微生物浸矿菌群的选育及培养
- 格式:pdf
- 大小:154.32 KB
- 文档页数:2
微生物菌种的选育方法菌种选育Loremreferentibus(英语:Strain selection 日语:ひずみの选択法语:la sélection des souches 俄语:Штаммвыбор 德语:Stammselektion )微生物菌种是决定发酵产品的工业价值以及发酵工程成败的关键,只有具备良好的菌种基础,才能通过改进发酵工艺和设备以获得理想的发酵产品。
菌种用途广泛涉及食品、医药、工农业、环保等诸多领域。
自然选育自然选育的菌种来源于自然界、菌种保藏机构或生产过程,从自然界中选育菌种的过程较为复杂,而从生产过程或菌种保藏机构得到菌种的自然选育过程较为简单。
自然选育的步骤主要是:采样,增长培养,培养分离和筛选等。
采样筛选的菌种采集的对象以土壤为主,也可以是植物、腐败物品和某些水域等。
土壤是微生物的汇集地,从土壤中几乎可以分离到任何所需的微生物,故土壤往往是首选的采集目标。
微生物的营养需求和代谢类型与生长环境有很大关系。
富集培养由于采集样品中各种微生物数量有很大差异,若估计到要分离的菌种数量不多时,就要人为增加分离的概率,增加该菌种的数量,称为富集培养。
纯种培养尽管通过增长培养的效果很好,但是得到的微生物还是处于混杂状态,因为样品中本身含有许多种类的微生物。
所以,为了取得所需的微生物纯种,增殖培养后必须进行分离。
平板分离法由接种环以无菌操作沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线,微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来。
如果划线适宜的话,微生物能一一分散,经培养后,可在平板表面得到单菌落。
分离方法有三种:即划线分离法、稀释法和组织分离法。
稀释分离法在溶液中再加入溶剂使溶液的浓度变小。
亦指加溶剂于溶液中以减小溶液浓度的过程。
浓溶液的质量×浓溶液的质量分数=稀溶液的质量×稀溶液的质量分数生产能力考察初筛一般通过平板稀释法获得单个菌落,然后对各个菌落进行有关性状的初步测定,从中选出具有优良性状的菌落。
目录1.序言 (1)2难处理金矿的工艺矿物学特点 (1)2.1难处理金矿的工艺矿物学特点 (1)2. 2我国难处理金矿类型和特征 (1)3难浸金矿的预处理主要方法 (1)3.1细菌氧化法 (1)3.1.1含金硫化矿物生物氧化的细菌 (2)3.1.2细菌氧化含金硫化矿的机理 (2)3.1.3细菌氧化工艺 (2)3.1.4影响细菌浸金效果的主要因素 (3)3.2氧化焙烧法 (4)3.2.1概述 (4)3.2.2氧化焙烧原理 (5)3.2.3加石灰氧化焙烧法 (5)3.3加压氧化法 (6)3.3.1概述 (6)4 难浸金矿三种预处理方法的比较及评价 (8)5难处理金矿的其他预处理方法 (9)结束语 (11)致谢 (11)参考文献 (12)浅谈难浸金矿的预处理技术1.序言随着易处理金矿的不断开采,可直接氰化提取的易浸金矿床资源日趋枯竭,难处理(难浸)金矿已成为金矿的重要新资源。
据估计,全世界现在至少有三分之一的金产量产自难处理金矿,储量约占全国金矿地质储量的30%,现已探明的难处理金矿存在选冶联合金回收率低和氰化物耗量高等问题。
因此,如何有效并可持续地开发利用难处理金矿石已成为金的提取研究中最重要的研究课题,也是我国黄金工业迫切需要解决的技术难题之一。
对于难处理金矿,直接用氰化物处理浸出其金矿石和浮选精矿,很难获得满意的回收率,并会消耗大量的氰化物,为了解决这一难题,目前已研究出针对不同矿石的各种预处理方法,即常规氧化焙烧、热压(加压)浸出和细菌氧化法。
2难处理金矿的工艺矿物学特点2.1难处理金矿的工艺矿物学特点从工艺矿物学上看难处理金矿中金的赋存状态和矿物组成方面的原因阻碍了金的氰化浸出,可归结为物理包裹和化学干扰两类。
化学状态,氰化浸出时金也不易接触到氰化物溶液。
包裹金的主题矿物主要是黄铁矿和砷黄铁矿(毒砂),其次为铜、铅和锌的硫化物。
物理包裹是目前最主要和最重要的难金浸金矿类型,也是目前研究最多解决得较好的一类难浸金矿。
微生物浸出技术及其研究进展摘要:随着人们生活水平的不断提高,对矿产资源消耗量越来越大,而高品位矿石已近枯竭,开发利用低品位资源已提到议事日程;为此,必须找到一种经济上合理,技术上可行,并且安全环保的回收低品位矿石的方法,以充分利用原先丢弃的废矿或开采低品位的矿床。
目前,原地浸出(穿孔注液,不爆破)、就地浸出(爆破后就地喷液)、堆浸、池浸、搅拌浸出等技术被广泛应用,这些方法都伴随有微生物浸出部份。
在金矿、铜矿、铀矿的开采中,为了充分利用矿产资源和降低经济成本,科研人员利用微生物浸出技术来实现矿产资源的开发,使得微生物浸出技术成为开采金矿、铜矿、铀矿开采的重要技术。
本文在此通过对铜矿中使用的微生物品种的介绍、微生物浸出原理以及微生物浸出效率等进行讨论,并对微生物浸出技术的研究提出作者自己的看法。
关键词:微生物浸出技术;微生物浸出原理;浸出效率;影响因素;研究进展微生物浸出技术中,矿洞的开采环境以及微生物的特性不同,都会导致铜矿回收率的变化,从而影响到微生物的浸出效率。
因此,在使用微生物浸出技术进行铜矿资源的开采时,要保证其达到合适的pH值并满足铜矿的矿浆浓度,保证矿石粒度满足要求,避免粒径过细引起的叠堆。
同时,对加入了微生物的矿石进行充分搅拌,使其在搅拌中与微生物接触,保证微生物浸出过程中氧气和二氧化碳的充足。
目前,我国在研究高效菌种的培育以及高效菌种的散体渗流过程等还存在部分欠缺,为了提高微生物浸矿工艺的高效率,科研人员需要对现有的微生物浸出技术进行改进和完善。
1微生物浸出技术的概述最早的微生物浸出主要用于冶金,因此它还有着一个别称:湿式冶金技术,即通过利用微生物生命活动中的氧化以及还原特性来实现铜矿资源的开采。
在铜矿开采中,使用微生物浸出技术主要是因为微生物可以浸出金属,并对矿石表面的成份产生氧化还原,使其在水溶液中,以另一种形态的方式与原物质进行分离,包括元素沉淀或者离子状态等。
微生物浸出技术最早是被应用于贫矿中对金属的回收,比如铀、铜、金等。
15Metallurgical smelting冶金冶炼微生物强化浸出及微波技术在黄铜矿冶金中的运用李正中(云南锡业股份有限公司铜业分公司,云南 蒙自 661100)摘 要:在以往的湿法炼铜工艺中,应用微生物的氧化活性,通过加热搅拌的方式进行黄铜矿的浸出,但是浸出效率不高,应用微生物强化浸出技术,比如,在浸出液中加入适当的金属阳离子,或者是表面活性剂,改善微生物的遗传物质,提高微生物的活性,从而提升浸出效率。
运用微波电磁波的穿透性,以及热效应和非热效应,通过加热黄铜矿,起到很好的催化作用,可加快黄铜矿的浸出效率,与传统的加热方式相比,微波技术加热的可选择性,以及浸出无污染的特性,使其在冶金行业中得到一定的应用,在倡导环境保护的今天,具有十分广阔的推广前景。
关键词:微生物强化浸出;微波技术;黄铜矿冶金中图分类号:TF18 文献标识码:A 文章编号:11-5004(2020)18-0015-2收稿日期:2020-09作者简介:李正中,男,生于1979年,汉,云南大理人,本科,冶炼工程师,研究方向:有色冶金。
湿法炼铜是一种非常环保的冶金技术,与火法冶金相比,其不会产生SO 2,对环境的污染程度较小,受到了冶金行业的普遍关注。
湿法炼铜的浸出技术较多,比如,生物堆浸、微生物浸出、搅拌堆浸、加压浸出等,其中,微生物浸出受到的关注度教高,其对环境的污染非常小,并且冶金投入的成本低,在冶金行业内应用较为普遍。
1 微生物强化浸出在黄铜矿冶金中的运用低品位硫化铜矿是冶炼黄铜的主要矿物质,而其中黄铜的浸出对技术要求较高,并且浸出困难,需要强化微生物的浸出能力,提高浸出的效率,可以应用以下措施,增强微生物的活性,从而加快浸出速度,缩短浸出时间。
1.1 微生物浸出原理微生物浸出的原理是,利用其细菌的氧化性,与矿石中的低价硫发生反应,细菌获取了生长所需的营养物质,同时细菌通过培养基,获取N、K、P,和其他微量元素,满足自身生长繁殖的需求,再与矿石中的二价铁发生氧化反应,生成三价铁,而三价铁具有很强的浸出能力,可用于浸出难度大的矿石冶金中。
2013年第1期广东化工第40卷总第243期 · 65 · 微生物浸矿菌群的选育及培养彭阳,严国俊(东华理工大学,江西抚州 344000)[摘要]微生物浸矿技术是以湿法冶金和微生物学为基础的一门交叉学科,具有环境友好,反应温和,流程短,能耗低的优势。
但是由于在使用微生物浸矿时菌群易受到特殊毒害因素或环境条件的影响,从而降低矿石的浸出率。
因此在微生物浸矿技术中,针对性菌群的选育及培养技术占据了比较重要的地位。
文章对浸矿菌群的选育及培养的方法进行了综合性地介绍和评述。
[关键词]浸矿微生物;选育;培养[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2013)01-0065-02Breeding and Culture of Microbial Leaching MicrofloraPeng Yang, Yan Guojun(East China Institute of Technology, Fuzhou 344000, China)Abstract: Microbial leaching technology is an interdisciplinary based on hydrometallurgy and microbiology with advantages of environment-friendly, mild reaction short process, and low power consumption. However, the leaching rate of the ore is reduced because the microbial leaching microflora is susceptible to the influence of special poison factors or environmental conditions. Therefore in microbial leaching technology, the breeding and culture of targeted microflora technology occupy a more important position. The paper comprehensely introduced the breeding and culture of leaching microflora.Keywords: bioleaching microorganisms;breeding;culture微生物浸矿技术是利用细菌或其代谢产物所引起的生物化学氧化过程对矿物进行的生物化学氧化等化学作用并从矿石中溶浸目的矿物的过程。
该技术反应温和,环境友好,能耗低,流程短。
在矿石的日益贫杂及环境问题日益突出的今天,微生物浸矿技术将是金属元素提取、环境保护及废物利用的有效手段。
由于很多矿石中含有某些特殊元素,如氟、砷、钼等元素,在用微生物浸矿技术时菌群易受到毒害影响从而降低矿石的浸出率,因此在微生物浸矿技术中,针对性菌群的选育及培养技术占据了比较重要的地位。
1 浸矿细菌的选育浸矿细菌的的常见选育方法主要包括菌种的筛选、驯化、诱变和基因工程等。
1.1 浸矿细菌菌种的筛选目前在浸矿过程中使用的菌种约有二十几种,但其中直接有效用于浸出的仅有数种,其它多为伴生种,起促进作用。
将这些菌种按温度划分,可分为中温菌种(mosophiles,温度为20~35 ℃),如嗜硫杆菌(Thiobacillus)和微螺旋菌(Leptospirillum);中等嗜高温菌种(mederate thermophiles,温度为40~55 ℃),如硫杆菌(Sulfobacillus);高温菌种(thermophiles,温度为55 ℃以上),如硫化裂片菌属(Sulfolobus)[1]。
对于低品位硫化矿生物堆浸,由于含硫量极少,氧化能少,堆温低,因而中温菌种更有效;而对于高品位硫化精矿的生物槽浸,由于含硫量大,氧化能大,温度高,适于用嗜高温菌种[2]。
目前,人们所开发的天然菌种仅约占微生物种类总量的5 %,因此,有望通过广泛筛选,获得更多更高效的菌种。
1.2 浸矿细菌的驯化浸矿细菌在投入生产使用之前要进行驯化,使之适应浸矿过程中可能对细菌不利的工艺条件或对细菌具有毒害作用的物质成分。
对于高氟铀矿来说,有害的物质成分主要是氟,对于难浸出金精矿的细菌氧化工艺,不利于细菌生长的因素是矿浆的含固量和溶解的砷等物质。
细菌驯化的办法是逐渐提高不利因素的强度之后对细菌进行转移培养,在驯化过程中,那些对新环境不适应的细菌受到抑制被淘汰掉,而某些活力较强的细菌会通过变异等途径,转变成耐受性较强的细菌而存活下来,形成对新环境具有耐性的菌株。
比如培养细菌耐氟能力的方法是:首先在装有一定体积培养基的锥心瓶中加入较低浓度的氟离子,然后接种要驯化的菌进行培养,开始是菌不适应,要较长时间才能生长繁殖,待细菌适应了此浓度的含氟离子培养基后,再将它转移到含更高氟离子浓度的培养基中继续培养,使用目的矿物不断转代培养或增加有毒离子的转代培养。
刘亚洁等报道[3]氧化亚铁硫杆菌经过较高浓度含氟离子培养基长时间培养驯化后,筛选到的菌株可在含氟1148 g/L的溶浸液中一昼夜即可将5 g/L Fe2 +完全氧化。
吴为荣等报道[4]对T.t进行耐氟驯化试验经过多代接种驯化后,T.t的耐氟能力得到明显提高。
王清良等[5]报道采用经过初步驯化的细菌进行了细菌耐酸耐氟驯化培养试验,经驯化的细菌的耐酸浓度由30 g/L提高到80 g/L,耐氟浓度由100 mg/L提高到850 mg/L。
细菌对矿浆含固量的驯化也可采用类似的方法。
吴为荣等报导[6]的氧化硫硫杆菌对721矿铀矿石的适应性驯化中,经过15代驯化培养,细菌的耐氟能力达到350 mg/L,固液比可达1∶3。
1.3 浸矿细菌的诱变育种诱变育种利用自然突变原理,通过使用诱变剂人为地提高生物的突变频率,并对人们所需性状的正突变个体加以选择和利用。
对于浸矿细菌来说,大多突变研究仅限于为了选择一些有特性的菌株,或基因工程育种的原始材料,或为该菌的分子遗传学积累基本知识。
利用物理或化学的因素(如紫外线、亚硝基胍、微波等诱变剂) 处理微生物群体,促使少数个体细胞的遗传物质(主要是DNA) 的分子结构发生改变,使基因内部的碱基配对发生差错,从而引起微生物的遗传性状发生突变[7]。
根据应用的要求,可以从突变株中筛选出某些具有优良性状的菌株供科研和生产使用。
一般育种程序包括菌株的选择、菌悬液的制备、诱变处理和变异株的筛选。
目前在育种实践中应用较多的诱变剂有紫外线、微波、氮芥、乙基磺酸乙脂、N —甲基—N —硝基—N —亚硝基胍和N —甲基—N—亚硝基脲,后两种的诱变效果最好。
在处理方法上,往往将许多诱变剂同时使用,或一种诱变剂多次重复使用[8-9]。
目前这方面的报道较多,采用的诱变手段各异,均取得较好效果。
如徐晓军等报道了[10]经紫外线诱变的浸矿细菌对黄铜矿的浸出率比原始菌提高了46 %以上,到达浸出终点的时间也缩短了5~10 天。
李广悦等[11]以氧化亚铁硫杆菌作为出发菌,经紫外线诱变,考察不同诱变时间对氧化亚铁硫杆菌耐酸和耐氟性能的影响。
试验结果表明,经45~60 min的紫外线处理,菌株对酸的耐受性增强到pH为1.2,对氟离子的耐受性达到0.6 g/L。
1.4 浸矿细菌的基因工程育种来源不同的氧化亚铁硫杆菌菌株对于金属硫化矿物的浸出效果是不一样的,说明氧化亚铁硫杆菌具有复杂的遗传特性。
对氧化亚铁硫杆菌进行基因工程改良的研究己见较多报导,是今后浸矿细菌育种的一个重要方向。
但目前为止,国内外所有工作都是自养菌基因工程的前期探索。
其主要原因是研究这些自养菌困难程度很大:没有足够的可供筛选的带遗传标志的菌株材料;难以转化和表达外源的DNA--氧化亚铁硫杆菌基因能在大肠杆菌中表达(Homesetal,1983;Rawingseta,1983),而重组子返回来却难在氧化亚铁硫杆菌中表达(Homes et al,1984;Rawingsetal,1984);在传代过程中易丢失其性能;可供能量的基质有限,难以固体培养[12]。
在这方面,南华大学的潘文俊通过分子生物学技术,克隆抗氟基因flr-4,将其导入T.f1中,以期获得稳定遗传的抗氟基因工程菌。
最终构建了pJRD215-fir-4表达载体,通过接合转移将载体[收稿日期] 2012-11-25[作者简介] 彭阳(1987-),女,平度人,硕士研究生,主要研究方向为溶浸水文地质。
广东化工 2013年第1期· 66 · 第40卷总第243期导入到氧化亚铁硫杆菌T.f中获得了遗传稳定的抗氟基因工程菌,T.f1基因工程菌的抗氟能力提高了200 %以上[13]。
2 浸矿细菌的培养2.1 浸矿细菌的培养基微生物从中吸取营养并赖以生存繁殖的介质称为培养基,主要分为液体和固体两种形式。
液体培养基用于粗略的分离培养某种微生物,而进行微生物的纯种分离则需要用固体培养基。
浸矿细菌的液体培养基是由水和溶解在其中的各种无机盐组成的,每种细菌都有自己特有的培养基配方,这些配方是经研究者的研究之后提出来的,例如氧化亚铁硫杆菌常用9K培养基,氧化硫硫杆菌常用Waksman培养基。
用作平板分离的固体培养基,是在上述液体培养基中加入1.5 %左右的琼脂或一定量的硅胶制成的。
首先在加热条件下配成一定浓度的琼脂溶液,用硫酸调节好酸度,将此溶液灭菌后再加入无菌过滤的FeSO4等无机盐母液,冷却至常温即制成固体培养基。
固体培养基常用来进行菌种的分离培养。
2.2 浸矿细菌的实验室培养浸矿细菌的实验室培养是很重要的一步,一方面可以通过实验室的传代培养提高浸矿细菌的活性,达到提高浸矿效率的目的。
另一方面可对浸矿细菌进行生理生化特性研究,探索细菌生长的最适条件以及对细菌进行分离纯化培养对菌种进行鉴定。
2.3 浸矿细菌的连续扩大培养把一定数量的细菌,接种于合适液体培养基中,在适宜温度下培养,细菌群体的生长过程具有一定规律性。
细菌的生长曲线,大致可划为4个阶段:调整期、对数期、平衡期、衰老期[14],在对数生长期,群体细胞以指数速率增加,而且所分裂形成的细胞都是活的。
分批培养时,由于微生物在一个固定容积的反应器中生长,培养基中营养物质逐渐消耗,代谢产物逐渐积累,必然会使微生物的指数生长发生变化,生长速率降低。
为克服这种缺点,要采用连续培养,即在一个恒定容积的流动系统中培养。
一方面以一定速度不断地加人新的营养物;另一方面又以相同速度流出培养物(菌种和代谢产物)、这样便可使培养系统中细胞数量和营养状态保持恒定。