高等代数第二版课件§3.1 消元法
- 格式:ppt
- 大小:495.00 KB
- 文档页数:19
第三章 线性方程组在第一章里我们已经研究过线性方程组的一种特殊情形,即线性方程组所含方程的个数等于未知量的个数,且方程组的系数行列式不等于零的情形. 求解线性方程组是线性代数最主要的任务,此类问题在科学技术与经济管理领域有着相当广泛的应用,因而有必要从更普遍的角度来讨论线性方程组的一般理论. 本章主要讨论一般线性方程组的解法,线性方程组解的存在性和线性方程组解的结构等内容.第一节 消 元 法分布图示★ 引例★ 线性方程组★ 线性方程组解的判定定理★ 例1 ★ 例2★ n 元线性方程组的求解★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10★ 内容小结 ★ 课堂练习 ★ 习题9-1内容要点引例 用消元法求解下列线性方程组: ⎪⎩⎪⎨⎧=++=+-=-+2875342622321321321x x x x x x x x x通常把过程①-④称为消元过程,矩阵④就是行阶梯形矩阵,与之对应的方程组④则称为行阶梯方程组.从上述解题过程可以看出,用消元法求解线性方程组的具体作法就是对方程组反复实施以下三种变换:(1)交换某两个方程的位置;(2)用一个非零数乘某一个方程的两边; (3)将一个方程的倍数加到另一个方程上去.以上这三种变换称为线性方程组的初等变换. 而消元法的目的就是利用方程组的初等变换将原方程组化为阶梯形方程组, 显然这个阶梯形方程组与原线性方程组同解, 解这个阶梯形方程组得原方程组的解. 如果用矩阵表示其系数及常数项, 则将原方程组化为行阶梯形方程组的过程就是将对应矩阵化为行阶梯形矩阵的过程.将一个方程组化为行阶梯形方程组的步骤并不是唯一的, 所以,同一个方程组的行行阶梯形方程组也不是唯一的. 特别地,我们还可以将一个一般的行阶梯形方程组化为行最简形方程组, 从而使我们能直接“读”出该线性方程组的解.通常把过程⑤-⑧称为回代过程.从引例我们可得到如下启示: 用消元法解三元线性方程组的过程, 相当于对该方程组的增广矩阵作初等行变换.对一般线性方程组(1)是否有同样的结论? 答案是肯定的. 以下就一般线性方程组求解的问题进行讨论.设有线性方程组)1(22112222212*********⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 其矩阵形式为 b AX = (2)其中 ,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x X a a a a a a a a a A 称矩阵)(b A (有时记为A ~)为线性方程组(1)的增广矩阵.当m i b i ,,2,1,0 ==时, 线性方程组(1)称为齐次的; 否则称为非齐次的. 显然,齐次线性方程组的矩阵形式为0=AX (3)定理1 设n a A n m ij ,)(⨯=元齐次线性方程组0=Ax 有非零解的充要条件是系数矩阵的秩.)(n A r <定理2 设n a A n m ij ,)(⨯=元非齐次线性方程组b Ax =有解的充要条件是系数矩阵A 的秩等于增广矩阵)(~b A A =的秩, 即 ).~()(A r A r =注:记)(b A =A ~,则上述定理的结果,可简要总结如下:(1) 有唯一解;b Ax n A r A r =⇔==)~()((2) 有无穷多解;b Ax n A r A r =⇔<=)~()((3) 无解;b Ax A r A r =⇔≠)~()((4) .0)(只有零解=⇔=Ax n A r(5) .0)(有非零解=⇔<Ax n A r而定理的证明实际上给出了求解线性方程组(1)的方法:对非齐次线性方程组,将增广矩阵A ~化为行阶梯形矩阵,便可直接判断其是否有解,若有解,化为行最简形矩阵,便可直接写出其全部解. 其中要注意,当n r A r A r <==)~()(时,A ~的行阶梯形矩阵中含有r 个非零行,把这r 行的第一个非零元所对应的未知量作为非自由量,其余r n -个作为自由未知量.对齐次线性方程组, 将其系数矩阵化为行最简形矩阵,便可直接写出其全部解.例题选讲例1 判断下列方程组是否有解? 如有解, 是否有唯一的一组解? ⎩⎨⎧=+++=+-+.0,13243214321x x x x x x x x解 方程组的系数矩阵=A ,11111321⎪⎪⎭⎫⎝⎛- 显然A 有一个2阶子式1121,01≠-=,因此.2)(=A r 增广矩阵=A ~,0111111321⎪⎪⎭⎫⎝⎛-显然,2)~(=A r 因此该方程组有解. 但方程组的未知数个数为4,因此应有无穷多组解.例2 判断方程组是否有解?⎪⎪⎩⎪⎪⎨⎧=-+-=+-=++=++-.02,12,0,14332131321321x x x x x x x x x x x解 利用初等变换法求增广矩阵A ~的秩.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----021111020111141321r r ↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-----0211110214130111 14131223r r r r r r -++ ⎪⎪⎪⎪⎪⎭⎫⎝⎛---030013201740011132r r ↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0300174013200111232r r - ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0300110013200111343r r +.3000110013200111⎪⎪⎪⎪⎪⎭⎫⎝⎛-因此.4)~(,3)(==A r A r 由于),~()(A r A r ≠故原方程组无解.例3 (E01) 求解齐次线性方程组 .0340222022432143214321⎪⎩⎪⎨⎧=---=--+=+++x x x x x x x x x x x x解 对系数矩阵A 施行初等行变换.⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221A 13122r r r r -- ⎪⎪⎪⎭⎫ ⎝⎛------463046301221)3(223-÷-r r r ⎪⎪⎪⎭⎫⎝⎛000042101221 212r r -⎪⎪⎪⎭⎫⎝⎛--00003421035201 即得与原方程同解的方程组 ⎩⎨⎧--=-=432431)4(2)5(2x x x x x x (43,x x 可任意取值).令,,2413c x c x ==把它写成向量形式为.1034350122214321⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∴c c x x x x 它表达了方程组的全部解.例4 (E02) 解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=++-=+-+=++--=--+7739183332154321432143214321x x x x x x x x x x x x x x x x .解 对增广矩阵)(b A 施以初等变换,化为阶梯形矩阵: )(b A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=77391111833312111151⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------884140442704427011151⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=00000000004427011151⎪⎪⎪⎪⎪⎭⎫⎝⎛------00000000007/47/47/21011151,42)()(<==A r b A r 故方程组有无穷多解. 利用上式回代回代,00000000007/47/47/2107/137/137/301⎪⎪⎪⎪⎪⎭⎫⎝⎛---即⎪⎪⎩⎪⎪⎨⎧++-=--=43243174727471373713x x x x x x取212413,(,c c c x c x ==为任意常数),由方程组的全部解为.747274713737132413212211⎪⎪⎪⎩⎪⎪⎪⎨⎧==++-=--=cx c x cc x c c x例5 解线性方程组 ⎪⎪⎩⎪⎪⎨⎧-=--+=-++=-+=+++63243214132432143214324321x x x x x x x x x x x x x x x .解 =)(b A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----61132413211411013211⎪⎪⎪⎪⎪⎭⎫⎝⎛-----87510341101411013211⎪⎪⎭⎫⎝⎛----93600200001411013211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-20000936001411013211因为,3)(=A r ,4)(=b A r ),()(A r b A r ≠ 所以原方程组无解.例 6 证明方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-=-=-515454343232121a x x ax x a x x a x x a x x 有解的充要条件是054321=++++a a a a a .在有解的情况下, 求出它的全部解.证 对增广矩阵A ~进行初等变换:=A ~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----543211000111000011000011000011a a a a a ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----∑=5143210000011000011000011000011i i a a a a a ~()(A r A r =∑==51,0i ia∴方程组有解的充要条件是∑==51.0i ia在有解的情况下,原方程组等价于方程组⎪⎪⎩⎪⎪⎨⎧=-=-=-=-454343232121a x x a x x a x x a x x故所求全部解 ⎪⎪⎩⎪⎪⎨⎧+=++=+++=++++=544543354322543211a a x a a a x a a a a x a a a a a x )(5为任意实数x例7(E03) 讨论线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++t x x x x x px x x x x x x x x x x 432143214321432112105,3153,363,132 当t p ,取何值时, 方程组无解? 有唯一解? 有无穷多解? 在方程组有无穷多解的情况下, 求出全部解.解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=t p B 121051315133163113211 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------191260066402242013211t p ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++--53000422001121013211t p (1) 当2≠p 时,,4)()(==B r A r 方程组有唯一解; (2) 当2=p 时,有B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-53000420001121013211t ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-10000210001121013211-t 当1≠t 时,,4)(3)(=<=B r A r 方程组无解; 当1=t 时,,3)()(==B r A r 方程组有无穷多解.B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-10000210001121013211-t ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000210001121013211 ,-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00000210003021080001 即 ,23284321⎪⎩⎪⎨⎧==+-=x x x x 故原方程组的全部解为).(203801204321R k k x x x x ∈⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛例8(E04)假使你是一个建筑师,某小区要建设一栋公寓,现在有一个模块构造计划方案需要你来设计,根据基本建筑面积每个楼层可以有三种设置户型的方案是否唯一呢?解:设公寓的每层采用同一种方案,有1x 层采用方案A ,2x 层采用方案B ,3x 层采用方案C , 根据条件可得:⎪⎩⎪⎨⎧=++=++=++6654374347136988321321321x x x x x x x x x ()⎪⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛==00006021340410266543410212013806654382041369886654374347136988~b A A因为()()32~<==A r A r ,故方程组有无穷多解.利用上面最后一个矩阵进行回代得到()⎪⎪⎪⎪⎭⎫⎝⎛-→000060213404102b A该矩阵对应的方程组为⎪⎪⎩⎪⎪⎨⎧-=+=323181315212x x x x 取c x =3(其中c 为正整数数),则方程组的全部解为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=c x c x c x 32181315212 又由题意可知321,,x x x 都为正整数,则方程组有唯一解6,2,8123===x x x .所以设计案可行且唯一,设计方案为:6层采用方案A ,2层采用方案B ,8层采用方案C.例9(E05)在一个原始部落,农田耕作记为F ,农具及工具的制作记为M ,织物的编织记为C 。
3.1 消元法
3.2 n维向量空间
3.3 线性相关性
3.4 矩阵的秩
3.5 线性方程组有解判别定理3.6 线性方程组解的结构
一、向量组等价
二、向量组的线性相关性
三、用定义判别线性相关性
四、线性相关性的判别定理
五、极大线性无关组
六、方程组与向量组的关系的进一步研究
向量组验证可
传递性的证明
证明定义12 与定义12'是等价的
证明
M1 M2M3
O
X 3
3
3
R
图3 –7
2x+3y+z=4
3x+8y-2z=13
x-2y+4z=-5
4x-y+9z=-6图3 –8
用消元法求解得,它有无穷多解,当然有非零解
线性相关.
证明
定理1即得向量组的一个基本
定理1
把定理2换个说法,即得:
验证如下
(), 因为
此,
证明
的推论3。
高等代数线性方程组一、消元法顾名思义,就是不断通过消去未知量求得方程组的解消元法的三种基本变换(初等变换):1)用一非零的数乘某一方程2)把一个方程的倍数加到另一个方程3)互换两个方程的位置是不是感觉矩阵变换的性质类似哈哈哈,没错消元法的过程就是反复施行初等变换的过程,初等变换总是把方程组变成同解方程。
1.当 r=n ,此时阶梯形方程组为其中 c_{ii}\ne0,i=1,2,···,n,从最后一个方程开始求解, x_{n},x_{n-1},···,x_{1}确定,方程有唯一解。
2. r<n ,此时阶梯形方程为显然,给定一组值x_{r+1},···,x_{n}就可以唯一确定x_{1},x_{2},···,x_{r}的值将x_{r+1},···,x_{n}称为自由未知量,方程有无穷个解。
3. r>n 情况不可能出现定理1:在齐次线性方程组中,如果 s<n ,那么它必有非零解。
增广矩阵:矩阵称为线性方程组的增广矩阵。
用初等变换化方程组成阶梯形就相当于用初等行变换化增广矩阵成阶梯形矩阵,从而解线性方程组的第一步可通过矩阵进行。
二、n维向量空间向量的性质:和: \gamma=\alpha + \beta交换律: \alpha+\beta=\beta+\alpha结合律: \alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma 定义6 \alpha-\beta=\alpha+(-\beta)定义7(数乘运算):k\alpha=(ka_{1}+ka_{2},···,ka_{n})k(\alpha+\beta)=k\alpha+k\beta(k+l)\alpha=k\alpha+l\alphak(l\alpha)=(kl)\alpha定义8 以数域P中的数作为分量的n维向量的全体,同时考虑到定义在他们上的加法和数量乘法,称为数域P上的n维向量空间。