用菜单式操作,流程图如图9 所示。
液晶带汉字库,操作界面友好方便,设置四个多功能键和一个返回键完成整个路灯控制设置和PWM 输出。
4. 3 路灯控制流程图
图10 路灯控制流程图
5 系统测试
5. 1 时钟设置测试
通过菜单操作,进入时间设定,和开关灯设置。
设置当前时间在开关灯时间内: 实测时,当前时间设置为20 点、两路灯的开灯均设置为18 点、关灯时间设置均为为6 点。
移动物体按设计要求进行测试,满足要求。
5. 2 环境明暗变化测试
晚上,用物体遮挡光敏电阻,调节PR2 关灯,指示灯D2 灭,表示调好。
关灯移动物体按设计要求进行测试,满足要求。
5. 3 独立时间控制设置
将两灯开关时间分别设置。
一路满足开灯时间条件,一路不满足时间条件。
移动物体按基本要求进行测试,满足开灯时间条件的路灯会按要求亮灭,不满足时间条件的路灯长灭。
交换两路灯开灯条件结果一致。
5. 4 将路灯1 去掉( 模拟断路) ,满足时间条件,移动物体按基本要求路灯1 应该亮,蜂鸣器响,同时示警灯闪烁,液晶显示L1 故障。
路灯2 同样满足要求。
实际的LED 灯故障基本都是断路,所以仅作断路检测。
5. 5 由于路灯LED 亮灭时由PWM 控制,只要PWM 信号能在20 ~ 100% 内调节,误差小于2% ,则路灯电源的输出功率就能满足设计要求。
实际测试PWM 信号只能在20% ~ 99% 间调节( 见2. 5 所示) ,最大误差1% ,满足设计要求。
6 结束语
模拟路灯节能控制系统经测试完全满足设计要求和工作需要,控制系统操作界面简单易懂,单电源供电使电路简洁明快,成本低廉; 环境光控制电路、恒流驱动及故障检测电路设计特色突出,交通状况的传感器检测电路经济实用,整个模拟路灯节能控制系统的应用前景广泛,具有开发应用价值。